第五章--多元函数微积分

时间:2019-05-14 13:27:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第五章--多元函数微积分》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第五章--多元函数微积分》。

第一篇:第五章--多元函数微积分

第五章 多元函数微积分

学习目的和要求

学习本章,要求读者掌握多元函数及其偏导数的概念、偏导数的求导法则及利用偏导数讨论多元函数的极值、最大值和最小值,学会使用拉格朗日乘数法研究条件极值并应用最小二乘法等讨论经济问题,了解二重积分的数学含义,学会计算一些简单的二重积分.

第一节 多元函数

1.二元函数

设有3个变量 的二元函数.记作 为因变量.

如果当变量

在一定的范围D内任意取定一对值或称为自变量,D称为定义域,z时,变量z按照一定的规律,总有确定的数值和它们对应,则变量z叫做变量

类似地,可以定义三元函数及更多元函数,二元以及二元以上的函数称为多元函数.

2.二元函数的极限

设函数 的某一邻域内有定义,是该邻域内

以任何方式趋近于 时,函数的对应值

时的异于 的任意一点.如果点

趋近于一个确定的常数A,我们就说 二重极限,记作

3.二重极限和二次极限

对于二元函数 的极,这个极限称为二次极限,记限,可得极限函数 为

.4.有界闭区域上多元连续函数的性质(不作证明)有最大最小值定理、中间值定理、有界性定理、零点存在定理.

第二节 偏 导 数

1.定义 设函数 的某一邻域内有定义.当 固定在

时,相应地函数有增量

如果极限 在点

存在,则称此极限值为函数 的偏导数,记作

类似地,可定义函数 2.求导法则

(1)和:设

(2)积:设

则 的偏导数。

2(3)商:设

3.高阶偏导数

高阶偏导数可定义为相应的低一阶偏导数的偏导数

例如:

第三节 全 微 分

二元函数全微分的定义 若二元函数 的全增量

可表示为

其中

阶无穷小量,则称函数 点(x,y)的全微分.可微,并称

进一步讨论可知: 的高在故得

关于二元函数,有如下结论:若

及其某一邻域内存在,且在该点连续,则函数在该点可微.

第四节 多元复合函数求导法则、隐函数求导公式 1.设函数

.若成立条件: 的函数,(1)在点

处存在编导数的相应点可微,则有

(2)

2.隐函数求导公式 设函数 的某一邻域内具有连续的偏导数,的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数 ,偏导数可由

它满足条件

来确定.第五节 多元函数偏导数的应用

1.多元函数的极值

设函数值

如果都有 反之,若成立 的某个邻域内有定义,对于该邻域内异于,则称函数在点(,则称函数在点)有极大

有极小值

.使函数取得极值的点称为极值点.(1)极值存在的必要条件 设函数 偏导数

(2)极值存在的充分条件 设函数 且有一阶二阶连续偏导数,又 记 ① 小值; ② ⑧ 时无极值; 时待定.

处取极值,且当AO时取极

可微分(或存在)处有极值,则在该点的偏导数必为零,即 的某个邻域内连续2.条件极值、拉格朗日乘数法

在讨论极值问题中,除对自变量给出定义域外,并无其他条件,则称为无条件极值,而若对自变量还附有其他条件的极值问题称为条件极值. 拉格朗日乘数法:要找函数 以先构造函数 其中λ为某一常数,求 程 联立起来: 的一阶偏导数,并使之为零,然后与方

下的极值可疑点,可 5

由上述方程组解出 3.最小二乘法

即为极值可疑点.

在经济分析中,我们经常要研究一些经济变量间的相互关系,其中最简单最常见的则为线性关系 有数据.记

称为计算误差或残差.我们希望利用一组已有的资料

能很好地吻合已来寻找这一线性关系,使找到的

我们希望找到这样的 条件来选择常数

取到最小值,这种根据残差的平方和为最小的的方法叫做最小二乘法.

必须满足 由极值存在的必要条件,使

从而可解得

若记 则又可得下面比较简单的表达式:

4.应用举例

(1)生产函数 考察一个企业的生产能力常常涉及各种因素,但就其根本来说,决定企业内部生产能力的主要因素是劳动力

在经济分析中,有所谓要素报酬递减定律,也就是边际收益会递减.例如我们假定资金保持不变,则随着劳动力的增加,产量也将随着增加,但劳动力的边际产量将会下降,如图7.1所示.,因而可记生产函数为

如果资金和劳动力是可以相互替代的,则为得一不变产量水平可以有各种不同的劳动力和资金投入,而且若拥有资金越来越少,此时劳动力就要大量增加.同样,如果只有极少的劳动力,此时若再减少一些劳动力,则资金增量就要大得多,7 这样我们就可得到一族等量线K=K(L),且等量线为单调下降的下凸曲线(两阶导数大于零),如图7.2所示

在等量线上,Q为常数,所以

故得

定义为技术替代率,或要素的边际替代率.

(2)Cobb—Douglas生产函数 20世纪30年代,西方经济学界提出如下形式: 的生产函数,称为Cobb—Douglas生产函数,这类函数有如下一些优点,因而得到较广泛的应用: ① 它是 次齐次函数;

② 等量线为单调下降和下凸的;

③ 常弹性,资金弹性为α,劳力弹性为β; ④ 系数A表示技术进步。(3)齐次函数和欧拉定理 若

特别地,当 时,有

次齐次函数,则

它表示:资本投入量乘以边际产量加上劳力投入量乘以劳动力边际产量等于总产量。

第六节 二重积分

2.二重积分的概念

设函数 在闭区域 D上连续,将区域D任意分成 n个小区域 在每个小区域

(i=1,2,…,n),并作和

如果各小区域的直径中的最大值λ趋于零时,这和式的极限存在,则称此极限值为函数,即,作乘积,其中 叫做被积函数,为积分区域.2.二重积分的性质(1)

.(2)

(3)

这里假定将区域 D分成两个区域 D1与 D2.(4)若在 D上,成立,则有不等式:

特别地有:

(5)设 则有

上的最大值和最小值, 的面积,(6)设函数 存在一点

在闭区域

上连续,的面积,则在

上至少,成立

3.二重积分的计算(1)化二重积分为二次积分(a)先对y后对x积分

(b)先对x后对y积分

(2)利用极坐标计算二重积分 令

第五章 多元函数微积分

例1.下列平面方程中,过点(1,1,-1)的方程是()

(A)x+y+Z=0(B)x+y+Z=1(C)x+y-Z=1(D)x+y-Z=0 解:判断一个点是否在平面上,只需将点的坐标代入,看看是否满足相应的平面方程即可。易见应选(B)。例2.指出下列平面的特殊位置

(1)x+2z=1;(2)x-2y=0;(3)x-2y+3z=0;(4)z-5=0.解:设平面方程为 Ax+By+Cz+D=0

(1)方程中y的系数为B=0,故该平面平行于oy轴(垂直于zox平面);(2)方程中z的系数C=0且D=0,故平面过oz轴;

