第一篇:2018考研高数定积分复习的三大要点
为学生引路,为学员服务
2018考研高数定积分复习的三大要点
2018考研初试时间临近,积分是考研数学中非常重要的考点也是容易丢分的部分。本文就和考生来说说最后这段时间要怎么复习定积分。
我们可以看到:在学习定积分之前,我们首先学习了不定积分。很多同学把不定积分与定积分搞混淆。其实不定积分是导数的逆运算,本质还是导数的延伸。而真正的积分部分是定积分。在此,向考生提出如下学习建议,供考生参考。
1.复习知识体系
在讲定积分的时候,我又回归到原来的讲法:从知识体系讲起。因为定积分这章非常重要,考试考查的内容多而广。这章包括:定积分的定义,性质;微积分基本定理;反常积分;定积分的应用。这四个部分各有侧重点。其中定积分的定义是重点;要理解微积分基本定理;要掌握定积分在几何和物理上面的应用。至于反常积分大家了解就行了。
2.深刻回顾知识点
在掌握了知识体系之后,自然就需要明确具体的重点知识点了。首先是定积分的定义及性质。大家需要深刻理解定积分的定义。我觉得同学们不仅要会用自己的话来表述定义,而且要一步一步的写出精髓。比如说从定义中体现的思想:微元法。同学们要理解分割,近似,求和,取极限这四个步骤。同时要知道其几何意义及定义中需要注意的方面。对定积分定义的考察在每年考研中是必考内容。所以希望引起大家的足够重视。至于性质,大家关键也在于理解。特别是区间可加性;比较定理;积分中值定理。对这三个性质大家一定要知道是怎么来的。考研中有关积分的证明题多多少少会用到这三个性质。所以大家只有理解了才懂得在什么时候用。然后是微积分基本定理。这个知识点非常重要。因为它定义了一种新的函数:积分上限函数。而且在一定的条件下,它的导数就是f(x)。所以我们扩展了函数类型。那么导数应用中的切线与法
为学生引路,为学员服务
线;单调性;极值;凹凸性等应用就可以与积分上限函数联系了。同时提出了牛顿-莱布尼茨公式,使得我们可以用不定积分来计算定积分。希望同学们要掌握牛顿-莱布尼茨公式的证明过程。补充说一点:求定积分常用的方法是基本积分公式;换元积分法(凑微分法和换元积分法);分部积分法。其中换元积分法和分部积分法是重点。大家要理解换元积分法的思想。即我们通过复合函数求导公式推出了凑微分法;通过三角代换,根式代换等提出了换元积分法。而我们通过相乘函数的导数公式推出了分部积分法。所以大家只有知道这些方法是怎么来的才能更好的使用这些方法。接着大家要注意变限积分求导了,最好请大家自己证明下。第三个要说的是反常积分。对这一部分,同学们了解基本定义,会用定积分判断是否收敛就够了。最后,是定积分的应用。其实就是微元法在几何以及物理上面的应用。同样的,同学们要知道数学一,数学二,数学三的区别。在几何上,数学三只用掌握用定积分求面积和简单几何体的体积。而数学一和数学二还要求掌握用定积分求曲线弧长,旋转曲面面积。在物理应用方面,数学一和数学二主要掌握用定积分求变力沿直线做功,抽水做功,液太静压力和质心问题。但核心是,同学们一定要掌握微元法的思想。
3.大量做题
在大家理解了重点知识以及明确了考试重点后就需要做题巩固了。关键是做真题,反复做真题,反复练习。
总之,希望大家经过这三个步骤能够学号临门一脚,祝大家成功
第二篇:高数复习要点
高数(上册)期末复习要点
第一章:
1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
第三篇:考研高数复习大纲
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
第四篇:高数(下)复习要点
高等数学(下)复习要点
(对经管及文科类学生不要求带“*”的内容)
第七章
1、空间曲线在坐标面的投影,P8,例5,P9,92、向量的模、方向角、方向余弦、单位化,P19,例7,P20,10.。
3、数量积、向量积。P27,84、平面方程、平面夹角,点到平面的距离。P35,3..5、空间直线及方程。P41,10
*
6、旋转曲面P43,例2.第八章
*
1、二元函数极限不存在的证明P54,例7.2、求二元函数的极限P58, 5(2),(4),P56,例93、偏导计算。P80,例9,P82,14(2),P88,2(4),P89,7,8*(4)
4、全微分。P74,2。4(2)。
*5熟悉可微,可导,连续和极限存在之间的关系。P74(B)16、几何应用。P94例3.7、方向导数与梯度P100例4.8、条件极值P111,7.第九章
1、二重积分计算。P124例3,P133 4(4),8(2),P134,13(1)
2、曲面面积。P141,3.*
3、三重积分。P151,4(2)。
4、曲线积分。P166,1(6),3(2)。
5、格林公式,,与路径无关的条件。P176,3(4),5(2)。*
6、曲面积分。P188,1(1),5(1)。
*
7、高斯公式。P194,1(4)。
第十章
1、收敛级数性质。
2、正项级数敛散性的判别。P211,2(8),3(6)。
3、交错级数敛散性的判别。P211,5(4)
4、幂级数的收敛半径和收敛域。P221,1(5),2(3)
*
5、求和函数。P222,3(1),(3)。
*
6、展开为幂级数。P236,2(6)
*
7、傅里叶级数。P250,4
第五篇:高数积分总结
高数积分总结
