第一篇:多元向量值函数积分自测题
1、填空题
1)设L为取正向的圆周x2y29则曲线积分22xy2ydxx4xdy L
18。
x2)设曲线积分fxesinydxfxcosydy与积分路径无关,其中fx一阶L
连续可导,且f00,则fx
3)1x1xee。22y
2zdydzxz2dzdxyx2dxdy0,其中为单位球面
x2y2z21的外侧。
x224)设Aesinyi2xyzjxzyk,则divA1,0,10,rotA1,0,1
1,0,e。
2、计算下列曲线积分
1)
Lx2y2x2xydy,其中L为椭圆221,由点Aa,0经点C0,b到点ab2
Ba,0的弧段。
解:L的参数方程为xacost,t从0到。ybsint
原式
032sin3t222costacost2absintcostbcostdtabsint32ab3 0
42ab
32)x2ydxx2y2dyxyzdz,其中L是xyz11与zxy1 L2222
2的交线,其方向与z轴正方向呈右手系。
xxy2解:L一般方程可化为,其参数方程为y,从0到2
z3z322
原式
2
021cos44sin2cos2dd 02
sin4
sin 2803、计算下列曲面积分
1)z,其中是上半球面的上侧。yzdzdx2dxdy
2
解:化为第一型曲面积分计算
zx,zy
取定侧对应法向量n,1
nxy,n22
y2z原式
dS 2x2y24 x2y242ydxdy220d2rr3sin2dr 0
22
044sin2d2062cos2d12
zy2
2)xdydzydzdxzdxdy,其中是曲线x0的上侧。
解:此曲面方程为zxy22z1绕z轴旋转所得旋转面z1,化为第一型曲面积分计算
zx2x,zy2y
取定侧对应法向量n2x,2y,1
n,n
原式2, 22
x2y21xy2dxdy
2
0dr3dr0124、设曲线积分xy2dxyxdy与路径无关,其中x连续可导,且00,求L
解:1,10,0xy2dxyxdy。PQ2xyyxx2xxx2C yx
由00可得C0,即xx
21,10,0xy2dxyxdy1,1
0,0xy2dxyx2dyydy011 2
5、求向量A2xiyjzk通过0x1,0y1,0z1的边界曲面流向外侧的通
量。
解:2xdydzydzdxzdxdy211dv
2
6、求向量场Axyicosxyjcosxzk在点,1,1处的散度。2
解:divAyxsinxyxsinxz
div1 ,1,12
第二篇:多元函数积分的计算方法与技巧范文
.多元函数积分
二重积分的计算方法与应用。
(一)在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变量的表达式,再对第二个变量求定积分,这样就得到了二重积分的值。这里对于选择进行积分运算的自变量的顺序是完全任意的,也就是说,假设函数的积分区间,是由曲线
yy1(x)yy2(x)
和,x=a,x=b
所围成的区域,那么f在这个区域上的二重积分为
by(x)b
f(x,y)dxdyadxy2(x)f(x,y)dyy2((xx))dyaf(x,y)dxy11D
(二)另外一种常常更为简单的计算二重积分的方法,是在极坐标下,通过把二重积分转变为二次积分来得到结果。
一般公式就是
r2f(rcos,rsin)rdrf(x,y)ddr()1
()
D
三重积分及其应用与计算。
在这两种坐标里计算多重积分,首先是给出分别在这些坐标系里的体积微元的表达式: 在圆柱坐标系里是dvrdrddz;
在球面坐标系里是dvrsindrdd。
因此可以分别得到在这两个坐标系里的三重积分的计算公式: 在圆柱坐标系里是在
f(x,y,z)dvf(rcos,rsin,z)rdrddz
; 里
是
球
面坐标系
f(x,y,z)dvf(rsincos,rsinsin,rcoa)rsindrdd
第三篇:多元函数
第二节 多元函数的基本概念
分布图示
★ 领域★平面区域的概念
★ 多元函数的概念★ 例1★ 例
2★ 二元函数的图形
★ 二元函数的极限★ 例3★ 例
4★ 例5★ 例6★ 例7
★ 二元函数的连续性★ 例 8
★ 二元初等函数★ 例 9-10
★ 闭区域上连续函数的性质
★ 内容小结★ 课堂练习
★习题6-2
内容提要:
一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域
二、多元函数的概念
定义1 设D是平面上的一个非空点集,如果对于D内的任一点(x,y),按照某种法则f,都有唯一确定的实数z与之对应,则称f是D上的二元函数,它在(x,y)处的函数值记为f(x,y),即zf(x,y),其中x,y称为自变量,z称为因变量.点集D称为该函数的定义域,数集{z|zf(x,y),(x,y)D}称为该函数的值域.类似地,可定义三元及三元以上函数.当n2时, n元函数统称为多元函数.二元函数的几何意义三、二元函数的极限
定义2 设函数zf(x,y)在点P0(x0,y0)的某一去心邻域内有定义,如果当点P(x,y)无限趋于点P0(x0,y0)时,函数f(x,y)无限趋于一个常数A,则称A为函数zf(x,y)当(x,y)(x0,y0)时的极限.记为
