考研高数 多元函数(最终版)

时间:2019-05-12 11:58:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《考研高数 多元函数(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《考研高数 多元函数(最终版)》。

第一篇:考研高数 多元函数(最终版)

一维到高维空间也是质变

多元微分学主要研究多元初等函数。基本工具还是极限。比如,多元函数在定义域上一点M连续的定义为

—— 若在函数f(M)的定义域D内,总有M → M0 时,l i m f(M)= f(M0),就称函数f(M)在点M0连续。

体会一维到高微空间是质变,自然就得从体验极限开始。(多元函数以二元函数为例。)

在数轴上,动点x趋于定点x0时,只有左,右两个连续的变动方向,因而一元函数有简明的极限存在性判断定理 ——

“x → x0时,极限 l i m f(x)存在的充分必要条件是左、右极限存在且相等。”

(潜台词:学好一元微分学的起点,就是学会分左右讨论极限及相关问题。管它什么左连续,右连续,左导数,导数的左极限,右导数,导数的右极限,„„,概念全都清清楚楚,计算通通滚瓜烂熟。)简单地说,一元函数在每一个极限过程中仅有两个“道路极限”。

在日常生活中,我们感觉大地是一张平面,人们在行动时谈“方位”十分自然。倒是直线显得较为特殊。

二元函数的(有序)自变量组(x,y)与平面成一一对应。讨论二元函数,任意选定中心点M0,动点M可以在它的四周任意一个方位处。我们只能用向量方式(Δx,Δy)来表式相应自变量增量。相对偏离为微距离Δ r =√((Δx)平方+(Δy)平方)。进而自然地称函数z = f(M)相应的增量Δz为全增量。“全”,就是强调增量可以在任意方位出现。

当动点M → M0时,M可以有无穷多个连续变动方式趋向M0,既可以沿直线道路,也可以沿曲线路径逼近M0,这就大大提高了讨论极限的难度。

与一元函数对比,由两个“道路极限”到无穷多个(还是不可列无穷多)“道路极限”,量变引起质变。

鉴于这个困难,《高等数学》不开展关于多元函数极限的讨论。学习多元微分学,首先要学会利用海涅定理,选择两个道路极限不相等,来判断某些极限不存在。体验多元函数求极限的困难。例1试证明,(x,y)→(0,0)时,极限lim(y ∕(x+y))不存在分析分别取直线道路 y = x,y = 2 x,就得到不相等的“道路极限”1/2与1/3,因而所求极限不存在。

实际上,只要 k ≠ −1,沿直线道路 y = k x,(x,y)→(0,0)时,显然,所算得的道路极限值随k变而变,你可以由此而窥见问题之复杂。

例2试证明极限(x,y)→(0,0)时,极限lim(xy ∕(x+y))不存在分析先取道路y = k x,k ≠ −1,令(x,y)→(0,0)实施观察,所有的道路极限都为0,但是你还不能就此以为所求极限为0,因为(x,y)还可以沿弯曲的道路趋于0

选取弯曲的路径,抛物线 y = −x +(x平方),道路极限为 −1,故所求极限不存在。

实际上,选抛物线道路 y = −x + a(x平方),常数 a ≠ 0,则将得到随a值不同而互不相等的无穷多个道路极限。

(画外音:你是否感觉到大开眼界。)

进一步的讨论中,“方位”成为前提。我们从中心点M0(x0,y0)出发,选定一个方向,就可以计算函数沿这个方向的平均变化率 Δz /Δ r,令 Δ r → 0 求极限,得到沿这个方向的 “瞬时变化率”。这个瞬时变化率称为方向导数。

(画外音:你见过用竹杆探路行进的盲人吗?)