(3)方程中常数D=0,故该平面过原点;

(4)方程中x的系数A=0 且y的系数B=0,故该平面垂直于oz轴(平行于xoy平面)。

例3.求过点(3,2,1)且平行于yoz平面的平面方程。

解:平行于yoz平面即垂直于ox轴,故可设所求平面方程为Ax+D=0,将已知点(3,2,1)的坐标代入上式,得D=-3A,从而所求方程为x-3=0。

注意:在求平面方程时,Ax+By+Cz+D=0中的四个待定常数不是完全独立的,计算时可用其中的一个表示其余的三个,然后通过化简得出所求结果。例4.求点M(2,-3,1)分别关于xOy平面、Oy轴和原点的对称点。解:点M关于xOy平面的对称点是第三个分量变号,即(2,-3,-1),关于Oy轴的对称点是第一,第三分量变号,即(-2,-3,-1),关于原点的对称点是三个分量都变号即(-2,3,-1)。

例5.求平面3x+2y-z-6=0分别在三条坐标轴上的截距。

解:将平面方程化为截距式方程,得

因此该平面在Ox轴、Oy轴和Oz轴上的截距依次为2、3、和-6。例6.求球面 的球心坐标和半径。

解:对方程进行配方,化为一般形式的球面方程

从而球心坐标为(3,-1,0),半径为。

例7.下列方程在空间直角坐标系中,表示施转抛物面的方程是()(A)解:

(B)

(C)

(D)

只能x=y=z=0,它表示空间直角坐标系中的原点。

是一次方程,D=0表示过原点的一个平面。

物面。

表示绕z轴旋转张口朝z轴负方向的旋转抛表示双曲抛物面(马鞍面)故应选(C)

例8.函数

(A)(B)的定义域是()。

(C)(D)

解:由函数的表达式知函数的定义域为

即,故应选(C)。

例9.设

(A)(B)

(C)

(D)

解:由题设,(A)。例10.设 在点

处偏导数存在,则

故应选

(A)

(B)(C)

(D)

解:根据偏导数的定义,有

故应选(C)。

例11.设 证明

证明:

于是 左

注意,本例还可以利用二元函数隐函数来解偏导数:

两边取对数

代入左端即可得结论。例12.设

(A)

其中f为可微函数,则

(B)

(C)

(D)

故应选(D)。例13.设

因此,例14.设

例15.设z=z(x,y)是由方程

确定的函数,求

注意:在求隐函数的偏导数时,其结果中可以有变量度z的出现,结果表达式也常常不是惟一的,如本例用 代入两个偏导还可以表示成

例16.设(A)

(B)

(C)

(D)

解1:变量之间的关系图为

故应选(A)

注意:这里解法2经过代入后变成了一个一元函数求导问题,简洁明了。

例17.

证明:设

变量之间的关系为

例18.求函数

解:函数 的定义域为的极值。

全平面,得驻点

例19.某厂生产甲、乙两种产品,其销售单位分别为10万元和9万元,若生产x件甲种产品和y件乙种产品的总成本,又已知两种产品的总产量为100件,求企业获得最大利润时两种产品的产量各为多少?

例20.计算二重积分

解:作积分区域D的草图,如图7-1

(图7-1)19

例21.求

解:作积分区域D的草图,如图7-2

(图7-2)

例22.计算二重积分

解: 积分区域D是一个圆环:内半径为

用极坐标系计算。

注意:当积分区域是圆及其部分,被积函数又比较容易化成极坐标时,应考虑使用在极坐标系之下积分。

本例关于 和关于r的积分上下限均是常数,同时被积函数可以分离,这时二重积分可化成两个定积分的乘积。

例23.计算

其中

解法1:

即圆心在(0,a)半径为a的圆。又 ,因此是右半半圆(如图7-3)。

(图7-3)用极坐标系计算。

解法2:用直角坐标系计算,先对x后对y积分右半圆的方程为

第五章 多元函数微积分

单元测试

一、选择题

1、点

,则 的中点坐标为()

A、(0,2,-2)B、(1,-2,1)C、(0,4,-4)D、(2,4,2)

2、点 关于坐标原点的对称点是()

A、(-2,3,-1)B、(-2,-3,-1)C、(2,-3,-1)D、(-2,3,1)

3、点 关于XOY平面的对称点是()

A、(-2,3,-1)B、(-2,-3,-1)C、(2,-3,-1)D、(-2,3,1)

4、过Y轴上的点(0,1,0)且平行与XOZ平面的平面方程是()

5、下列方程中,其图形是下半球的是()

6、设,则

()

7、函数 的定义域是()

8、设

在(0,0)点连续,则 K=()

A、1 B、0 C、1/2 D、不存在

9、设

()

10、若

11、设 则

=()

()

A、0 B、1/2 C、-1 D、1

12、设,则

=()

13、设,则

()

14、若,则

()

A、10 B、-10 C、15 D、-15

15、设

()

16、若,则

()

17、设

()

18、若

()

19、设

()

20、设函数

()

21、设

()

22、函数 z=f(x,y)在点 函数在该点存在全微分的(处具有两个偏导数)

A、充分条件 B、充要条件 C、必要条件 D、既不是充分条件,又不是必要条件

23、若函数,则

()

24、设 是由方程

确定的隐函数,则

=()

25、若

26、二元函数 的驻点为()

=()

27、若,则

处()

A、一定连续 B、一定偏导数存在 C、一定可微 D、一定有极值

28、设二元函数()

有极大值且两个一阶偏导数都存在,则必有

29、设函数 是它的驻点,在点 的某一邻域内有连续的二阶偏导数,且

则)是极大值的充分条件是(A、B、C、D、30、设 是函数 的驻点且有

若,则

一定()

A、是极大值 B、是极小值 C、不是极值 D、是极值

31、函数

在点(0,0)处()

A、有极大值 B、有极小值 C、无极值 D、不是驻点

32、对于函数,原点(0,0)()

A、不是驻点 B、是驻点但非极值点 C、是驻点且为极大值点 D、是驻点且为极小值点

33、若D是由

所围成的平面区域,则

()

34、若D是平面区域,则二重积分

()

35、设D:,则

()

36、设二重积分的积分区域D是

37、若D是平面区域,y≥0则

二、计算题(一)

(),则

()

1、设 解:设

则。

2、设 解:

3、计算二重积分 的第一象限的图形。,其中区域D是由

所围成解:区域D在极坐标下可表示为

于是 =

三、计算题(二)

1、设

解:

2、已知

解:

3、设 解法一:在。

两边分别对 和 求偏导数,得

整理得

解法二:

4、设 确定函数,求

解:令

5、设函数,由方程

确定,其中

解: 同理

6、设D是由

所围成的区域,计算

解:先对x积分,再对y积分。

7、计算二重积分

所围成.,其中区域由抛物线 及直线

解:

8、计算二重积分,其中D为

解:采用极坐标系

9、计算二重积分 成且在直线,其中D是由直线 和圆

所围下方的平面区域。

解法一:用极坐标系

解法二:用直角坐标系

=

=

=

10、计算二重积分

围成的区域。

解:圆 的极坐标方程是

因此

四、证明题

1、设

(a,b 均为常数)

求证:

证:∵

2、设 ∵ ∴

3、设

证:∵

4、设,证明它满足等式:

证:

第二篇:多元函数

第二节 多元函数的基本概念

分布图示

★ 领域★平面区域的概念

★ 多元函数的概念★ 例1★ 例

2★ 二元函数的图形

★ 二元函数的极限★ 例3★ 例

4★ 例5★ 例6★ 例7

★ 二元函数的连续性★ 例 8

★ 二元初等函数★ 例 9-10

★ 闭区域上连续函数的性质

★ 内容小结★ 课堂练习

★习题6-2

内容提要:

一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域

二、多元函数的概念

定义1 设D是平面上的一个非空点集,如果对于D内的任一点(x,y),按照某种法则f,都有唯一确定的实数z与之对应,则称f是D上的二元函数,它在(x,y)处的函数值记为f(x,y),即zf(x,y),其中x,y称为自变量,z称为因变量.点集D称为该函数的定义域,数集{z|zf(x,y),(x,y)D}称为该函数的值域.类似地,可定义三元及三元以上函数.当n2时, n元函数统称为多元函数.二元函数的几何意义三、二元函数的极限

定义2 设函数zf(x,y)在点P0(x0,y0)的某一去心邻域内有定义,如果当点P(x,y)无限趋于点P0(x0,y0)时,函数f(x,y)无限趋于一个常数A,则称A为函数zf(x,y)当(x,y)(x0,y0)时的极限.记为

xx0yy0limf(x,y)A.或f(x,y)A((x,y)(x0,y0))

也记作

limf(P)A或f(P)A(PP0)PP0

二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述.为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性

定义3 设二元函数zf(x,y)在点(x0,y0)的某一邻域内有定义,如果

xx0yy0limf(x,y)f(x0,y0),则称zf(x,y)在点(x0,y0)处连续.如果函数zf(x,y)在点(x0,y0)处不连续,则称函数zf(x,y)在(x0,y0)处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数.由x和y的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的.这里定义区域是指包含在定义域内的区域或闭区域.利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理.下面我们不加证明地列出这些定理.定理1(最大值和最小值定理)在有界闭区域D上的二元连续函数, 在D上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D上的二元连续函数在D上一定有界.定理3(介值定理)在有界闭区域D上的二元连续函数, 若在D上取得两个不同的函数值, 则它在D上取得介于这两值之间的任何值至少一次.例题选讲:

多元函数的概念

例1某公司的总成本(以千元计)为

C(x,y,z,w)5x4y2zln(w1)

其中x是员工工资,y是原料的开销,z是广告宣传的开销,w是机器的开销.求2C(2,3,0,10).解 用2替换x,3替换y,0替换z,10替换w,则C(2,3,0,10)52430ln(101)

29.6(千元)。

例2(E02)求二元函数f(x,y)2arcsin(3x2y2)

xy2的定义域.223xy1解 2xy0

2x2y24 2xy

所求定义域为D

{(x,y)|2x2y24,xy2}.例3(E03)已知函数f(xy,xy)解设uxy,vxy,则 x2y2x2y2, 求f(x,y).xuvuv,y, 22

22uvuv2uv22故得f(u,v), 2222uvuvuv22

即有f(x,y)2xy.x2y2

二元函数的极限

例4(E04)求极限 lim(x2y2)sinx0y01.22xy

解令ux2y2,则

lim(x2y2)sinx0

y011=0.limusin22u0uxy

例5 求极限limx0

y0sin(x2y)xy22.22sinx(y)sinx(y)x2ysin(x2y)sinu2uxy1, 22, 其中lim解li22li2limx0x0xyx0u0uxyxyx2yy0y0y0x2y

x2y212xy1xx2x2y22x00, sin(x2y)所以lim220.x0xyy0

例6求极限 limxy.xx2y2

y

解当xy0时,0xyxy11xy0(x,y), 2y2x2xyx2y2x2y2

所以limxy

x0.yx2y2

例7(E05)证明limxy

x0x2y2不存在.y0

证取ykx(k为常数),则

limxy

x0x2y2limxkxk

x02,y0ykxx2k2x21k易见题设极限的值随k的变化而变化,故题设极限不存在.例8 证明limx3y

x06不存在.y0xy2

证取ykx3,limx3y

x0x6y2limx3kx3k

x0x62,其值随k的不同而变化,y0ykx3k2x61k

限不存在.二元函数的连续性

x3y3

例9讨论二元函数f(x,y)x2y2,(x,y)(0,0)在(0,0)处的连续性.0,(x,y)(0,0)

解由f(x,y)表达式的特征,利用极坐标变换: 令xcos,ysin,则

(x,ylim)(0,0)f(x,y)lim0(sin3cos3)0f(0,0), 所以函数在(0,0)点处连续.例10(E06)求limln(yx)y

x0.y1x2

解l

xi0mlny(x)y11.y1xln1(0)02

例11求limexy

x0xy.y1故极

exye01exy2.解因初等函数f(x,y)在(0,1)处连续,故limx0xy01xy

y1

课堂练习

y1.设fxy,x2y2, 求f(x,y).x

2.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时, 函数f(x,y)都趋向于A, 能否断定

(x,y)(x0,y0)limf(x,y)A? xy2,x2y20243.讨论函数f(x,y)xy的连续性.2xy200,

第三篇:多元函数微分学

多元函数的极限与连续

一、平面点集与多元函数

(一)平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.1.常见平面点集:

⑴ 全平面和半平面: {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa}, {(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆, 闭圆, 圆环.圆的个部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域:X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.(二)点集的基本概念: 1.内点、外点和界点:集合E的全体内点集表示为intE, 边界表示为E.集合的内点E, 外点E, 界点不定.2.聚点和孤立点: 孤立点必为界点.例1 确定集E{(x,y)|3.开集和闭集: 1(x1)2(y2)24 }的内点、外点集、边界和聚点.intEE时称E为开集,E的聚点集E时称E为闭集.存在非开非闭集.R2和空集为既开又闭集.4.开区域、闭区域、区域:以上常见平面点集均为区域.5.有界集与无界集: 6.点集的直径d(E):两点的距离(P1 , P2).7.三角不等式:

|x1x2|(或|y1y2|)(x1x2)2(y1y2)2 |x1x2||y1y2|.(三)二元函数: 1.二元函数的定义、记法、图象: 2.定义域: 例4 求定义域:

ⅰ> f(x,y)3.有界函数: 4.n元函数: 9x2y2x2y21;ⅱ> f(x,y)lny.ln(yx21)

二、二元函数的极限

(一).二元函数的极限: 1.二重极限limf(P)A的定义: 也可记为PP0PD(x,y)(x0,y0)limf(x,y)A或xx0yy0limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.[1]P94 E1.xy20.例2 用“”定义验证极限 lim2x0xy2y0x2y2,(x,y)(0,0),xy例3 设f(x,y)x2y

20 ,(x,y)(0,0). 证明(x,y)(0,0)limf(x,y)0.(用极坐标变换)

PP0PETh 1 limf(P)A对D的每一个子集E ,只要点P0是E的聚点,就有limf(P)A.PP0PD推论1 设E1D,P0是E1的聚点.若极限limf(P)不存在, 则极限limf(P)也不存在.PP0PE1PP0PD推论2 设E1,E2D,P0是E1和E2的聚点.若存在极限limf(P)A1,limf(P)A2,PP0PE1PP0PE2但A1A2,则极限limf(P)不存在.PP0PD推论3 极限limf(P)存在对D内任一点列{ Pn },PnP0但PnP0,数列{f(Pn)}PP0PD xy ,(x,y)(0,0),22收敛 例4 设f(x,y)xy 证明极限limf(x,y)不存在.(x,y)(0,0)0 ,(x,y)(0,0).(考虑沿直线ykx的方向极限).例5 设f(x,y)1,0,当0yx2,x时,证明极限limf(x,y)不

(x,y)(0,0)其余部分.存在.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxyf(x,y)的定义: 3. 极限(x,y)(x0,y0)lim其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3yEx

[1]P99—100 1⑴—⑹,4,5.(二)累次极限:

1.累次极限的定义: 定义.例8 设f(x,y)xy, 求在点(0 , 0)的两个累次极限.22xyx2y2例9 设f(x,y)2, 求在点(0 , 0)的两个累次极限.2xy例10 设f(x,y)xsin11ysin, 求在点(0 , 0)的两个累次极限与二重极限.yx 2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)

⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1y在点(0 , 0)的情况.⑶ 二重极限存在时, 两个累次极限可以不存在.(例10)

⑷ 两个累次极限存在(甚至相等)二重极限存在.(参阅例4和例8).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在,则

xx0yy0必相等.推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在全面极限不存在.参阅⑵的例.三、二元函数的连续性

(一)二元函数的连续概念:

xy22 , xy0 ,22xy例1 设f(x,y)

m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例1 设f(x,y)

([1]P101)0 , 其他.证明函数f(x,y)在点(0 , 0)不全面连续但在点(0 , 0)f对x和y分别连续.2.函数的增量: 全增量、偏增量.用增量定义连续性.3.函数在区域上的连续性.4.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.

第四篇:多元函数微分学复习

第六章 多元函数微分学及其应用

6.1 多元函数的基本概念 一、二元函数的极限

定义 f(P)= f(x,y)的定义域为D, oP0(x0,y0)是D的聚点.对常数A,对于任意给定的正数,总存在正数,使得当点P(x,y)∈D U(P0,),即

0|P0P|

(xx0)(yy0)22

时,都有

|f(P)–A|=|f(x,y)–A|<

成立,那么就称常数A为函数f(x,y)当(x,y)→(x0,(x,y)(x0,y0)y0)时的极限,记作

y0)), lim f(x,y)A或f(x,y)→A((x,y)→(x0,也记作

PP0limf(P)A

f(P)→A(P→P0)为了区别于一元函数的极限,上述二元函数的极限也称做二重极限.二、二元函数的连续性

(x,y)(x0,y0)limf(x,y)f

(x0,y0),(x,y)(0,0)limz0

如果函数f(x , y)在D的每一点都连续,那么就称函数f(x , y)在D上连续,或者称f(x , y)是D上的连续函数.如果函数f(x , y)在点P0(x0,y0)不连续,则称P0(x0,y0)为函数f(x , y)的间断点.多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。一切多元初等函数在其定义区域内是连续的.多元初等函数的极限值就是函数在该点的函数值,即

pp0limf(P)f(P0).有界性与最大值最小值定理 在有界闭区域D上的多元连续函数,必定在D上有界,且能取得它的最大值和最小值.介值定理 在有界闭区域D上的多元连续函数必取复介于最大值和最小值之间的任何值。

三、例题 例1 设f(x,y)xyg(xy),已知f(x,0)xf(x,0)xg(x)x222,求

f(x,y)的表达式。

2解 由题设,有g(x)xx2,于是

。f(x,y)xy[(xy)(xy)],即 f(x,y)(xy)2y例2 证明极限limxyxy623不存在。

x0y0 证 当(x,y)沿三次抛物线ykx

3趋于(0,0)时,有

limxyxyxyxy。

623623x0y0limxkx62336x0y0xkxlimk1k2

x0y0其值随k去不同值而取不同值。故极限lim不存在。

x0y0 例3 求极限limxy11xy2222x0y0 解

原式limxy2222x0y0xy1xy11zx2212limxx0y022y22xy0

6.2 偏导数与高阶导数 6.2.1 偏导数

一、概念

说明对x求导视zf(x,y),ylimf(xx,y)f(x,y)x

x0为常数,几何意义也说明了这个问题

二元函数z=f(x , y)在点M0(偏导数数

x0,y0)的偏导数有下述几何意义.0fx(x0,y0),就是曲面zf(x,y)与平面yy0的交线在点M0处的切线M0Tx对x轴的斜率.同样,偏导fy(x0,y0)的几何意义是曲面zf(x,y)与平面x=x0的交线在点M 2 基于如上理由,求

处的切线M0Ty对y轴的斜率.zx(x0,y0)时,(因此可能简化函数)再对xy0可先代入,求导

例 f(x,y)xarctany(xarctany(xarctany)),求fx(1,0)。

n重 解 f(x,0)x,fx(x,0)1,fx(1,0)1

二、可微,偏导数存在,连续的关系

偏导数存在可微连续

三、高阶偏导数

设函数z=f(x , y)在区域D内具有偏导数,偏导数连续可微,fxy和

fyx都连续,则

fxy=

fyx;

zx2fx(x,y),zyfy(x,y),则这两个函数的偏导数称为函数z=f(x , y)的二阶

2偏导数。按照对变量求导次序的不同有下列四个二阶偏导数:

zzzzf(x,y),fxy(x,y),xx2xxxyxxyzxyzf(x,y),yxyyx2zyzfyy(x,y).2y2

四、偏导数,微分运算公式 1.z 2.dz f(x,y),uu(x,y),vv(x,y)

zxfuuxfvvx

zyfuuyfvvy

fudufvdvfu(udxuydy)fv(vdxvydy)xx(fuufvv)dx(fuuyfvvy)dyxx

d(uv)dudvd(uv)udvvduzx2

uvduudvd2vv

3.F(x,y,z)0 确定zz(x,y),FxFz;

zy2FyFz6.2.2 求偏导数算例 例1(1)zarctanxy1xy,求

zx,zy,zx22,zxy。

解 zx1xy11xy11y221(1xy)(xy)(y)(1xy)11x2

由对称性 zy2,zx2222x(1x),求

22;