xx0yy0limf(x,y)A.或f(x,y)A((x,y)(x0,y0))
也记作
limf(P)A或f(P)A(PP0)PP0
二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述.为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性
定义3 设二元函数zf(x,y)在点(x0,y0)的某一邻域内有定义,如果
xx0yy0limf(x,y)f(x0,y0),则称zf(x,y)在点(x0,y0)处连续.如果函数zf(x,y)在点(x0,y0)处不连续,则称函数zf(x,y)在(x0,y0)处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数.由x和y的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数.一切二元初等函数在其定义区域内是连续的.这里定义区域是指包含在定义域内的区域或闭区域.利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理.下面我们不加证明地列出这些定理.定理1(最大值和最小值定理)在有界闭区域D上的二元连续函数, 在D上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D上的二元连续函数在D上一定有界.定理3(介值定理)在有界闭区域D上的二元连续函数, 若在D上取得两个不同的函数值, 则它在D上取得介于这两值之间的任何值至少一次.例题选讲:
多元函数的概念
例1某公司的总成本(以千元计)为
C(x,y,z,w)5x4y2zln(w1)
其中x是员工工资,y是原料的开销,z是广告宣传的开销,w是机器的开销.求2C(2,3,0,10).解 用2替换x,3替换y,0替换z,10替换w,则C(2,3,0,10)52430ln(101)
29.6(千元)。
例2(E02)求二元函数f(x,y)2arcsin(3x2y2)
xy2的定义域.223xy1解 2xy0
2x2y24 2xy
所求定义域为D
{(x,y)|2x2y24,xy2}.例3(E03)已知函数f(xy,xy)解设uxy,vxy,则 x2y2x2y2, 求f(x,y).xuvuv,y, 22
22uvuv2uv22故得f(u,v), 2222uvuvuv22
即有f(x,y)2xy.x2y2
二元函数的极限
例4(E04)求极限 lim(x2y2)sinx0y01.22xy
解令ux2y2,则
lim(x2y2)sinx0
y011=0.limusin22u0uxy
例5 求极限limx0
y0sin(x2y)xy22.22sinx(y)sinx(y)x2ysin(x2y)sinu2uxy1, 22, 其中lim解li22li2limx0x0xyx0u0uxyxyx2yy0y0y0x2y
x2y212xy1xx2x2y22x00, sin(x2y)所以lim220.x0xyy0
例6求极限 limxy.xx2y2
y
解当xy0时,0xyxy11xy0(x,y), 2y2x2xyx2y2x2y2
所以limxy
x0.yx2y2
例7(E05)证明limxy
x0x2y2不存在.y0
证取ykx(k为常数),则
limxy
x0x2y2limxkxk
x02,y0ykxx2k2x21k易见题设极限的值随k的变化而变化,故题设极限不存在.例8 证明limx3y
x06不存在.y0xy2
证取ykx3,limx3y
x0x6y2limx3kx3k
x0x62,其值随k的不同而变化,y0ykx3k2x61k
限不存在.二元函数的连续性
x3y3
例9讨论二元函数f(x,y)x2y2,(x,y)(0,0)在(0,0)处的连续性.0,(x,y)(0,0)
解由f(x,y)表达式的特征,利用极坐标变换: 令xcos,ysin,则
(x,ylim)(0,0)f(x,y)lim0(sin3cos3)0f(0,0), 所以函数在(0,0)点处连续.例10(E06)求limln(yx)y
x0.y1x2
解l
xi0mlny(x)y11.y1xln1(0)02
例11求limexy
x0xy.y1故极
exye01exy2.解因初等函数f(x,y)在(0,1)处连续,故limx0xy01xy
y1
课堂练习
y1.设fxy,x2y2, 求f(x,y).x
2.若点(x,y)沿着无数多条平面曲线趋向于点(x0,y0)时, 函数f(x,y)都趋向于A, 能否断定
(x,y)(x0,y0)limf(x,y)A? xy2,x2y20243.讨论函数f(x,y)xy的连续性.2xy200,
第四篇:多元函数微分学
多元函数的极限与连续
一、平面点集与多元函数
(一)平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.1.常见平面点集:
⑴ 全平面和半平面: {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa}, {(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆, 闭圆, 圆环.圆的个部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域:X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集
{(x,y)|0|xx0| , 0|yy0|}的区别.(二)点集的基本概念: 1.内点、外点和界点:集合E的全体内点集表示为intE, 边界表示为E.集合的内点E, 外点E, 界点不定.2.聚点和孤立点: 孤立点必为界点.例1 确定集E{(x,y)|3.开集和闭集: 1(x1)2(y2)24 }的内点、外点集、边界和聚点.intEE时称E为开集,E的聚点集E时称E为闭集.存在非开非闭集.R2和空集为既开又闭集.4.开区域、闭区域、区域:以上常见平面点集均为区域.5.有界集与无界集: 6.点集的直径d(E):两点的距离(P1 , P2).7.三角不等式:
|x1x2|(或|y1y2|)(x1x2)2(y1y2)2 |x1x2||y1y2|.(三)二元函数: 1.二元函数的定义、记法、图象: 2.定义域: 例4 求定义域:
ⅰ> f(x,y)3.有界函数: 4.n元函数: 9x2y2x2y21;ⅱ> f(x,y)lny.ln(yx21)
二、二元函数的极限
(一).二元函数的极限: 1.二重极限limf(P)A的定义: 也可记为PP0PD(x,y)(x0,y0)limf(x,y)A或xx0yy0limf(x,y)A
例1 用“”定义验证极限
(x,y)(2,1)lim(x2xyy2)7.[1]P94 E1.xy20.例2 用“”定义验证极限 lim2x0xy2y0x2y2,(x,y)(0,0),xy例3 设f(x,y)x2y
20 ,(x,y)(0,0). 证明(x,y)(0,0)limf(x,y)0.(用极坐标变换)
PP0PETh 1 limf(P)A对D的每一个子集E ,只要点P0是E的聚点,就有limf(P)A.PP0PD推论1 设E1D,P0是E1的聚点.若极限limf(P)不存在, 则极限limf(P)也不存在.PP0PE1PP0PD推论2 设E1,E2D,P0是E1和E2的聚点.若存在极限limf(P)A1,limf(P)A2,PP0PE1PP0PE2但A1A2,则极限limf(P)不存在.PP0PD推论3 极限limf(P)存在对D内任一点列{ Pn },PnP0但PnP0,数列{f(Pn)}PP0PD xy ,(x,y)(0,0),22收敛 例4 设f(x,y)xy 证明极限limf(x,y)不存在.(x,y)(0,0)0 ,(x,y)(0,0).(考虑沿直线ykx的方向极限).例5 设f(x,y)1,0,当0yx2,x时,证明极限limf(x,y)不
(x,y)(0,0)其余部分.存在.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxyf(x,y)的定义: 3. 极限(x,y)(x0,y0)lim其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3yEx
[1]P99—100 1⑴—⑹,4,5.(二)累次极限:
1.累次极限的定义: 定义.例8 设f(x,y)xy, 求在点(0 , 0)的两个累次极限.22xyx2y2例9 设f(x,y)2, 求在点(0 , 0)的两个累次极限.2xy例10 设f(x,y)xsin11ysin, 求在点(0 , 0)的两个累次极限与二重极限.yx 2.二重极限与累次极限的关系:
⑴ 两个累次极限存在时, 可以不相等.(例9)
⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1y在点(0 , 0)的情况.⑶ 二重极限存在时, 两个累次极限可以不存在.(例10)
⑷ 两个累次极限存在(甚至相等)二重极限存在.(参阅例4和例8).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在,则
xx0yy0必相等.推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在全面极限不存在.参阅⑵的例.三、二元函数的连续性
(一)二元函数的连续概念:
xy22 , xy0 ,22xy例1 设f(x,y)
m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例1 设f(x,y)
([1]P101)0 , 其他.证明函数f(x,y)在点(0 , 0)不全面连续但在点(0 , 0)f对x和y分别连续.2.函数的增量: 全增量、偏增量.用增量定义连续性.3.函数在区域上的连续性.4.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.