令人难忘的自然是直角坐标系的两个坐标方向。在中心点M0(x0,y0)处,一元函数 z = f(x,y0)的导数称为二元函数 z = f(x,y)在点M0关于x的偏导数。它就是函数沿x轴正向的方向导数。同理有二元函数 z = f(x,y)在点M0关于y的偏导数。它就是函数沿y轴正向的方向导数。(潜台词:偏导数的特点是“偏”。仅仅是函数在一个特殊方向的变化率。)

与一元函数一样,更深入的问题是,在中心点M0邻近,二(多)元函数的全增量“能否微局部线性化”,即,二(多)元函数在M0是否可微(存在全微分)。

定义 —— 若在点M0的适当小的(园)邻域内,函数增量△z恒可以表示为

Δz = A Δx + BΔy + о(Δ r)=“线性主部 + 高阶无穷小о(Δ r)”

则称二元函数 z = f(x,y)在点M0可微(存在全微分)。

(画外音:要检验函数是否可微,先写出о(Δ r)= Δz − A Δx + BΔy,再令Δ r → 0讨论极限,看能否证明,这个尾项的确是较Δr高阶的无穷小。(数学一))

矛盾自然出现了。矛盾集中于“全(微分)”与“偏(导数)”。就算二(多)元函数的偏导数都存在,几个特殊方向的变化率,又怎能确定函数全方位的变化??仅仅是“偏导数(都)存在”显然不能保证“全微分存在”。这与一元函数“可微与可导等价”是截然不同的。

如果二元函数 z = f(x,y)在点M0可微(存在全微分)。则容易证明两个偏导数都存在,且关于x的偏导数 = A,关于y的偏导数 = B

“偏导数都存在”是可微分的必要条件。

历史上的深入讨论,找到了二(多)元函数在一点可微的一个充分条件是,函数的偏导数都存在且连续。

一维到高微空间是质变。一元微分学最讲究条件。讨论前沿问题时,总是想能否把条件削弱一点来得到同样的结论。而多元微分学只能以假设为前提,要什么条件就得给什么条件。比如,要是二阶偏导数不连续,二阶混合偏导数就可能与求偏导顺序有关。给应用带来巨大障碍。

在讨论多元函数时,条件“(一阶)偏导数存在且连续”是一个基本条件。没有这个条件,仅仅知道偏导数存在是什么事情也做不成的。有了这个条件,则

(1)偏导数存在且连续,则函数的全微分存在。

(2)全微分存在函数必定连续。故偏导数存在且连续,函数必定连续。

*(3)偏导数存在且连续时,全体偏导数按坐标顺序排成“梯度向量”,函数沿任意方向的方向导数,就是“梯度向量”在该方向的投影。且“梯度向量”是方向导数最大的方向。

(潜台词:理解时要落实(站立)在中心点。)

记住主关系链,偏导数连续 —→ 全微分存在 —→ 函数连续

相关选择题就迎刃而解了。

例3设函数 z=f(x, y)有定义式:

f(0, 0)= 0,其它点处f(x, y)= xy∕(x平方+y平方)

试证明,在原点(0,0)函数的两个偏导数都存在但函数却不连续。

分析类似例1,取直线道路 y = k x,即知(x,y)→(0,0)时,函数不存在极限,当然在原点不连续。

但是,f(x,0)= 0,f(0,y)= 0,在原点处,两个偏导数都为0

例4考虑二元函数 f(x, y)的 4 条性质

(1)f(x, y)在点(x0,y0)处连续。(2)f(x, y)的偏导数都在(x0,y0)连续。

(3)f(x, y)在点(x0,y0)处可微。(4)f(x, y)在点(x0,y0)的偏导数都存在。如果用表达式“P → Q”说明可以由性质P推出性质Q,则有(?)

(A)(2)→(3)→(1)(B)(3)→(2)→(1)

(C)(3)→(4)→(1)(D)(3)→(1)→(4)

分析(A)对。这就是主关系链。(3)不能推出(2),(B)错。

(3)可以推出(4),但(4)不能推出(1),(C)错。

(3)可以推出(1),但(1)不能推出(4)。比如二元函数z = | x |,(D)错。

第二篇:考研高数精华知识点总结:分段函数

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

考研高数精华知识点总结:分段函数

高等数学是考研数学考试中内容最多的一部分,分值所占比例也最高。为此我们为大家整理分享了考研高数精华知识点总结之分段函数。凯程考研将第一时间满足莘莘学子对考研信息的需求,并及时进行权威发布,敬请关注!

