2018考研高数定积分复习的三大要点

时间:2019-05-14 11:31:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018考研高数定积分复习的三大要点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018考研高数定积分复习的三大要点》。

第一篇:2018考研高数定积分复习的三大要点

为学生引路,为学员服务

2018考研高数定积分复习的三大要点

2018考研初试时间临近,积分是考研数学中非常重要的考点也是容易丢分的部分。本文就和考生来说说最后这段时间要怎么复习定积分。

我们可以看到:在学习定积分之前,我们首先学习了不定积分。很多同学把不定积分与定积分搞混淆。其实不定积分是导数的逆运算,本质还是导数的延伸。而真正的积分部分是定积分。在此,向考生提出如下学习建议,供考生参考。

1.复习知识体系

在讲定积分的时候,我又回归到原来的讲法:从知识体系讲起。因为定积分这章非常重要,考试考查的内容多而广。这章包括:定积分的定义,性质;微积分基本定理;反常积分;定积分的应用。这四个部分各有侧重点。其中定积分的定义是重点;要理解微积分基本定理;要掌握定积分在几何和物理上面的应用。至于反常积分大家了解就行了。

2.深刻回顾知识点

在掌握了知识体系之后,自然就需要明确具体的重点知识点了。首先是定积分的定义及性质。大家需要深刻理解定积分的定义。我觉得同学们不仅要会用自己的话来表述定义,而且要一步一步的写出精髓。比如说从定义中体现的思想:微元法。同学们要理解分割,近似,求和,取极限这四个步骤。同时要知道其几何意义及定义中需要注意的方面。对定积分定义的考察在每年考研中是必考内容。所以希望引起大家的足够重视。至于性质,大家关键也在于理解。特别是区间可加性;比较定理;积分中值定理。对这三个性质大家一定要知道是怎么来的。考研中有关积分的证明题多多少少会用到这三个性质。所以大家只有理解了才懂得在什么时候用。然后是微积分基本定理。这个知识点非常重要。因为它定义了一种新的函数:积分上限函数。而且在一定的条件下,它的导数就是f(x)。所以我们扩展了函数类型。那么导数应用中的切线与法

为学生引路,为学员服务

线;单调性;极值;凹凸性等应用就可以与积分上限函数联系了。同时提出了牛顿-莱布尼茨公式,使得我们可以用不定积分来计算定积分。希望同学们要掌握牛顿-莱布尼茨公式的证明过程。补充说一点:求定积分常用的方法是基本积分公式;换元积分法(凑微分法和换元积分法);分部积分法。其中换元积分法和分部积分法是重点。大家要理解换元积分法的思想。即我们通过复合函数求导公式推出了凑微分法;通过三角代换,根式代换等提出了换元积分法。而我们通过相乘函数的导数公式推出了分部积分法。所以大家只有知道这些方法是怎么来的才能更好的使用这些方法。接着大家要注意变限积分求导了,最好请大家自己证明下。第三个要说的是反常积分。对这一部分,同学们了解基本定义,会用定积分判断是否收敛就够了。最后,是定积分的应用。其实就是微元法在几何以及物理上面的应用。同样的,同学们要知道数学一,数学二,数学三的区别。在几何上,数学三只用掌握用定积分求面积和简单几何体的体积。而数学一和数学二还要求掌握用定积分求曲线弧长,旋转曲面面积。在物理应用方面,数学一和数学二主要掌握用定积分求变力沿直线做功,抽水做功,液太静压力和质心问题。但核心是,同学们一定要掌握微元法的思想。

3.大量做题

在大家理解了重点知识以及明确了考试重点后就需要做题巩固了。关键是做真题,反复做真题,反复练习。

总之,希望大家经过这三个步骤能够学号临门一脚,祝大家成功

第二篇:高数复习要点

高数(上册)期末复习要点

第一章:

1、极限(夹逼准则)

2、连续(学会用定义证明一个函数连续,判断间断点类型)

第二章:

1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续

2、求导法则(背)

3、求导公式也可以是微分公式

第三章:

1、微分中值定理(一定要熟悉并灵活运用--第一节)

2、洛必达法则

3、泰勒公式拉格朗日中值定理

4、曲线凹凸性、极值(高中学过,不需要过多复习)

5、曲率公式曲率半径

第四章、第五章:积分

不定积分:

1、两类换元法

2、分部积分法(注意加C)

定积分:

1、定义

2、反常积分

第六章: 定积分的应用

主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难

1、方向余弦

2、向量积

3、空间直线(两直线的夹角、线面夹角、求直线方程)

3、空间平面

4、空间旋转面(柱面)