第五篇:多元函数微分学复习
第六章 多元函数微分学及其应用
6.1 多元函数的基本概念 一、二元函数的极限
定义 f(P)= f(x,y)的定义域为D, oP0(x0,y0)是D的聚点.对常数A,对于任意给定的正数,总存在正数,使得当点P(x,y)∈D U(P0,),即
0|P0P|
(xx0)(yy0)22
时,都有
|f(P)–A|=|f(x,y)–A|<
成立,那么就称常数A为函数f(x,y)当(x,y)→(x0,(x,y)(x0,y0)y0)时的极限,记作
y0)), lim f(x,y)A或f(x,y)→A((x,y)→(x0,也记作
PP0limf(P)A
或
f(P)→A(P→P0)为了区别于一元函数的极限,上述二元函数的极限也称做二重极限.二、二元函数的连续性
(x,y)(x0,y0)limf(x,y)f
(x0,y0),(x,y)(0,0)limz0
如果函数f(x , y)在D的每一点都连续,那么就称函数f(x , y)在D上连续,或者称f(x , y)是D上的连续函数.如果函数f(x , y)在点P0(x0,y0)不连续,则称P0(x0,y0)为函数f(x , y)的间断点.多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。一切多元初等函数在其定义区域内是连续的.多元初等函数的极限值就是函数在该点的函数值,即
pp0limf(P)f(P0).有界性与最大值最小值定理 在有界闭区域D上的多元连续函数,必定在D上有界,且能取得它的最大值和最小值.介值定理 在有界闭区域D上的多元连续函数必取复介于最大值和最小值之间的任何值。
三、例题 例1 设f(x,y)xyg(xy),已知f(x,0)xf(x,0)xg(x)x222,求
f(x,y)的表达式。
2解 由题设,有g(x)xx2,于是
。f(x,y)xy[(xy)(xy)],即 f(x,y)(xy)2y例2 证明极限limxyxy623不存在。
x0y0 证 当(x,y)沿三次抛物线ykx
3趋于(0,0)时,有
limxyxyxyxy。
623623x0y0limxkx62336x0y0xkxlimk1k2
x0y0其值随k去不同值而取不同值。故极限lim不存在。
x0y0 例3 求极限limxy11xy2222x0y0 解
原式limxy2222x0y0xy1xy11zx2212limxx0y022y22xy0
6.2 偏导数与高阶导数 6.2.1 偏导数
一、概念
说明对x求导视zf(x,y),ylimf(xx,y)f(x,y)x
x0为常数,几何意义也说明了这个问题
二元函数z=f(x , y)在点M0(偏导数数
x0,y0)的偏导数有下述几何意义.0fx(x0,y0),就是曲面zf(x,y)与平面yy0的交线在点M0处的切线M0Tx对x轴的斜率.同样,偏导fy(x0,y0)的几何意义是曲面zf(x,y)与平面x=x0的交线在点M 2 基于如上理由,求
处的切线M0Ty对y轴的斜率.zx(x0,y0)时,(因此可能简化函数)再对xy0可先代入,求导
例 f(x,y)xarctany(xarctany(xarctany)),求fx(1,0)。
n重 解 f(x,0)x,fx(x,0)1,fx(1,0)1
二、可微,偏导数存在,连续的关系
偏导数存在可微连续
三、高阶偏导数
设函数z=f(x , y)在区域D内具有偏导数,偏导数连续可微,fxy和
fyx都连续,则
fxy=
fyx;
zx2fx(x,y),zyfy(x,y),则这两个函数的偏导数称为函数z=f(x , y)的二阶
2偏导数。按照对变量求导次序的不同有下列四个二阶偏导数:
zzzzf(x,y),fxy(x,y),xx2xxxyxxyzxyzf(x,y),yxyyx2zyzfyy(x,y).2y2
四、偏导数,微分运算公式 1.z 2.dz f(x,y),uu(x,y),vv(x,y)
zxfuuxfvvx
zyfuuyfvvy
fudufvdvfu(udxuydy)fv(vdxvydy)xx(fuufvv)dx(fuuyfvvy)dyxx
d(uv)dudvd(uv)udvvduzx2
uvduudvd2vv
3.F(x,y,z)0 确定zz(x,y),FxFz;
zy2FyFz6.2.2 求偏导数算例 例1(1)zarctanxy1xy,求
zx,zy,zx22,zxy。
解 zx1xy11xy11y221(1xy)(xy)(y)(1xy)11x2
由对称性 zy2,zx2222x(1x),求
22;
2zxy220;(2)ulnxyz2ux22uy2uz2。
解ux122x222xyzxxyz22,2 ux由对称性 222xyzx2x(xyz)22222222222xyz2222222222(xyz)22