分段函数:

1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;

分段函数是一个函数,定义域、值域都是各段的并集。

2、绝对值函数去掉绝对符号后就是分段函数。

3、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。

4、分段函数的处理方法:分段函数分段研究。

抽象函数:我们把没有给出具体解析式的函数称为抽象函数;

一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研:

凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿;

使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由

一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

凯程考研历年战绩辉煌,成就显著!

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,2014年状元武玄宇,2013年状元李少华,2012年状元马佳伟,2011年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程官方网站有公布,随时可以查看播放。)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

考研路上,拼搏和坚持,是我们成功的必备要素。

王少棠

本科学校:南开大学法学

录取学校:北大法学国际经济法方向第一名 总分:380+ 在来到凯程辅导之前,王少棠已经决定了要拼搏北大法学院,他有自己的理想,对法学的痴迷的追求,决定到最高学府北大进行深造,他的北大的梦想一直激励着他前进,在凯程凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

辅导班的每一刻,他都认真听课、与老师沟通,每一个重点知识点都不放过,对于少棠来说,无疑是无比高兴的是,圆梦北大法学院。在复试之后,王少棠与凯程老师进行了深入沟通,讲解了自己的考研经验,与广大考北大法学,人大法学、贸大法学等同学们进行了交流,录制为经验谈,在凯程官方网站能够看到。

王少棠参加的是凯程考研辅导班,回忆自己的辅导班的经历,他说:“这是我一辈子也许学习最投入、最踏实的地方,我有明确的复习目标,有老师制定的学习计划、有生活老师、班主任、授课老师的管理,每天6点半就起床了,然后是吃早餐,进教室里早读,8点开始单词与长难句测试,9点开始上课,中午半小时吃饭,然后又回到教室里学习了,夏天比较困了就在桌子上睡一会,下午接着上课,晚上自习、测试、答疑之类,晚上11点30熄灯睡觉。”

这样的生活,贯穿了我在辅导班的整个过程,王少棠对他的北大梦想是如此的坚持,无疑,让他忘记了在考研路上的辛苦,只有坚持的信念,只有对梦想的勇敢追求。

龚辉堂

本科西北工业大学物理

考入:五道口金融学院金融硕士(原中国人民银行研究生部)作为跨地区跨校跨专业的三凯程生,在凯程辅导班里经常遇到的,五道口金融学院本身公平的的传统,让他对五道口充满了向往,所以他来到了凯程辅导班,在这里严格的训练,近乎严苛的要求,使他一个跨专业的学生,成功考入金融界的黄埔军校,成为五道口金融学院一名优秀的学生,实现了人生的重大转折。

在凯程考研辅导班,虽然学习很辛苦,但是每天他都能感觉到自己在进步,改变了自己以往在大学期间散漫的学习状态,进入了高强度学习状态。在这里很多课程让他收获巨大,例如公司理财老师,推理演算,非常纯熟到位,也是每个学生学习的榜样,公司理财老师带过很多学生,考的非常好。在学习过程中,拿下了这块知识,去食堂午餐时候加一块鸡翅,经常用小小的奖励激励自己,寻找学习的乐趣。在辅导班里,学习成绩显著上升。

在暑期,辅导班的课程排得非常满,公共课、专业课、晚自习、答疑、测试,一天至少12个小时及以上。但是他们仍然特别认真,在这个没有任何干扰的考研氛围里,充实地学习。

在经过暑期严格的训练之后,龚对自己考入五道口更有信心了。在与老师沟通之后,最终确定了五道口金融学院作为自己最后的抉择,决定之后,让他更加发奋努力。

五道口成绩公布,龚辉堂成功了。这个封闭的考研集训,优秀的学习氛围,让他感觉有质的飞跃,成功的喜悦四处飞扬。

另外,在去年,石继华,本科安徽大学,成功考入五道口金融学院,也就是说,我们只要努力,方向正确,就能取得优异的成绩。师弟师妹们加油,五道口、人大、中财、贸大这些名校等着你来。