一、不定积分
1、不定积分的概念也性质
定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有
F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数。定义2:在区间I上,函数f(x)的带有任意常数项的原函数称为f(x)(或者f(x)dx)在区间I上的不定积分,记作
f(x)dx。
性质1:设函数f(x)及g(x)的原函数存在,则
[f(x)g(x)]dxf(x)dxg(x)dx。
性质2:设函数f(x)的原函数存在,k为非零常数,则
kf(x)dxkf(x)dx。
2、换元积分法(1)第一类换元法:
定理1:设f(u)具有原函数,(x)可导,则有换元公式
f[(x)]'(x)dx[f()d]
(x)。例:求2cos2xdx
解 2cos2xdxcos2x2dxcos2x(2x)'dxcosd 将2x代入,既得
2cos2xdxsin2xC
(2)第二类换元法:
定理2:设x(t)是单调的、可导的函数,并且'(t)0.又设f[(t)]'(t)具有原函数,则有换元公式
f(x)dx[f[(t)]'(t)dt]1其中(x)是x(t)的反函数。
t1(x),例:求dxxa22(a0)
22解
∵1tantsect,设xtantt,那么
22x2a2a2a2tan2ta1tan2tasect,dxasec2tdt,于是
asec2tdtsectdt 22asectxadx∴∵sect∴dxdxxa22lnsecttantC
x2a2,且secttant0 aCln(xx2a2)C,CClna 1122xxalnaax2a2
3、分部积分法
定义:设函数(x)及(x)具有连续导数。那么,两个函数乘积的导数公式为
'''
移项得
'()''
对这个等式两边求不定积分,得
'dx'dx
此公式为分部积分公式。例:求xcosxdx 解 xcosxdxxsinxsinxdx
∴xcosxdxxsinxcosxC 分部积分的顺序:反对幂三指。
4、有理函数的积分 例:求x1dx 2x5x62解
∵x5x6(x3)(x2),故设
x1AB
x25x6x3x2其中A,B为待定系数。上式两端去分母后,得
x1A(x2)B(x3)
即
x1(AB)x2A3B
比较上式两端同次幂的系数,既有
AB1 2A3B1从而解得
A4,B3 于是
x134dx4lnx33lnx2C x25x6dxx3x2其他有些函数可以化做有理函数。
5、积分表的查询
二、定积分
1、定积分的定义和性质
(1)定义:设函数f(x)在a,b上有界,在a,b中任意插入若干个分点
ax0x1x2xn1xnb
把区间a,b分成n个小区间
x0,x1,x1,x2,,xn1,xn
各个小区间的长度依次为
x1x1x0,x2x2x1,,xnxnxn1
在每个小区间xi1,xi上任取一点ixi1ixi,作函数值f(i)与小区间长度xi的乘积f(i)xii1,2,,n,并作出和
Sf(i)xi
i1n记maxx1,x2,,xn,如果不论对a,b怎么划分,也不论在小区间xi1,xi上点i怎么选取,只要当0时,和S总趋于确定的极限I,那么称这个极限I为函数(简称积分),记作
f(x)在区间a,b上的定积分
baf(x)dx,即
n其中变量,baf(x)dxIlimf(i)xi
0i1f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积分a叫做积分下限,b叫做积分上限,a,b叫做积分区间。
f(x)在区间a,b上有界,且只有有限个间断点,则f(x)定理1:设f(x)在区间a,b上连续,则f(x)在a,b上可积。定理2:设在a,b上可积。(2)性质1:
性质2:f(x)g(x)dxabbaf(x)dxg(x)dx
abkf(x)dxkabbaf(x)dx
(k是常数)
性质3:设acb,则
baf(x)dxf(x)dxf(x)dx
accb
性质4:如果在区间a,b上f(x)1,则
1dxdxba
aabb
性质5:如果在区间a,b上,f(x)0,则
babaf(x)dx0ab
推论1:如果在区间a,b上,f(x)g(x),则
f(x)dxg(x)dxab
ab
推论2:
baf(x)dxf(x)dx(ab)
ab
性质6:设M及m分别是函数最小值,则
f(x)在区间a,b上的最大值和m(ba)f(x)dxM(ba)(ab)
ab
性质7(定积分中值定理):如果函数f(x)在积分区间a,b上连续,则在a,b上至少存在一个点,使下式成立
baf(x)dxf()(ba)(ab)
2、微积分基本公式(1)积分上限函数及其导数
定理1:如果函数f(x)在区间a,b上连续,则积分上限的函数
xf(t)dt
ax在a,b上可导,并且它的导数
dx'(x)f(t)dtf(x)(axb)adx定理2:如果函数f(x)在区间a,b上连续,则函数
(x)f(t)dt
ax就是f(x)在区间a,b上的一个原函数。
f(x)在区间a,b上的一个原函(2)牛顿-莱布尼茨公式
定理3:如果函数F(x)是连续函数数,则
(1)定积分的换元法 定理:
三、多元函数微分
四、重积分
五、曲面和曲线积分
baf(x)dxF(b)F(a)
3、定积分的换元法和分部积分法