2zxy220;(2)ulnxyz2ux22uy2uz2。

解ux122x222xyzxxyz22,2 ux由对称性 222xyzx2x(xyz)22222222222xyz2222222222(xyz)22

uy222xyz222,uz1222(xyz)uy22xyz2(xyz)2

故 ux2uz22xyz222。

(3)xy22f(x,y)xy0x022xy0,求

fx(0,0),fy(0,0)

xy022 解 fx(0,0)limx0x0x220,同理fy(0,0)0;

ux,例2 uyf(xy,xy),求

uxy2。

解 ux22yf12xf2y2xyf1yf2

uxy

(2y)f12x2yf2y2f21(2y)f22x 2xf12xyf1122x2yf122yf22y3f21xy2f22 2xf14xyf11

例3

zyzf(xy,)g,求

xyxxy2

yyf1yf22g2xxx2z

11y1xf12f1yf11ffxf2222221xyxxxxy1yy12f23f222gf12ff1xyf11xxxxxy),求du。例4 uf(xy,xy,x解(1)z1xx2gg

yx2g1x

y3 duuxdxuydy

u1yuf1f2(1)f3f1f2f32;xxxy

y1duf1f22f3dxf1f2f3dy xxxdyydxd(xy)f2d(xy)f3解(2)duf12x

f1(dxdy)f2(dxdy)f3[f1f2yx2xdyydxx1x2

f3]dx[f1f2f3]dy

例5 设zz(x,y)由方程F(xzy,yzx)0,确定,F有连续一阶偏导数,求

zx,zy。

解(1)方程两边对x求导

zzxz0 F11xF2x2yxzyzF12F2xyF1F2zxx11xxF1yF2F1F2yx;

方程两边对y求导

zyz1zyFF11220 yxyzxzFFFxyF2122zyy 11yxF1yF2F1F2yxzy)F2d(yzx2;

解(2)方程两边取微分 F1d(x)0)F2(dyzy2F1(dxydzzdyyzx2xdzzdxx2)0

(F1

F2)dx(1yF11xF1F2)dy dzF2xyF1yzF2; 则 zxF11yF1zx12F2F2xyF1yzxxF1yF2F2;

zxxxF1yF2dydxx 例6 设yf(x,t),tt(x,y)由F(x,y,t)0确定F,f可微,求。

解(1)对方程取微分

(1)dyfxdxftdtFxdxFydyFtdt0(2)dyfxdxft0

由(1)解得dt代入(2)得 FxdxFydyFt

则 FxFtfx/ftFxftFtfxdydxdxFtFfFytFyft解(2)

dy,即

dxFxftFtfxFyftF

yf(x,t(x,y))

dyttdyfxftdxxydx

dydxfxft1ftt 而xtyxtxFxFt;

tyux22FyFt,则

dydxFxftFtfxFyftF2

y, 例7 证明:当y时,方程x22xyuxy2y2uy20可化成标准形式

u220,其中uu(x,y)二阶偏导数连续。

证明:将u看成由u(,),而yx,y复合成x,y的函数,uu((x,y),(y))

则 ux2ux2uuu1uuyu2;

xyyyx22yu1u22;

2xyxxx

ux222uyuy2223xxu21u

u22221u1uu1u1

222yxxx2则 xux222xyuxy2y2u22y2u220u220

小结

① 显函数(复合)二阶混合偏导数

② 隐函数求偏导,会用微分法,用复合法习题 1.zf(u),u由方程u(u)

xyp(t)dt确定的x,y的函数,f,可微,P,连续,(u)1,求P(y)zxP(x)zy

(答案:0)(蔡 P146)

22.zz(x,y)由zexyz确定,求

zxy;

23.F(xy,yz)1确定了隐函数zz(x,y),Fyy(x),zz(x)是由方程zxf(xy)和

具有连续二阶偏导数求

zyx

4.设5.t6.zF(x,y,z)0确定,f,F有连续偏导数,求

dzdx。

0,f可微且满足

kf(tx,ty,tz)tf(x,y,z),证明 xfxyfyzfzkf。

。f(x,y)于(1,1)点可微,且f(1,1)1,fx(1,1)23x1。,fy(1,1)3。(x)f(x,f(x,x))求ddx[(x)]ux2y7.设变换vxay8.设可把方程6zx22zxy2zyx220化简为

zuvzx22202,求常数a的值。(a=3)。

f(u)u有连续二阶导数,而uzf(esiny)满足

zy2ez2x,求

f(u)。(f(u)c1ec2e)

6.2 偏导数应用

偏导数应用注意四个方面:空间曲面曲线切平面、法线、切线、法平面;方向导数;梯度、散度、旋度;极值与条件极值。

6.3.1 内容小结

1. 空间曲线切线与法平面

xx(t)1)yy(t)

zz(t)切向量v(xt,yt,zt)

切线方程:

xx0xtyy0ytzz0zt

(x法平面方程:xtx0)yt(yy0)zt(zz0)0

xxyy(x)yy(x)2)zz(x)zz(x)切线方程:

v(1,y,z)类似的

xx01yy0yzz0z

法平面方程:xx0y(yy0)z(zz0)0

Fzz0F(x,z,y)0xxFxFyy3)v(1,y,z)xxG(x,y,z)0GxGyyxGzzx02. 空间曲面切平面与法线

1)F(x,y,z)0,n(Fx,Fy,Fz)|P0切平面:Fx|p0法线:

(xx0)Fy|p0(yy0)Fz|p0(zz0)0xx0Fx|p0yy0Fy|p0zz0Fz|p0

2)zf(x,y)Ff(x,y)zn(fx,fy,1)

切平面:类似地

fx(xx0)fy(yy0)(zz0)0

法线:xx0fxyy0fyzz01

xx(u,v)3)*yy(u,v)

zz(u,v)(参数方程形式)

切线 ,yu,zu),v2(xv,yv,zv)v1(xuixvjyuyvnv1v2xu(y,z)(z,x)(x,y)zu(u,v),(u,v),(u,v)zvk

3. 方向导数

uu(x,y,z)uluxcosuycosuzcosgradul(梯度在l方向投影)

4. 梯度、散度、旋度

,

xyzuuugraduu,xyz

divAAPxQyRz

rotAAixPjyQkzR

6.3.2 例题

例1 求曲线xt,yt,zt223上与平面x2yz4平行的切线方程。

解 切向量2(1,2t,3t),n(1,2,1)由n,则n0,即,14t3t0t11,t2当t1时 (1,2,3),x11,y11,z11,切线方程为13x11y12z13