黄同学(女生)本科院校:中国青年政治学院

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

报考院校:中国人民大学金融硕士 总分:跨专业380+ 初试成绩非常理想,离不开老师的辛勤辅导,离不开班主任的鼓励,离不开她的努力,离不开所有关心她的人,圆梦人大金融硕士,实现了跨专业跨校的金融梦。

黄同学是一个非常腼腆的女孩子,英语基础算是中等,专业课是0基础开始复习,刚刚开始有点吃力,但是随着课程的展开,完全能够跟上了节奏。

初试成绩公布下来,虽然考的不错,班主任老师没有放松对复试的辅导,确保万无一失,拿到录取通知书才是最终的尘埃落地,开始了紧张的复试指导,反复的模拟训练,常见问题、礼仪训练,专业知识训练,每一个细节都训练好之后,班主任终于放心地让她去复试,果然,她以高分顺利通过复试,拿到了录取通知书。这是所有凯程辅导班班主任、授课老师、生活老师的成功。

张博,从山东理工大学考入北京大学法律硕士,我复习的比较晚,很庆幸选择了凯程,法硕老师讲的很到位,我复习起来减轻了不少负担。愿大家在考研中马到成功,也祝愿凯程越办越好。

张亚婷,海南师范大学小学数学专业,考入了北京师范大学教育学部课程与教学论方向,成功实现了自己的北师大梦想。特别感谢凯程的徐影老师全方面的指导。

孙川川,西南大学考入中国传媒大学艺术硕士,播音主持专业。在考研辅导班,进步飞快,不受其他打扰,能够全心全意投入到学习中。凯程老师也很负责,真的很感谢他们。

在凯程考研辅导班,他们在一起创造了一个又一个奇迹。从河南理工大学考入人大会计硕士的李梦说:考取人大,是我的梦想,我一直努力,肯定能够成功的,只要我们不放弃,不抛弃,并且一直在努力前进创造成功的条件,每个人都能够成功。正确的方法+不懈的努力+良好的环境+严格的管理=成功。我相信,每个人都能够成功。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

第三篇:高数8多元函数的极限与连续

二元函数的极限

二元极限存在常用夹逼准则证明

例1 lim(3x2y)14

x2y1211xsinysin,xy0,例2 函数f(x,y)在原点(0,0)的极限是0.yx

xy0.0二元极限不存在常取路径

x2y例3

证明:函数f(x,y)4在原点(0,0)不存在极限.((x,y)(0,0))4xy与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等.证明方法与一元函数极限证法相同,从略.上述二元函数极限limf(x,y)是两个自变量x与y分别独立以任意方式无限趋近于xx0yy0x0与y0.这是个二重极限.二元函数还有一种极限:

累次极限

定义

若当xa时(y看做常数),函数f(x,y)存在极限,设当yb时,(y)也存在极限,设

lim(y)limlimf(x,y)B,ybybxa则称B是函数f(x,y)在点P(a,b)的累次极限.同样,可定义另一个不同次序的累次极限,即

limlimf(x,y)C.xayb那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系.例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在.如上述例3.2)二重极限存在,但是两个累次极限可能都不存在.如上述的例2.多重极限与累次极限之间的关系

定理

若函数f(x,y)在点P0(x0,y0)的二重极限与累次极限(首先y0,其次x0)都存在,则

limlimf(x,y).limf(x,y)xx0yy0xx0yy0

二元函数的连续性

定理

若二元函数f(P)与gP在点P0连续,则函数f(P)g(P),f(P)g(P),(g(P0)0)都在点P0连续

f(P)

g(P)

定理

若二元函数u(x,y),v(x,y)在点P0(x0,y0)连续,并且二元函数f(u,v)在点(u0,v0)(x0,y0),(x0,y0)连续,则复合函数f(x0,y0),(x0,y0) 在点P0(x0,y0)连续.1.用极限定义证明下列极限:

1)lim(4x3y)19;

2)lim(xy)sinx2y12x0y011sin0; xyx2y2xy03)lim2.(提示:应用1.)22x0xy2xyy02.证明:若f(x,y)xy,(xy0),则 xyy0x0

limlimf(x,y)1

limlimf(x,y)1.x0y0x4y43.设函数f(x,y)4,证明:当点(x,y)沿通过原点的任意直线(ymx)趋23(xy)于(0,0)时,函数f(x,y)存在极限,且极限相等.但是,此函数在原点不存在极限.(提示:在抛物线yx上讨论.)2x2y22D(x,y)yx4.若将函数f(x,y)2限制在区域,则函数f(x,y)在原点2xy(0,0)存在极限(关于D).5.求下列极限: 1)limxysinxy;

2); limx1x2xyy2x0xy2y422x0y03)lim(xy)In(xy);

(提示:设xrcos,yrsin)

4)limx0y0(14x2)(16y2)12x23y2.

第四篇:多元函数

第二节 多元函数的基本概念

分布图示

★ 领域★平面区域的概念

★ 多元函数的概念★ 例1★ 例

2★ 二元函数的图形

★ 二元函数的极限★ 例3★ 例

4★ 例5★ 例6★ 例7

★ 二元函数的连续性★ 例 8

★ 二元初等函数★ 例 9-10

★ 闭区域上连续函数的性质

★ 内容小结★ 课堂练习

★习题6-2

内容提要:

一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域

二、多元函数的概念

定义1 设D是平面上的一个非空点集,如果对于D内的任一点(x,y),按照某种法则f,都有唯一确定的实数z与之对应,则称f是D上的二元函数,它在(x,y)处的函数值记为f(x,y),即zf(x,y),其中x,y称为自变量,z称为因变量.点集D称为该函数的定义域,数集{z|zf(x,y),(x,y)D}称为该函数的值域.类似地,可定义三元及三元以上函数.当n2时, n元函数统称为多元函数.二元函数的几何意义三、二元函数的极限

定义2 设函数zf(x,y)在点P0(x0,y0)的某一去心邻域内有定义,如果当点P(x,y)无限趋于点P0(x0,y0)时,函数f(x,y)无限趋于一个常数A,则称A为函数zf(x,y)当(x,y)(x0,y0)时的极限.记为

xx0yy0limf(x,y)A.或f(x,y)A((x,y)(x0,y0))

也记作

limf(P)A或f(P)A(PP0)PP0

二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述.为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性

定义3 设二元函数zf(x,y)在点(x0,y0)的某一邻域内有定义,如果

xx0yy0limf(x,y)f(x0,y0),则称zf(x,y)在点(x0,y0)处连续.如果函数zf(x,y)在点(x0,y0)处不连续,则称函数zf(x,y)在(x0,y0)处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数.由x和y的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的.这里定义区域是指包含在定义域内的区域或闭区域.利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理.下面我们不加证明地列出这些定理.定理1(最大值和最小值定理)在有界闭区域D上的二元连续函数, 在D上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D上的二元连续函数在D上一定有界.定理3(介值定理)在有界闭区域D上的二元连续函数, 若在D上取得两个不同的函数值, 则它在D上取得介于这两值之间的任何值至少一次.例题选讲:

多元函数的概念

例1某公司的总成本(以千元计)为

C(x,y,z,w)5x4y2zln(w1)

其中x是员工工资,y是原料的开销,z是广告宣传的开销,w是机器的开销.求2C(2,3,0,10).解 用2替换x,3替换y,0替换z,10替换w,则C(2,3,0,10)52430ln(101)