uy222xyz222,uz1222(xyz)uy22xyz2(xyz)2
故 ux2uz22xyz222。
(3)xy22f(x,y)xy0x022xy0,求
fx(0,0),fy(0,0)
xy022 解 fx(0,0)limx0x0x220,同理fy(0,0)0;
ux,例2 uyf(xy,xy),求
uxy2。
解 ux22yf12xf2y2xyf1yf2
uxy
(2y)f12x2yf2y2f21(2y)f22x 2xf12xyf1122x2yf122yf22y3f21xy2f22 2xf14xyf11
例3
zyzf(xy,)g,求
xyxxy2
解
yyf1yf22g2xxx2z
11y1xf12f1yf11ffxf2222221xyxxxxy1yy12f23f222gf12ff1xyf11xxxxxy),求du。例4 uf(xy,xy,x解(1)z1xx2gg
yx2g1x
y3 duuxdxuydy
u1yuf1f2(1)f3f1f2f32;xxxy
故
y1duf1f22f3dxf1f2f3dy xxxdyydxd(xy)f2d(xy)f3解(2)duf12x
f1(dxdy)f2(dxdy)f3[f1f2yx2xdyydxx1x2
f3]dx[f1f2f3]dy
例5 设zz(x,y)由方程F(xzy,yzx)0,确定,F有连续一阶偏导数,求
zx,zy。
解(1)方程两边对x求导
zzxz0 F11xF2x2yxzyzF12F2xyF1F2zxx11xxF1yF2F1F2yx;
方程两边对y求导
zyz1zyFF11220 yxyzxzFFFxyF2122zyy 11yxF1yF2F1F2yxzy)F2d(yzx2;
解(2)方程两边取微分 F1d(x)0)F2(dyzy2F1(dxydzzdyyzx2xdzzdxx2)0
(F1
F2)dx(1yF11xF1F2)dy dzF2xyF1yzF2; 则 zxF11yF1zx12F2F2xyF1yzxxF1yF2F2;
zxxxF1yF2dydxx 例6 设yf(x,t),tt(x,y)由F(x,y,t)0确定F,f可微,求。
解(1)对方程取微分
(1)dyfxdxftdtFxdxFydyFtdt0(2)dyfxdxft0
由(1)解得dt代入(2)得 FxdxFydyFt
则 FxFtfx/ftFxftFtfxdydxdxFtFfFytFyft解(2)
dy,即
dxFxftFtfxFyftF
yf(x,t(x,y))
dyttdyfxftdxxydx
dydxfxft1ftt 而xtyxtxFxFt;
tyux22FyFt,则
dydxFxftFtfxFyftF2
y, 例7 证明:当y时,方程x22xyuxy2y2uy20可化成标准形式
u220,其中uu(x,y)二阶偏导数连续。
证明:将u看成由u(,),而yx,y复合成x,y的函数,uu((x,y),(y))
则 ux2ux2uuu1uuyu2;
xyyyx22yu1u22;
2xyxxx
ux222uyuy2223xxu21u
u22221u1uu1u1
222yxxx2则 xux222xyuxy2y2u22y2u220u220
小结
① 显函数(复合)二阶混合偏导数
② 隐函数求偏导,会用微分法,用复合法习题 1.zf(u),u由方程u(u)
xyp(t)dt确定的x,y的函数,f,可微,P,连续,(u)1,求P(y)zxP(x)zy
(答案:0)(蔡 P146)
22.zz(x,y)由zexyz确定,求
zxy;
23.F(xy,yz)1确定了隐函数zz(x,y),Fyy(x),zz(x)是由方程zxf(xy)和
具有连续二阶偏导数求
zyx
4.设5.t6.zF(x,y,z)0确定,f,F有连续偏导数,求
dzdx。
0,f可微且满足
kf(tx,ty,tz)tf(x,y,z),证明 xfxyfyzfzkf。
。f(x,y)于(1,1)点可微,且f(1,1)1,fx(1,1)23x1。,fy(1,1)3。(x)f(x,f(x,x))求ddx[(x)]ux2y7.设变换vxay8.设可把方程6zx22zxy2zyx220化简为
zuvzx22202,求常数a的值。(a=3)。
f(u)u有连续二阶导数,而uzf(esiny)满足
zy2ez2x,求
f(u)。(f(u)c1ec2e)
6.2 偏导数应用
偏导数应用注意四个方面:空间曲面曲线切平面、法线、切线、法平面;方向导数;梯度、散度、旋度;极值与条件极值。
6.3.1 内容小结
1. 空间曲线切线与法平面
xx(t)1)yy(t)
zz(t)切向量v(xt,yt,zt)
切线方程:
xx0xtyy0ytzz0zt
(x法平面方程:xtx0)yt(yy0)zt(zz0)0
xxyy(x)yy(x)2)zz(x)zz(x)切线方程:
v(1,y,z)类似的