当t时 2(1,21111,),x2,y1,z1333927,x切线方程为13y11923z13127

22xy10例2 求空间曲线22xz10在点(3,1,1)处的切线方程和法平面方程。

解 22xy1022xz10确定了

yy(x),zz(x),对x求导2x2yy02x2zz0x3y13,yzz13

xyxz

于

1法平面方程为x33(y1)3(z1)0,即x3y3z30 例3 求曲面x2M(3,1,1)点:y3,z3,v(1,3,3)切线方程为 yzx的切平面。使之与平面xy22z22垂直,同时也与xyz2垂直。

解 切平面法向量n(2x1,2y,2z),n1(1,1,12),n2(1,1,1),依题意

n1n0

既有2x 12yz0

(1)

(2)n2n0 2x12y12z0

联立(1)(2)和原方程 22x42得解y4z022x42,y4z0

 n012222,0,n02,,0 2222切平面22(x242)22(y24)0

xyxy121222

22222x(y)0 2424x2y3z222即

例4 求u解 令

在(1,1,1)点沿x2yz3的外法线方向的方向导数。

22222F(x,y,z)xyz3,Fx2x,Fy2y,Fz2z于P(1,1,1)点n(2,2,2),n(13,13,13)

unuxcosuycosuzcos111122x4y6z|43(1,1,1)3333

例5 设f(x,y)在fL3|p0fx1111p0点可微,L1,,L222227。,fL11,fL20

试确定L3使52fycos11,fL2fxcos2fycos20,则 解 fL1cos1 fxfx12fy121fx12y,f12

1f10y22 设L3(cos3,cos3)

从而fL3fxcos375fxcos375235 即

1245cos3 此时cos12cos345或cos752

cos3sin3,解得cos3或cos33335

34即L3,55例6 或L3243, 552 ulnxyz2,求div2(gradu)。

解 div(gradu)(u)u12ln(xyz)222ux22uy222uz22。

u,2ux22xxyz222222,2222ux22xyzx2x(xyz)xyz222(xyz)

由对称性 uy22xyz222222(xyz)2,uz22xyz222222(xyz)2

从而 div(gradu)1xyz222

例7 设a, b, c为常数,F证明(u,v)有连续一阶偏导数。

证 xayb,)0上任一点切平面都通过某定点。zczc11xayb,FyF2,FFFxF1Fz1222zczc(zc)(zc)F(则切平面方程为 F1取1zc(Xx)F21zc(Yy)1(zc)2F(xa)F2(yb)(zy)0

xa,Yb,Zc,则对任一的(x,y,z)点上式均满足,即过任一点的切平面都过(a,b,c)点。

。(xaz,ybz)0上任一点切平面都通过某定直线平行(F具有连续偏导数)

例8 设a,b为常数,证明曲面F证

FxF1,FyF2,FzaF1bF2,即n(F1,F2,aF1bF2),取l(a,b,1),则nl0,nl,曲面平行l,取直线

xx0ayy0bzz01,则曲面上任一点的切平面都与上述直线平行。例9 求二元函数u5方向导数最大?这个最大的方向导数值是多少?u沿那个方向减少得最快,沿哪个方向u的值不变?

解 xxyy22在点M(1,1)沿方向n1(2,1)的方向导数,并指出u在该点沿哪个方向的gradu|(1,1)(2xy,2yx)|(1,1)(3,3),uM在点M(1,1)沿n方向的方向导数为

un132(gradu)n|M(3,3),555,方向导数取得最大值的方向为梯度方向,其最大值为为求使u变化的变化率为零的方向,令l

gradu|M32,u沿负梯度方向减少最快。

(cos,sin),则,ululM(gradu|M)l3cos3sin32sin44或令0,得4,故在点(1,1)处沿4和4函数u得值不变化。

例10 一条鲨鱼在发现血腥味时,总是沿血腥味最浓的方向追寻。在海上进行试验表明,如果血源在海平面上,建立坐标系味:坐标原点在血源处,xOy2坐标面为海平面,Oz轴铅直向下,则点(x,224y,z)处血源的浓度C(每百万份水中所含血的份数)的近似值Ce(xy2z)/10。

(1)求鲨鱼从点1,1,1(单位为海里)出发向血源前进的路线2的方程;

(2)若鲨鱼以40海里/小时的速度前进,鲨鱼从1,1,1点出发需要用多少时间才能到达血源处? 2解(1)鲨鱼追踪最强的血腥味,所以每一瞬时它都将按血液浓度变化最快,即C的梯度方向前进。由梯度的计算公式,得

2224CCC4(xy2z)/10gradC,10e(2x.2y,4z)xyz设曲线的方程为xx(t),yy(t),zz(t),则的切线向量(dx,dy,dz)必与gradC平行,从而有 dx2xdy2ydz4z

解初始值问题

dydx2y2xy|1x1dzdx2x4zz|1x12

yx

解初始值问题

z12x2,所以所求曲线的方程为

xx,yx,z 12(2)曲线的长度 x2(0x1)s101yzdxxxln(31)2210x2xdx22x2ln(x2x1)

03212ln2(海里)

31)1。ln2(小时)

2因此到达血源处所用的时间为T6.4 多元函数的极值

13ln(402

一、无条件极值 限于二元函数zf(x,y)

1. z0x求驻点z0y驻点P

2. 于驻点P处计算Azx22,Bzxy2,Czy22。B2AC0是极值点,A0可取得极小值,A0可取极大值。

3. 条件极值:minuf(x,y,z)S.t.(x,y,z)0,令

Lf(x,y,z)(x,y,z)求无条件极值。

例1 求内接于椭球面,且棱平行对称轴的体积最大的长方体。

解 设椭球面方程为 xa22yb22zc221,长方体于第一卦限上的点的坐标为(x,y,z),则

V8xyz,s.t.xa 22yb22zc221,令

2xa222x2yz L8xyz1a2b2c28yzLxL8xzy8xyLz及0(1)0(2)0(3)2yb2zc22xa22yb22zc221

由(1)(2)(3)得xa22b3yb22zc22tc3,代入(3)得t13,从而 xa3,y2,z22,此时V8abc33839abc。

例2 求由方程2x2yz8xzz80所确定的二元函数zf(x,y)的极值。解

方程两边对x,y求偏导数得:

4x2zzx8z8xzxzx0

„(1)

4y2zzy8xzyzy0

„(2)

4x8z016和原方程联立得驻点(2,0),(,0)0,得x74y0y方程(1)对x,y再求偏导,方程(2)对y求偏导 令z0,z。

zzzzzz42888x0 2z222xxxxxx2zzyx2z22222„(3)

zxy282zy8x2zxy22zxy20

„(4)

zzzz

422z8x0

222yyyy将驻点(2,0)代入(此时z1)

