第一篇:2012考研讲座(1—8)高数线代复习导引
讲座(1)考好数学的基点
“木桶原理”已经广为人所知晓。但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。实在是一件不容易的事。
非数学专业的本科学生与数学专业学生的最基本差别,在于概念意识。数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。各向齐茂,形成一棵参天大树。
在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。而第二知识板块中,则是矩阵的特征值与特征向量。
在《概率统计》中,第一重要的概念是分布函数。不过,《概率》不是第一层次基础课程。学习《概率》需要学生有较好的《高等数学》基础。
非数学专业的本科学生大多没有概念意识,记不住概念。更不会从概念出发分析解决问题。基础层次的概念不熟,下一层次就云里雾里了。这是感到数学难学的关键。
大学数学教学目的,通常只是为了满足相关本科专业的需要。教师们在授课时往往不会太重视,而且也没时间来进行概念训练。
考研数学目的在于选拔,考题中基本概念与基本方法并重。这正好击中考生的软肋。在考研指导课上,往往会有学生莫名惊诧,“与大一那会儿学的不一样。”原因就在于学过的概念早忘完了。
做考研数学复习,首先要在基本概念与基本运算上下足功夫。
按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。你的大脑要饱受交混回想的检验。你可以由此体验选拔考试要求你对概念的熟悉程度。
从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。文献浩如烟海,知识千锤百炼。非数学专业的本科生们所接触的,只是初等微积分的一少部分。方法十分经典,概念非常重要。学生们要做的是接受,理解,记忆,掌握计算方法,学会简单推理。首先是要记得住。
你要玩好游戏,你也得先了解游戏规则,把它记得滚瓜烂熟啊。你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。
数学专业的学生面壁苦修的一个方式是画“联络图”。每学完一章,抽一定时间复习小结,静心地用笔理线索。
先默写出各个定义,中心定理,辅助定理,简单结论,思考其相互关系。再回顾主要定理证明 —— 关键步骤是哪步,有无特色细节,可否模仿。哪些可以收编为练习。条件能否削弱,有无相应反例。在主要参考书上,有没有更细化的评注或说明或应用。
有没有重要算法与公式。如果有,是否有前提条件,是否要判断分类,„„。
这是一个下意识的系统消化手段,也是一个有效的记忆方法。记住了而还没有消化好的内容,则一点一点地成为定向思维的材料。
当然要做题。有了一定的知识准备后,首先做教科书习题。演练简单的题目,体念并熟悉概念与公式。剖析复杂的题目,了解如何综合考查自己,学习分步逻辑推理。把典型题目与相关概念或定理或典型方法归纳记忆在一起。进一步做参考书及资料上的题,感受了解考研题目如何考查自己。逐渐形成用“猎奇”的眼光去挑选典型题目的能力
数学专业的学生面壁苦修的又一个方式是积累一个“材料库”。尽可能熟悉课程讨论的基本对象。就如我将在讲解时(微积分部分)推荐的,“三个典型的(极限)不存在”,“x 趋于+∞ 时,指数函数,幂函数,对数函数的无穷大阶数比较。”“三个典型的不可导”,“四个典型的不可积”,„„,等等。
概念记得越准确,观察判断的眼光越犀利。基本定理,基本方法记得越清晰,分析题目时方向越明白。
当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是 „„”,而非“在哪儿做过这道题”,才能算是有点入门了。
讲座(2)笔下生花花自红
在爱搞运动的那些年代里,数学工作者们经常受到这样的指责,“一支笔,一张纸,一杯茶,鬼画桃符,脱离实际。”发难者不懂基础研究的特点,不懂得考虑数学问题时“写”与“思”同步的重要性。
也许是计算机广泛应用的影响,今天的学生们学习数学时,也不太懂得“写”的重要性。考研的学生们,往往拿着一本厚厚的考研数学指导资料,看题看解看答案,或看题想解翻答案。动笔的时间很少。
数学书不比小说。看数学书和照镜子差不多,镜子一拿走,印象就模糊。
科学的思维是分层次的思维。求解一个数学问题时,你不能企图一眼看清全路程。你只能踏踏实实地考虑如何迈出第一步。
或“依据已知条件,我首先能得到什么?”(分析法);
或 “要证明这个结论,就是要证明什么?”(综合法)。
在很多情形下,写出第一步与不写的感觉是完全不同的。下面是一个简单的例。
“连续函数与不连续函数的和会怎样?”