xx01yy0yzz0z
法平面方程:xx0y(yy0)z(zz0)0
Fzz0F(x,z,y)0xxFxFyy3)v(1,y,z)xxG(x,y,z)0GxGyyxGzzx02. 空间曲面切平面与法线
1)F(x,y,z)0,n(Fx,Fy,Fz)|P0切平面:Fx|p0法线:
(xx0)Fy|p0(yy0)Fz|p0(zz0)0xx0Fx|p0yy0Fy|p0zz0Fz|p0
2)zf(x,y)Ff(x,y)zn(fx,fy,1)
切平面:类似地
fx(xx0)fy(yy0)(zz0)0
法线:xx0fxyy0fyzz01
xx(u,v)3)*yy(u,v)
zz(u,v)(参数方程形式)
切线 ,yu,zu),v2(xv,yv,zv)v1(xuixvjyuyvnv1v2xu(y,z)(z,x)(x,y)zu(u,v),(u,v),(u,v)zvk
3. 方向导数
uu(x,y,z)uluxcosuycosuzcosgradul(梯度在l方向投影)
4. 梯度、散度、旋度
,
xyzuuugraduu,xyz
divAAPxQyRz
rotAAixPjyQkzR
6.3.2 例题
例1 求曲线xt,yt,zt223上与平面x2yz4平行的切线方程。
解 切向量2(1,2t,3t),n(1,2,1)由n,则n0,即,14t3t0t11,t2当t1时 (1,2,3),x11,y11,z11,切线方程为13x11y12z13
当t时 2(1,21111,),x2,y1,z1333927,x切线方程为13y11923z13127
22xy10例2 求空间曲线22xz10在点(3,1,1)处的切线方程和法平面方程。
解 22xy1022xz10确定了
yy(x),zz(x),对x求导2x2yy02x2zz0x3y13,yzz13
xyxz
于
1法平面方程为x33(y1)3(z1)0,即x3y3z30 例3 求曲面x2M(3,1,1)点:y3,z3,v(1,3,3)切线方程为 yzx的切平面。使之与平面xy22z22垂直,同时也与xyz2垂直。
解 切平面法向量n(2x1,2y,2z),n1(1,1,12),n2(1,1,1),依题意
n1n0
既有2x 12yz0
(1)
(2)n2n0 2x12y12z0
联立(1)(2)和原方程 22x42得解y4z022x42,y4z0
n012222,0,n02,,0 2222切平面22(x242)22(y24)0
即
xyxy121222
得
22222x(y)0 2424x2y3z222即
例4 求u解 令
在(1,1,1)点沿x2yz3的外法线方向的方向导数。
22222F(x,y,z)xyz3,Fx2x,Fy2y,Fz2z于P(1,1,1)点n(2,2,2),n(13,13,13)
unuxcosuycosuzcos111122x4y6z|43(1,1,1)3333
例5 设f(x,y)在fL3|p0fx1111p0点可微,L1,,L222227。,fL11,fL20
试确定L3使52fycos11,fL2fxcos2fycos20,则 解 fL1cos1 fxfx12fy121fx12y,f12
1f10y22 设L3(cos3,cos3)
从而fL3fxcos375fxcos375235 即
1245cos3 此时cos12cos345或cos752
cos3sin3,解得cos3或cos33335
34即L3,55例6 或L3243, 552 ulnxyz2,求div2(gradu)。
解 div(gradu)(u)u12ln(xyz)222ux22uy222uz22。
u,2ux22xxyz222222,2222ux22xyzx2x(xyz)xyz222(xyz)
由对称性 uy22xyz222222(xyz)2,uz22xyz222222(xyz)2
从而 div(gradu)1xyz222
例7 设a, b, c为常数,F证明(u,v)有连续一阶偏导数。
证 xayb,)0上任一点切平面都通过某定点。zczc11xayb,FyF2,FFFxF1Fz1222zczc(zc)(zc)F(则切平面方程为 F1取1zc(Xx)F21zc(Yy)1(zc)2F(xa)F2(yb)(zy)0
xa,Yb,Zc,则对任一的(x,y,z)点上式均满足,即过任一点的切平面都过(a,b,c)点。
。(xaz,ybz)0上任一点切平面都通过某定直线平行(F具有连续偏导数)
例8 设a,b为常数,证明曲面F证
FxF1,FyF2,FzaF1bF2,即n(F1,F2,aF1bF2),取l(a,b,1),则nl0,nl,曲面平行l,取直线
xx0ayy0bzz01,则曲面上任一点的切平面都与上述直线平行。例9 求二元函数u5方向导数最大?这个最大的方向导数值是多少?u沿那个方向减少得最快,沿哪个方向u的值不变?