„(5)

42A16AA0

AC415415

2B16BB0

B0

242C16CC0

BAC0,z1是极小值(因A>0)

将驻点8(4)(5)(此时z,0代入(3)

7716),同上过程有

A 415,B0,C415,2BAC0,A0,z87是极大值。

习题: 1 设uF(x,y,z)在条件(x,y,z)0和(x,y,z)0限制下,在P0(x0,y0,z0)处取得极值mFx1Lx20xx

。证明F(x,y,z)m,(x,y,z)0,(x,y,z)0在P0点法线共面。

正:L F(x,y,z)m12LFy120yyy

Fz1Lz20 zzFxxyzx0yzxyz5r2222由于(1,1,2)0,从而原方程有非零解,及系数矩阵为0FyFz,即三法向量共面。

2. 设f(x,y,z)lnxlny3lnz。点

3(x,y,z)在第一卦限球面

3上,①求f(x,y,z)的最大值。②证明 对任意正数a,b,c成立abc

abc275。

习题课

ye例1 设f(xy,lnx)1,求f(x,y)yxxeln(x)解 令xyu,lnxv。

yef(u,v)f(xy,lnx)1yxxeln(x)

xxxyxueveu2vexyxlnx(xy)ee2lnxxylnx

所以

f(x,y)xeyex2y.例2 讨论limxyxy是否存在.x0y0 解

当点 P(x,y)沿直线ykx趋向(0,0)时,limxyxy2ykxx0limxkxxkxx0limkx1kx00

(k1),当点P(x,y)沿直线yxxlim2xyxy趋向(0,0)时,yxxx0lim2x(xx)x(xx)22lim(x1)1yxxx0x01,所以limxyxy不存在.x0y0 例3 22(xy)sinzf(x,y)0在(0,0)处是否连续?

1xy22(xy0),22(xy0),22(1)(2)(3)(4)fx(0,0),fy(0,0)是否存在?

偏导数fx(x,y),fy(x,y)在(0,0)处是否连续?

f(x,y)在(0,0)处是否可微?

f(x,y)在(0,0)处是否连续,只要看limf(x,y)=f(0,0)是否成立.因为

x0y0解

(1)函数 limf(x,y)lim(xy)sinx0y0221xy22

x0y0

limsin0210f(0,0).所以

f(x,y)在(0,0)处连续.(2)如同一元函数一样,分段函数在分界点处的偏导数应按定义来求.因为

(x)sinx021(x)x1(x)220 limf(x,0)f(0,0)xlimx0limxsinx00,所以

(3)fx(0,0)0,类似地可求得fy(0,0)0.当(x,y)(0,0)时

fx(x,y)2xsin

1xy1xy2222(xy)cosxxy22221xy221222xx2y23

2xsincos1xy2.因为 limfx(x,y)lim2xsinx0x0y0y01xy22xxy22cos不存在.22xy1所以 fx(x,y)在(0,0)处不连续。同理fy(x,y)在(0,0)处也不连续

(4)由于由fx(x,y),fy(x,y)在(0,0)处不连续,所以只能按定义判别f(x,y)在(0,0)处是否可微.fx(0,0)0,fy(0,0)0,故

x0y0limz[fx(0,0)xfy(0,0)y](x)(y)222

[(x)(y)]sinlimx0y02221(x)(y)220(x)(y)(x)(y)sin122 lim1(x)(y)22

x0y0limsinx0y00由全微分定义知f(x,y)在(0,0)处可微,且df(0,0)0.f(x,y,z),zg(x,y),yh(x,t),t 例4 设u(x),求

dudx.解

对于复合函数求导来说,最主要的是搞清变量之间的关系.哪些是自变量,哪些是中间变量,可借助于“树图”来分析.图9-1 由上图可见,u最终是x的函数,y,z,t都是中间变量.所以

dudxfxfxfhhdfgghhdyxtdxzxyxtdxfhyxfhdytdxfgzxfghzyx.fghdzytdx 从最后结论可以看出:若对x求导数(或求偏导数),有几条线通到”树梢”上的x,结果中就应有几项,而每一项又都是一条线上的函数对变量的导数或偏导数的乘积.简言之,按线相乘,分线相加 例5 z12xfxy1f2,f 可导,求zx.解 zx1f2x.y

例6 已知yetyx,而t是由方程ytx1确定的x,y的函数,求

ty222dydx.解

将两个方程对x求导数,得

ye(tyyt)12yy2tt2x0

解方程可得

2dydxtxye2ty2tyt(yt)e.例7 求曲面x2y3z21平行于平面x4y6z0的切平面方程.解

曲面在点(x,y,z)的法向量为 n =(Fx,Fy,Fz)(2x,4y,6z),2x14y42已知平面的法向量为n1=(1,4,6),因为切平面与已知平面平行,所以n//n1,从而有

6z6(1)

又因为点在曲面上,应满足曲面方程

x2y3z212

(2)

由(1)、(2)解得切点为(1,2,2)及(1,2,2), 所求切平面方程为:

或(x1)4(y2)6(z2)0(x1)4(y2)6(z2)012,1,1)。

这里特别要指出的是不要将n//n1不经意的写成n=n1,从而得出切点为(例8 在椭球面2x222的错误结论.2222yz1上求一点,使函数f(x,y,z)xyzel在该点沿l=(1,–1,0)方向的方向导数最大.11,,0,22所以 fl fx12fy12fz20

2(xy)2(xy)在条件2x由题意,要考查函数

2yz1下的最大值,为此构造拉格朗日函数

222F(x,y,z)2(xy)(2x2yz1),14

Fx24x0,Fy24y0, Fz2z0,2222x2yz1.解得可能取极值的点为 11,,0 22 及

11,0.222,因为所要求的最大值一定存在,比较

fl11,,022fl11,02222知12,1,02为所求的点.例9 求函数zxy222在圆(x22)(y22)9上的最大值与最小值.0,zy0,解得点(0,0).显然z(0,0)=0为最小值.解

先求函数z再求z2xy2在圆内的可能极值点.为此令zxxy在圆上的最大、最小值.为此做拉格朗日函数

22F(x,y)xy[(x2)(y22)9],2Fx2x2(x2)0,Fy2y2(y2)0,22(x2)(y2)9.,代入(3)解得

(1)(2)(3)由(1)、(2)可知xy xy522,和

xy22,5252z,2225221.z,222)(y25252,22为z25,最小值为z0.比较z(0,0)、z

22、z三值可知:在(x,222)92上,最大值

第五篇:多元函数的极限

三. 多元函数的极限

回忆一元函数极限的定义:

limf(x)A设是定义域Df的聚点。xx0x00对0,总0,xU(x0,)Df时,都有f(x)A成立。

定义1 设二元函数f(P)f(x,y)的定义域为Df,P(x0,y0)是Df的聚点。如果

0Df时,都有存在常数A,对0,总0,P(x,y)U(P0(x0,y0),)f(x,y)A成立,那么称A为P(x,y)趋于P0(x0,y0)时,函数f(x,y)的极限,lifmP(A)记作P或者P0(x,y)(x0,y0)limf(P)A或者xlxi0fmP(A)或者

yy0f(x,y)A,(P(x(x0,y0)。0P,y))Df趋于P0; 注:1.P(x,y)P0(x0,y0)是指点P沿着任意路径在2.为了区别一元函数的极限,把二元函数的极限也称之为二重极限;