29.6(千元)。

例2(E02)求二元函数f(x,y)2arcsin(3x2y2)

xy2的定义域.223xy1解 2xy0

2x2y24 2xy

所求定义域为D

{(x,y)|2x2y24,xy2}.例3(E03)已知函数f(xy,xy)解设uxy,vxy,则 x2y2x2y2, 求f(x,y).xuvuv,y, 22

22uvuv2uv22故得f(u,v), 2222uvuvuv22

即有f(x,y)2xy.x2y2

二元函数的极限

例4(E04)求极限 lim(x2y2)sinx0y01.22xy

解令ux2y2,则

lim(x2y2)sinx0

y011=0.limusin22u0uxy

例5 求极限limx0

y0sin(x2y)xy22.22sinx(y)sinx(y)x2ysin(x2y)sinu2uxy1, 22, 其中lim解li22li2limx0x0xyx0u0uxyxyx2yy0y0y0x2y

x2y212xy1xx2x2y22x00, sin(x2y)所以lim220.x0xyy0

例6求极限 limxy.xx2y2

y

解当xy0时,0xyxy11xy0(x,y), 2y2x2xyx2y2x2y2

所以limxy

x0.yx2y2

例7(E05)证明limxy

x0x2y2不存在.y0

证取ykx(k为常数),则

limxy

x0x2y2limxkxk

x02,y0ykxx2k2x21k易见题设极限的值随k的变化而变化,故题设极限不存在.例8 证明limx3y

x06不存在.y0xy2

证取ykx3,limx3y

x0x6y2limx3kx3k

x0x62,其值随k的不同而变化,y0ykx3k2x61k

限不存在.二元函数的连续性

x3y3

例9讨论二元函数f(x,y)x2y2,(x,y)(0,0)在(0,0)处的连续性.0,(x,y)(0,0)

解由f(x,y)表达式的特征,利用极坐标变换: 令xcos,ysin,则

(x,ylim)(0,0)f(x,y)lim0(sin3cos3)0f(0,0), 所以函数在(0,0)点处连续.例10(E06)求limln(yx)y

x0.y1x2

解l

xi0mlny(x)y11.y1xln1(0)02

例11求limexy

x0xy.y1故极

exye01exy2.解因初等函数f(x,y)在(0,1)处连续,故limx0xy01xy

y1

课堂练习

y1.设fxy,x2y2, 求f(x,y).x

2.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时, 函数f(x,y)都趋向于A, 能否断定

(x,y)(x0,y0)limf(x,y)A? xy2,x2y20243.讨论函数f(x,y)xy的连续性.2xy200,

第五篇:多元函数微分学

多元函数的极限与连续

一、平面点集与多元函数

(一)平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.1.常见平面点集:

⑴ 全平面和半平面: {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa}, {(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆, 闭圆, 圆环.圆的个部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域:X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.(二)点集的基本概念: 1.内点、外点和界点:集合E的全体内点集表示为intE, 边界表示为E.集合的内点E, 外点E, 界点不定.2.聚点和孤立点: 孤立点必为界点.例1 确定集E{(x,y)|3.开集和闭集: 1(x1)2(y2)24 }的内点、外点集、边界和聚点.intEE时称E为开集,E的聚点集E时称E为闭集.存在非开非闭集.R2和空集为既开又闭集.4.开区域、闭区域、区域:以上常见平面点集均为区域.5.有界集与无界集: 6.点集的直径d(E):两点的距离(P1 , P2).7.三角不等式:

|x1x2|(或|y1y2|)(x1x2)2(y1y2)2 |x1x2||y1y2|.(三)二元函数: 1.二元函数的定义、记法、图象: 2.定义域: 例4 求定义域:

ⅰ> f(x,y)3.有界函数: 4.n元函数: 9x2y2x2y21;ⅱ> f(x,y)lny.ln(yx21)

二、二元函数的极限

(一).二元函数的极限: 1.二重极限limf(P)A的定义: 也可记为PP0PD(x,y)(x0,y0)limf(x,y)A或xx0yy0limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.[1]P94 E1.xy20.例2 用“”定义验证极限 lim2x0xy2y0x2y2,(x,y)(0,0),xy例3 设f(x,y)x2y

20 ,(x,y)(0,0). 证明(x,y)(0,0)limf(x,y)0.(用极坐标变换)