解 xxyy22在点M(1,1)沿方向n1(2,1)的方向导数,并指出u在该点沿哪个方向的gradu|(1,1)(2xy,2yx)|(1,1)(3,3),uM在点M(1,1)沿n方向的方向导数为
un132(gradu)n|M(3,3),555,方向导数取得最大值的方向为梯度方向,其最大值为为求使u变化的变化率为零的方向,令l
gradu|M32,u沿负梯度方向减少最快。
(cos,sin),则,ululM(gradu|M)l3cos3sin32sin44或令0,得4,故在点(1,1)处沿4和4函数u得值不变化。
例10 一条鲨鱼在发现血腥味时,总是沿血腥味最浓的方向追寻。在海上进行试验表明,如果血源在海平面上,建立坐标系味:坐标原点在血源处,xOy2坐标面为海平面,Oz轴铅直向下,则点(x,224y,z)处血源的浓度C(每百万份水中所含血的份数)的近似值Ce(xy2z)/10。
(1)求鲨鱼从点1,1,1(单位为海里)出发向血源前进的路线2的方程;
(2)若鲨鱼以40海里/小时的速度前进,鲨鱼从1,1,1点出发需要用多少时间才能到达血源处? 2解(1)鲨鱼追踪最强的血腥味,所以每一瞬时它都将按血液浓度变化最快,即C的梯度方向前进。由梯度的计算公式,得
2224CCC4(xy2z)/10gradC,10e(2x.2y,4z)xyz设曲线的方程为xx(t),yy(t),zz(t),则的切线向量(dx,dy,dz)必与gradC平行,从而有 dx2xdy2ydz4z
解初始值问题
dydx2y2xy|1x1dzdx2x4zz|1x12
得
yx
解初始值问题
得
z12x2,所以所求曲线的方程为
xx,yx,z 12(2)曲线的长度 x2(0x1)s101yzdxxxln(31)2210x2xdx22x2ln(x2x1)
03212ln2(海里)
31)1。ln2(小时)
2因此到达血源处所用的时间为T6.4 多元函数的极值
13ln(402
一、无条件极值 限于二元函数zf(x,y)
1. z0x求驻点z0y驻点P
2. 于驻点P处计算Azx22,Bzxy2,Czy22。B2AC0是极值点,A0可取得极小值,A0可取极大值。
3. 条件极值:minuf(x,y,z)S.t.(x,y,z)0,令
Lf(x,y,z)(x,y,z)求无条件极值。
例1 求内接于椭球面,且棱平行对称轴的体积最大的长方体。
解 设椭球面方程为 xa22yb22zc221,长方体于第一卦限上的点的坐标为(x,y,z),则
V8xyz,s.t.xa 22yb22zc221,令
2xa222x2yz L8xyz1a2b2c28yzLxL8xzy8xyLz及0(1)0(2)0(3)2yb2zc22xa22yb22zc221
由(1)(2)(3)得xa22b3yb22zc22tc3,代入(3)得t13,从而 xa3,y2,z22,此时V8abc33839abc。
例2 求由方程2x2yz8xzz80所确定的二元函数zf(x,y)的极值。解
方程两边对x,y求偏导数得:
4x2zzx8z8xzxzx0
„(1)
4y2zzy8xzyzy0
„(2)
4x8z016和原方程联立得驻点(2,0),(,0)0,得x74y0y方程(1)对x,y再求偏导,方程(2)对y求偏导 令z0,z。
zzzzzz42888x0 2z222xxxxxx2zzyx2z22222„(3)
zxy282zy8x2zxy22zxy20
„(4)
zzzz
422z8x0
222yyyy将驻点(2,0)代入(此时z1)
„(5)
42A16AA0
AC415415
2B16BB0
B0
242C16CC0
BAC0,z1是极小值(因A>0)
将驻点8(4)(5)(此时z,0代入(3)
7716),同上过程有
A 415,B0,C415,2BAC0,A0,z87是极大值。
习题: 1 设uF(x,y,z)在条件(x,y,z)0和(x,y,z)0限制下,在P0(x0,y0,z0)处取得极值mFx1Lx20xx
。证明F(x,y,z)m,(x,y,z)0,(x,y,z)0在P0点法线共面。
正:L F(x,y,z)m12LFy120yyy
Fz1Lz20 zzFxxyzx0yzxyz5r2222由于(1,1,2)0,从而原方程有非零解,及系数矩阵为0FyFz,即三法向量共面。
2. 设f(x,y,z)lnxlny3lnz。点
3(x,y,z)在第一卦限球面
3上,①求f(x,y,z)的最大值。②证明 对任意正数a,b,c成立abc
abc275。
习题课
ye例1 设f(xy,lnx)1,求f(x,y)yxxeln(x)解 令xyu,lnxv。
yef(u,v)f(xy,lnx)1yxxeln(x)
xxxyxueveu2vexyxlnx(xy)ee2lnxxylnx
所以
f(x,y)xeyex2y.例2 讨论limxyxy是否存在.x0y0 解
当点 P(x,y)沿直线ykx趋向(0,0)时,limxyxy2ykxx0limxkxxkxx0limkx1kx00
(k1),当点P(x,y)沿直线yxxlim2xyxy趋向(0,0)时,yxxx0lim2x(xx)x(xx)22lim(x1)1yxxx0x01,所以limxyxy不存在.x0y0 例3 22(xy)sinzf(x,y)0在(0,0)处是否连续?