3.二元及其多元函数的极限的四则运算法则与一元函数一致。

22例1 设f(x,y)(xy)sin1limf(x,y)0。22,求证xx0yy0xy2证明 显然函数f(x,y)的定义域为DfR{(0,0)},(0,0)是Df的聚点。因为

(x2y2)sin只须1122220xy(xy)sin0,0,所以对,要使2222xyxyx2y2成立即可。也就是说,对0,总0,22P(x,y)U0(O(0,0),)时,总有(xy)sin10成立,故

x2y2xx0yy0lim(x2y2)sin10。22xysin(x2y)? 例2 求极限limx0x2y2y0提示:四则运算,并考虑重要极限和基本不等式。x3y例3 证明函数lim不存在? x0x6y2y0提示:设ykx3。学生练习1.求极限limsin(xy)?

x0xy2xy,x2y202limf(x,y)2学生练习2.证明函数f(x,y)xy的极限x0不存在?

y00,x2y20 四.多元函数的连续连

回忆一元函数连续的定义:

limf(x)f(x0)。f(x)在点x0处连续xx0Df的聚点,且定义2 设二元函数f(P)f(x,y)的定义域为Df,P0(x0,y0)是limf(x,y)f(x0,y0)PDxx0。如果,那么称函数f(x,y)在点P 0f0(x0,y0)处连续。yy0定义3 设二元函数zf(x,y)的定义域为Df,且Df内每一点都是聚点。如果函数zf(x,y)在Df内的没一点处都连续,那么称zf(x,y)在Df上联系或者称zf(x,y)为Df上的连续函数。

注:1.定义2和定义3可以推广至n元函数的情形。

例1 设f(x,y)sinx,证明函数f(x,y)是R2上的连续函数?

limf(x,y)sinx02xx0(x,y)R分析:对P,证明(语言)。000yy0证明

Df的聚点,P定义4.设二元函数zf(x,y)的定义域为Df,且P0Df。0(x0,y0)是如果函数f(x,y)在点P则称点P0(x0,y0)处不连续,0(x0,y0)为函数zf(x,y)的间断点。

xy,x2y2022例2 函数f(x,y)xy在点O(0,0)的连续性?

0,x2y20解:点O(0,0)虽为定义域R2的聚点,但由于f(x,y)在点O(0,0)无极限,故函数f(x,y)在点O(0,0)间断。

例3 函数f(x,y)sin122的定义域为Df{(x,y)xy1},但22xy1C{(x,y)x2y21}上的点为Df的聚点,又由于f(x,y)在C上没有定义。故C上的点是f(x,y)的间断点。

1.函数极限存在;2.有定义; 连续

3.极限等于该点的函数值;

多元函数的连续性的性质与一元函数一致:

1.多元连续函数的和差积商仍为其定义域上的连续函数; 2.多元连续函数的商在分母不为零的点处任连续; 3.多元连续函数的复合函数是连续函数;

4.多元初等函数是其定义区域内的连续函数(定义区域:半酣定义域的区域或者闭区域)。

可以利用多元初等函数的连续性求极限。例4 limxy?

x1xyy2,2)Df是内点,因此存在U(P分析:Df{(x,y)x0且y0},P0(10;)Df是xy3f(1,2)。Df内的区域,因此limx1xy2y2一般地,若f(x,y)是初等函数,且P0(x0,y0)是f(P)的定义域的内点,则xx0yy0limf(x,y)f(x0,y0)。

与闭区间上一元连续函数的最值定理类似,有

性质1 定义在有界闭区域D上多元连续函数必取得最大值和最小值。性质2(介值定理)有界闭区域上多元连续函数必取得介于最大值与最小值之间 的任何一个值。

性质3 有界闭区域上多元连续函数必一致连续。

下载第五章--多元函数微积分word格式文档
下载第五章--多元函数微积分.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    多元函数的泰勒公式

    第九节多元函数的泰勒公式内容分布图示 ★ 二元函数的泰勒公式 ★ 例1 ★ 关于极值充分条件的证明 ★ 内容小结 ★习题8—9 ★ 返回内容要点: 一、二元函数的泰勒公式 我们......

    多元函数的基本概念教案

    §8 1 多元函数的基本概念 一、平面点集n维空间 1.平面点集 由平面解析几何知道 当在平面上引入了一个直角坐标系后平面上的点P与有序二元实数组(x y)之间就建立了一一对应......

    AP微积分函数知识点总结[共五篇]

    三立教育www.xiexiebang.com AP微积分函数知识点总结 AP微积分的预备知识。实际上,AP微积分就是给咱中国的考生来说就是拿5分准备的啊,真心不难啊,只要具备高中的数学知识(主......

    02 第二节 多元函数的基本概念

    第二节 多元函数的基本概念 分布图示 ★ 领域 ★平面区域的概念 ★ 二元函数的概念 ★ 例1★ 例2 ★ 例3 ★ 二元函数的图形 ★ 二元函数的极限 ★ 例4★ 例5 ★ 例6 ★ 例......

    多元函数的极限与连续

    数学分析 第16章多元函数的极限与连续计划课时: 1 0 时 第16章多元函数的极限与连续 ( 1 0 时 )§ 1平面点集与多元函数一.平面点集:平面点集的表示: E{(x,y)|(x,y)满......

    多元函数的极限与连续

    多元函数的极限 1. 求下列极限: x2y111)lim(4x3y); 2)lim(xy)sinsin;3)lim2. 2x0x2x0xyxyy0y1y022. 证明:若f(x,y) xy,(xy0),求 limlimf(x,y)与limlimf(x,y). x0y0y0x0xyx4y43. 设函数......

    考研高数 多元函数(最终版)

    一维到高维空间也是质变多元微分学主要研究多元初等函数。基本工具还是极限。比如,多元函数在定义域上一点M连续的定义为—— 若在函数f(M)的定义域D内,总有M → M0 时,l i m f(M)=......

    多元向量值函数积分自测题

    1、填空题1) 设L为取正向的圆周x2y29则曲线积分22xy2ydxx4xdy L18。x2) 设曲线积分fxesinydxfxcosydy与积分路径无关,其中fx一阶L连续可导,且f00,则fx3) 1x1xee。 22y2zdydzxz2dzd......