第一篇:考研高数复习我的一些感受
前一段时间我复习第一轮高数复习得很痛苦很痛苦,中途还因为备受挫败感所以中途把数学丢弃了,以至于我的第一轮高数复习了有三个月之久!最后还是觉得无论如何数学是不能丢弃的,所以又选择了开始!高数的最后两章我给自己限定了时间,最终一周内复习完了!这让我松了一口气,这第一场马拉松终于可以跑完了。接着我去上了两天的数学基础课,因为只是看视频,觉得很累!回到学校后又重新开始了我的概率复习,不知道为什么现在复习起来还挺有状态的,可能是受到复习高数最后两章的刺激吧,我觉得如果真的用心复习,那数学也可以很快把书本复习完(大家请不要见笑,我复习得很慢)。本来想法是很好的,只是我想大家都知道接近期末了,还有专业课要考试,所以原本可以用来复习数学的时间就不由得要相应减少了。
我们这学期有6门要考试,现在知道的最近一门考试时间是在6月24号,时间是知道了,平时没看到同学去上自习的现在都看到他们勤奋的身影了,可是我还真的不想复习考试的内容!我只想快点把数学复习完(现在很多人都开始第二轮复习了,而我第一轮都还没结束,好惭愧,所以才想快马加鞭)。
到了最后这一段时间的复习肯定就受到影响了,能分配到考研复习的时间也要相应减少了……
之前花费了很长一段时间让自己进入状态,现在好不容易等到状态来了,却也面临着期末考试,有点打击。不过现在第一轮还没复习完也是自己之前没控制好时间而导致自食其果。
我记得我第一次去听辅导班的课那老师第一天跟我们说过:如果今天的内容没办法完成,大家可以轻松一点过了,不过第二天的任务就加大了。如果这样就会导致第一天很轻松第二天就很累了!(当然那天老师是针对他要上课的内突来说的)
但是我想到的是,考研复习不正是这样吗?如果前期复习像我现在的第一轮数学复习那样,后期(就是现在)不就很痛苦吗?还很可能在期末结束前都不能完成任务呢!我的前期是很爽,但现在就一点也高兴不起来了,因为现在苦了!节奏也变得紧了……如果我的前期能像我复习最后两章的效率那么高,那第二轮也应该复习完了!
其实无论你复习哪一科都好,如果真的没有合理分配好时间,那下场就很惨了。所以,大家千万不要放松啊!加油!再苦也一定要挺住!
不怕慢,只怕站!
第二篇:考研高数复习大纲
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
第三篇:上册高数复习必备
第一章:
1、极限
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式 也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式 拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式 曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
高数解题技巧。(高等数学、考研数学通用)
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
第四篇:高数复习要点
高数(上册)期末复习要点
第一章:
1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
第五篇:期末高数复习
期末高数复习重点:
一. 求极限
1.等价无穷小的代换;
2.洛必达法则;
3.两个重要极限;lim(1-1/x)^x=1/e
二.求导,求微分
1.复合函数;
2.隐函数;
3.参数函数;
4.求切线,法线方程;
5.反三角函数:sin y=xy=arcsin x
三.函数连续性质
1.连续的定义;左(右)连续
2.分段函数,分段点处的连续性:求函数的间断点及类型
3.闭区间连续函数的性质:零点定理,介值定理
四.求函数的单调性,凹凸区间和拐点
五.中值定理(闭区间开区间连续可导)
课本重点复习章节:
第一章 函数与极限
第五节 极限运算法则
无穷小因子分出法 P47例5-例7;消去零因子法P46例3;通分化简
第六节 极限存在法则;两个重要极限
P58:例7可用洛必达法则求; 求幂指函数的极限:如例8
第七节 无穷小的比较
几个重要等价无穷小的代换
第八节 函数的连续性
证明函数的连续性;求函数的间断点及类型,特别是可去间断点
第九节 闭区间上连续函数的性质
中值定理和介值定理
第二章 导数与微分
第三节 复合函数的求导法则
第五节 隐函数的导数以及参数方程所确定的函数的导数
对数求导法 P116 例5,例6; 参数求导
第三章 中值定理与导数的应用
第一节 中值定理
第二节 洛必达法则
各种未定式类型求极限
第四节 函数的单调性和曲线的凹凸性
单调性和驻点;凹凸性和拐点;不可导点