1xy22(xy0),22(xy0),22(1)(2)(3)(4)fx(0,0),fy(0,0)是否存在?
偏导数fx(x,y),fy(x,y)在(0,0)处是否连续?
f(x,y)在(0,0)处是否可微?
f(x,y)在(0,0)处是否连续,只要看limf(x,y)=f(0,0)是否成立.因为
x0y0解
(1)函数 limf(x,y)lim(xy)sinx0y0221xy22
x0y0
limsin0210f(0,0).所以
f(x,y)在(0,0)处连续.(2)如同一元函数一样,分段函数在分界点处的偏导数应按定义来求.因为
(x)sinx021(x)x1(x)220 limf(x,0)f(0,0)xlimx0limxsinx00,所以
(3)fx(0,0)0,类似地可求得fy(0,0)0.当(x,y)(0,0)时
fx(x,y)2xsin
1xy1xy2222(xy)cosxxy22221xy221222xx2y23
2xsincos1xy2.因为 limfx(x,y)lim2xsinx0x0y0y01xy22xxy22cos不存在.22xy1所以 fx(x,y)在(0,0)处不连续。同理fy(x,y)在(0,0)处也不连续
(4)由于由fx(x,y),fy(x,y)在(0,0)处不连续,所以只能按定义判别f(x,y)在(0,0)处是否可微.fx(0,0)0,fy(0,0)0,故
x0y0limz[fx(0,0)xfy(0,0)y](x)(y)222
[(x)(y)]sinlimx0y02221(x)(y)220(x)(y)(x)(y)sin122 lim1(x)(y)22
x0y0limsinx0y00由全微分定义知f(x,y)在(0,0)处可微,且df(0,0)0.f(x,y,z),zg(x,y),yh(x,t),t 例4 设u(x),求
dudx.解
对于复合函数求导来说,最主要的是搞清变量之间的关系.哪些是自变量,哪些是中间变量,可借助于“树图”来分析.图9-1 由上图可见,u最终是x的函数,y,z,t都是中间变量.所以
dudxfxfxfhhdfgghhdyxtdxzxyxtdxfhyxfhdytdxfgzxfghzyx.fghdzytdx 从最后结论可以看出:若对x求导数(或求偏导数),有几条线通到”树梢”上的x,结果中就应有几项,而每一项又都是一条线上的函数对变量的导数或偏导数的乘积.简言之,按线相乘,分线相加 例5 z12xfxy1f2,f 可导,求zx.解 zx1f2x.y
例6 已知yetyx,而t是由方程ytx1确定的x,y的函数,求
ty222dydx.解
将两个方程对x求导数,得
ye(tyyt)12yy2tt2x0
解方程可得
2dydxtxye2ty2tyt(yt)e.例7 求曲面x2y3z21平行于平面x4y6z0的切平面方程.解
曲面在点(x,y,z)的法向量为 n =(Fx,Fy,Fz)(2x,4y,6z),2x14y42已知平面的法向量为n1=(1,4,6),因为切平面与已知平面平行,所以n//n1,从而有
6z6(1)
又因为点在曲面上,应满足曲面方程
x2y3z212
(2)
由(1)、(2)解得切点为(1,2,2)及(1,2,2), 所求切平面方程为:
或(x1)4(y2)6(z2)0(x1)4(y2)6(z2)012,1,1)。
这里特别要指出的是不要将n//n1不经意的写成n=n1,从而得出切点为(例8 在椭球面2x222的错误结论.2222yz1上求一点,使函数f(x,y,z)xyzel在该点沿l=(1,–1,0)方向的方向导数最大.11,,0,22所以 fl fx12fy12fz20
2(xy)2(xy)在条件2x由题意,要考查函数
2yz1下的最大值,为此构造拉格朗日函数
222F(x,y,z)2(xy)(2x2yz1),14
Fx24x0,Fy24y0, Fz2z0,2222x2yz1.解得可能取极值的点为 11,,0 22 及
11,0.222,因为所要求的最大值一定存在,比较
fl11,,022fl11,02222知12,1,02为所求的点.例9 求函数zxy222在圆(x22)(y22)9上的最大值与最小值.0,zy0,解得点(0,0).显然z(0,0)=0为最小值.解
先求函数z再求z2xy2在圆内的可能极值点.为此令zxxy在圆上的最大、最小值.为此做拉格朗日函数
22F(x,y)xy[(x2)(y22)9],2Fx2x2(x2)0,Fy2y2(y2)0,22(x2)(y2)9.,代入(3)解得
(1)(2)(3)由(1)、(2)可知xy xy522,和
xy22,5252z,2225221.z,222)(y25252,22为z25,最小值为z0.比较z(0,0)、z
22、z三值可知:在(x,222)92上,最大值