PP0PETh 1 limf(P)A对D的每一个子集E ,只要点P0是E的聚点,就有limf(P)A.PP0PD推论1 设E1D,P0是E1的聚点.若极限limf(P)不存在, 则极限limf(P)也不存在.PP0PE1PP0PD推论2 设E1,E2D,P0是E1和E2的聚点.若存在极限limf(P)A1,limf(P)A2,PP0PE1PP0PE2但A1A2,则极限limf(P)不存在.PP0PD推论3 极限limf(P)存在对D内任一点列{ Pn },PnP0但PnP0,数列{f(Pn)}PP0PD xy ,(x,y)(0,0),22收敛 例4 设f(x,y)xy 证明极限limf(x,y)不存在.(x,y)(0,0)0 ,(x,y)(0,0).(考虑沿直线ykx的方向极限).例5 设f(x,y)1,0,当0yx2,x时,证明极限limf(x,y)不

(x,y)(0,0)其余部分.存在.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxyf(x,y)的定义: 3. 极限(x,y)(x0,y0)lim其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3yEx

[1]P99—100 1⑴—⑹,4,5.(二)累次极限:

1.累次极限的定义: 定义.例8 设f(x,y)xy, 求在点(0 , 0)的两个累次极限.22xyx2y2例9 设f(x,y)2, 求在点(0 , 0)的两个累次极限.2xy例10 设f(x,y)xsin11ysin, 求在点(0 , 0)的两个累次极限与二重极限.yx 2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)

⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1y在点(0 , 0)的情况.⑶ 二重极限存在时, 两个累次极限可以不存在.(例10)

⑷ 两个累次极限存在(甚至相等)二重极限存在.(参阅例4和例8).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在,则

xx0yy0必相等.推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在全面极限不存在.参阅⑵的例.三、二元函数的连续性

(一)二元函数的连续概念:

xy22 , xy0 ,22xy例1 设f(x,y)

m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例1 设f(x,y)

([1]P101)0 , 其他.证明函数f(x,y)在点(0 , 0)不全面连续但在点(0 , 0)f对x和y分别连续.2.函数的增量: 全增量、偏增量.用增量定义连续性.3.函数在区域上的连续性.4.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.

下载考研高数 多元函数(最终版)word格式文档
下载考研高数 多元函数(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2016考研:多元函数微分学大纲解析解读[精选合集]

    2016考研:多元函数微分学大纲解析 (1多元函数微分学考察方式 针对 2015年对多元函数微分学的考察方式,结合 2016大纲,同学们在 2016年考研备考中 应该注意下面问题 1. 结合......

    高数课件-函数极限和连续范文合集

    一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.......

    高数复习方案(函数和极限)

    计算机科学与技术09级学生工作委员会—学习部函数与极限1. 集合:具有某种特性定性质的事物的总体成为集合组成集合的事物叫做元素设元素为a集合为M那么aM交集,子集,属于,不属于......

    考研高数复习大纲

    一、函数、极限与连续 1.求分段函数的复合函数;2.求极限或已知极限确定原式中的常数;3.讨论函数的连续性,判断间断点的类型;4.无穷小阶的比较;5.讨论连续函数在给定区间上零点的......

    考研高数大纲(大全五篇)

    2014年考研数学一考试大纲 考试形式和试卷结构: 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容结构 高等......

    2014年考研高数大纲

    第一章函数与极限 第十节中的“一致连续性”不用看; 其它内容是数一数二数三公共部分 第二章导数与微分 第四节参数方程求导及相关变化率为数一,数二考试内容,数三不要 求; 第五......

    多元函数微分学复习

    第六章 多元函数微分学及其应用 6.1 多元函数的基本概念 一、二元函数的极限 定义 f (P)= f (x,y)的定义域为D, oP0(x0,y0)是D的聚点. 对常数A,对于任意给定的正数,总存在正数,......

    第五章--多元函数微积分

    第五章 多元函数微积分 学习目的和要求 学习本章,要求读者掌握多元函数及其偏导数的概念、偏导数的求导法则及利用偏导数讨论多元函数的极值、最大值和最小值,学会使用拉格......