第三篇:考研高数复习大纲

一、函数、极限与连续

1.求分段函数的复合函数;

2.求极限或已知极限确定原式中的常数;

3.讨论函数的连续性,判断间断点的类型;

4.无穷小阶的比较;

5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学

1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

2.利用洛比达法则求不定式极限;

3.讨论函数极值,方程的根,证明函数不等式;

4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;

5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学

1.计算题:计算不定积分、定积分及广义积分;

2.关于变上限积分的题:如求导、求极限等;

3.有关积分中值定理和积分性质的证明题;

4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;

第四篇:高数(下)复习要点

高等数学(下)复习要点

(对经管及文科类学生不要求带“*”的内容)

第七章

1、空间曲线在坐标面的投影,P8,例5,P9,92、向量的模、方向角、方向余弦、单位化,P19,例7,P20,10.。

3、数量积、向量积。P27,84、平面方程、平面夹角,点到平面的距离。P35,3..5、空间直线及方程。P41,10

*

6、旋转曲面P43,例2.第八章

*

1、二元函数极限不存在的证明P54,例7.2、求二元函数的极限P58, 5(2),(4),P56,例93、偏导计算。P80,例9,P82,14(2),P88,2(4),P89,7,8*(4)

4、全微分。P74,2。4(2)。

*5熟悉可微,可导,连续和极限存在之间的关系。P74(B)16、几何应用。P94例3.7、方向导数与梯度P100例4.8、条件极值P111,7.第九章

1、二重积分计算。P124例3,P133 4(4),8(2),P134,13(1)

2、曲面面积。P141,3.*

3、三重积分。P151,4(2)。

4、曲线积分。P166,1(6),3(2)。

5、格林公式,,与路径无关的条件。P176,3(4),5(2)。*

6、曲面积分。P188,1(1),5(1)。

*

7、高斯公式。P194,1(4)。

第十章

1、收敛级数性质。

2、正项级数敛散性的判别。P211,2(8),3(6)。

3、交错级数敛散性的判别。P211,5(4)

4、幂级数的收敛半径和收敛域。P221,1(5),2(3)

*

5、求和函数。P222,3(1),(3)。

*

6、展开为幂级数。P236,2(6)

*

7、傅里叶级数。P250,4

第五篇:高数积分总结

高数积分总结

一、不定积分

1、不定积分的概念也性质

定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有

F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数。定义2:在区间I上,函数f(x)的带有任意常数项的原函数称为f(x)(或者f(x)dx)在区间I上的不定积分,记作

f(x)dx。

性质1:设函数f(x)及g(x)的原函数存在,则

[f(x)g(x)]dxf(x)dxg(x)dx。

性质2:设函数f(x)的原函数存在,k为非零常数,则

kf(x)dxkf(x)dx。

2、换元积分法(1)第一类换元法:

定理1:设f(u)具有原函数,(x)可导,则有换元公式

f[(x)]'(x)dx[f()d]

(x)。例:求2cos2xdx

解 2cos2xdxcos2x2dxcos2x(2x)'dxcosd 将2x代入,既得

2cos2xdxsin2xC

(2)第二类换元法:

定理2:设x(t)是单调的、可导的函数,并且'(t)0.又设f[(t)]'(t)具有原函数,则有换元公式

f(x)dx[f[(t)]'(t)dt]1其中(x)是x(t)的反函数。

t1(x),例:求dxxa22(a0)

22解

∵1tantsect,设xtantt,那么

22x2a2a2a2tan2ta1tan2tasect,dxasec2tdt,于是

asec2tdtsectdt 22asectxadx∴∵sect∴dxdxxa22lnsecttantC

x2a2,且secttant0 aCln(xx2a2)C,CClna 1122xxalnaax2a2

3、分部积分法

定义:设函数(x)及(x)具有连续导数。那么,两个函数乘积的导数公式为

'''

移项得

'()''

对这个等式两边求不定积分,得

'dx'dx

此公式为分部积分公式。例:求xcosxdx 解 xcosxdxxsinxsinxdx

∴xcosxdxxsinxcosxC 分部积分的顺序:反对幂三指。

4、有理函数的积分 例:求x1dx 2x5x62解

∵x5x6(x3)(x2),故设

x1AB

x25x6x3x2其中A,B为待定系数。上式两端去分母后,得

x1A(x2)B(x3)

x1(AB)x2A3B

比较上式两端同次幂的系数,既有

AB1 2A3B1从而解得

A4,B3 于是

x134dx4lnx33lnx2C x25x6dxx3x2其他有些函数可以化做有理函数。

5、积分表的查询

二、定积分

1、定积分的定义和性质

(1)定义:设函数f(x)在a,b上有界,在a,b中任意插入若干个分点

ax0x1x2xn1xnb

把区间a,b分成n个小区间

x0,x1,x1,x2,,xn1,xn

各个小区间的长度依次为

x1x1x0,x2x2x1,,xnxnxn1

在每个小区间xi1,xi上任取一点ixi1ixi,作函数值f(i)与小区间长度xi的乘积f(i)xii1,2,,n,并作出和

Sf(i)xi

i1n记maxx1,x2,,xn,如果不论对a,b怎么划分,也不论在小区间xi1,xi上点i怎么选取,只要当0时,和S总趋于确定的极限I,那么称这个极限I为函数(简称积分),记作

f(x)在区间a,b上的定积分

baf(x)dx,即

n其中变量,baf(x)dxIlimf(i)xi

0i1f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积分a叫做积分下限,b叫做积分上限,a,b叫做积分区间。

f(x)在区间a,b上有界,且只有有限个间断点,则f(x)定理1:设f(x)在区间a,b上连续,则f(x)在a,b上可积。定理2:设在a,b上可积。(2)性质1:

性质2:f(x)g(x)dxabbaf(x)dxg(x)dx

abkf(x)dxkabbaf(x)dx

(k是常数)

性质3:设acb,则

baf(x)dxf(x)dxf(x)dx

accb

性质4:如果在区间a,b上f(x)1,则

1dxdxba

aabb

性质5:如果在区间a,b上,f(x)0,则

babaf(x)dx0ab

推论1:如果在区间a,b上,f(x)g(x),则

f(x)dxg(x)dxab

ab

推论2:

baf(x)dxf(x)dx(ab)

ab

性质6:设M及m分别是函数最小值,则

f(x)在区间a,b上的最大值和m(ba)f(x)dxM(ba)(ab)

ab

性质7(定积分中值定理):如果函数f(x)在积分区间a,b上连续,则在a,b上至少存在一个点,使下式成立

baf(x)dxf()(ba)(ab)

2、微积分基本公式(1)积分上限函数及其导数

定理1:如果函数f(x)在区间a,b上连续,则积分上限的函数

xf(t)dt

ax在a,b上可导,并且它的导数

dx'(x)f(t)dtf(x)(axb)adx定理2:如果函数f(x)在区间a,b上连续,则函数

(x)f(t)dt

ax就是f(x)在区间a,b上的一个原函数。

f(x)在区间a,b上的一个原函(2)牛顿-莱布尼茨公式

定理3:如果函数F(x)是连续函数数,则

(1)定积分的换元法 定理:

三、多元函数微分

四、重积分

五、曲面和曲线积分

baf(x)dxF(b)F(a)

3、定积分的换元法和分部积分法

下载2018考研高数定积分复习的三大要点word格式文档
下载2018考研高数定积分复习的三大要点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高数积分总结

    高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f......

    高数积分总结

    第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dFf(x)(x)f(x)dx,则称F(x)......

    2015考研暑期复习关注三大要点[合集]

    2015考研暑期复习关注三大要点获取目标院校信息 招生简章是第一通道对于跨专业考研来说,信息搜集工作显得尤为重要。考生要重点搜集招生简章、招生专业目录、指定参考书、专......

    2018考研数学复习重点之定积分解析篇

    凯程考研辅导班,中国最权威的考研辅导机构 2018考研数学复习重点之定积分解析篇 2018考研数学大纲已发布,对于定积分部分,整体要求没有什么出入,下面主要是根据2017年对定积分......

    2016考研数学:定积分的证明

    2016考研数学:定积分的证明 定积分及其应用这部分内容在历年真题的考察中形式多样,是考试的重点内容。启航考研龙腾网校老师希望同学们要加以重视! 定积分的证明是指证明题目......

    2015年山东大学考研专业课复习三大要点(合集5篇)

    2015年山东大学考研专业课复习三大要点考研考的不是智商,是意志。一旦进入考研复习就要坚持下来,要有坚定的意志,树立远大理想,立志在此领域干出一番事业。只有抱着这样的目标,才......

    2014考研高数学习要点:基础与脉络

    2014考研数学,高数学习要点:基础与脉络 考研数学分为高等数学,概率论与数理统计和线性代数三个科目,一般而言线性代数都会认为比较简单,概率论的比例次于高等数学,重头戏就是高等......

    高数下册各类积分方法总结(合集)

    综述:高数下册,共有如下几类积分:二重积分,三重积分,第一类线积分,第二类线积分,第一类面积分,第二类面积分。其中,除线积分外,个人认为,拿到题后,首先应用对称性把运算简化,线积分的对称......