写 成 “连续A + 不连续B = ?”后就可能想到,只有两个答案,分别填出来再说。(穷尽法)。
如果,“连续A + 不连续B = 连续C” 则 “ 连续C-连续A = 不连续B” 这与定理矛盾。所以有结论: 连续函数与不连续函数的和一定不连续。
有相当一些数学定义,比如“函数在一点可导”,其中包含有计算式。能否掌握并运用这些定义,关键就在于是否把定义算式写得滚瓜烂熟。比如,题面上有已知条件 f ′(1)> 0,概念深,写得熟的人立刻就会先写出 h 趋于0 时,lim(f(1+h)-,0,n,0,--,0,n,0,-∞” 是未定式。)
对于一个集合,我们既要考虑能否定义线性运算,又还要进一步考虑,这个集合对于线性运算是不是“封闭”的。即集合中的任意有限个元素的线性组合,是否还属于这个集合。是!我们就说“集合对于线性运算是封闭的。”高一个层次的理论中,这是集合能否被称为“线性空间”首要条件。
显然,m × n阶矩阵集合,n 维向量集合,C[a,b] 函数集合,C k(a,b)函数集合,对于线性运算都是封闭的。
2.向量内积与矩阵乘法
由于理论或应用的需要,人们经常需要考虑在集合上定义更特殊的“运算”。这些“运算”在观念上要比四则运算高一个层次。本质上是人为规定的,集合中任意两个元与唯一的“第三者”的特殊对应规律。高级语言称之为集合上的 一个“二元关系”。
内积是n维向量集合上的一个“二元关系”—— 两个n维向量对应唯一确定的一个数。即
对任意两个n 维行向量 α =(α1, α2, „,αn), β =(β1,β2 ,„,βn), 规定
内积 α?β = αβˊ= α1β1 + α2β2 + „ + αnβn(= β?α)
(画外音:喜欢口诀吗?左行右列作内积。对应分量积相加。)
内积又叫数量积。定义内积是深化讨论的常用手段,理论背景深远,应用范围广阔。比如,更高层次的讨论中,在C[a,b] 函数集合上定义内积为 内积(f,g)= 积函数f(x)g(x)在[a,b]上的定积分
《线性代数》教材中通常把n维向量设为列向量。借助于列向量可以把m×n阶矩阵A表示为
A =(a1,a2,„,a n),称为矩阵 A 的 列分块式。
其中,列向量 a1 =(a 11,„,a n 1)ˊ,„„,a n =(a 1n,„,a n n)ˊ
如果把每个列块视为一个元素,可以说 A =(a1,a2,„,a n)是一个“形式向量”。这个观念对学习《线性代数》大有好处。比如,让“形式向量”与未知列向量x作“形式内积”,可以把齐次线性方程组 A x = 0 改写为
(a1,a2,„,a n)(x1,x 2,„,x n)ˊ= 0 即 x1 a1+ x 2 a2 +„„+ x n a n = 0 后面将会利用这个形式转换,把“(列)向量组的线性相关性”与“齐次线性方程组有无非零解”相连系。
矩阵乘法是矩阵集合上的一个“二元关系”。它的计算基础是向量内积。具体规定为 ——
m×n 阶矩阵A(a i j)与n×s 阶矩阵B(b i j)可以有乘积矩阵AB =(c i j),AB是m×s阶矩阵,它的元素c i j 具体为 c i j = A的第i 行与B的第 j 列的内积。
即 c i j = a i 1b j1 + a i2 b j 2 + „ + a i n b j n,1≤ i ≤ m,1 ≤ j ≤ s 阶数规则(m×n)(n×s)=(m×s),保证“左行右列作内积”可行。
最特殊的两种情形是(m×1)(1×s)=(m×s)与(1×n)(n×1)=(1×1)
后一情形就是两个向量作内积。
进一步有分块矩阵乘法。
按照应用需要,《线性代数》常常会将矩阵变化为某种分快形式。并实施矩阵乘法。较常见的是变化矩阵为 列分块式 或 行分块式。
要分块矩阵乘法可行,必须要在“宏观”与“微观”两方面都确保可乘。宏观可乘:把各分块看成一个元素,满足阶数规则。
微观可乘:所有要相乘的子块,全都满足阶数规则。
乘法变形1.(m×n)(n×s)=(m×s)—→(1×1)(1×s)=(1×s)AB = A(b1,b 2,„,b s)=(A b 1,A b 2,„,A b s)
宏观可乘:各分块看成一个元素,满足阶数规则(1×1)(1×s)=(1×s)
微观可乘:对应相乘的子块 A b j 都满足:(m×n)(n×1)=(m×1)
乘法变形2.(m×n)(n×s)=(m×s)—→(m×1)(1×s)=(m×s)AB =(A的行分块式)(B的列分块式)
这个分块乘积式显式了矩阵乘法与内积的关系。积矩阵AB 的每一个元都是内积形式。
乘法变形3.(m×n)(n×s)=(m×s)—→(1×n)(n×s)=(1×s)AB =(a1,a 2,„,a n)(b i j)
=(a 1 b 11 + a 2 b 21 + „ + a n b n1,„,a 1 b 1n + a 2 b 2 n + „ + a n b n n)
乘积AB具列分块式。且它的各列都是A的列向量的线性组合。
乘法变形3 的特殊情形就是“形式内积”。(1×n)(n×1)=(1×1),考研数学题要求你会逆向还原:
c1 a1+ c 2 a2 +„„+ c n a n =(a1,a2,„,a n)(c1,c 2,„,c n)ˊ
例 设有列向量组 a1,a2,a3,它们排成矩阵 A =(a1,a2,a3),如果它们的三个线性组合分别是 a1 + a2 + a3,a1 + 2a2 +4a3,a1 + 3a2 + 9a 3,试写出新的三向量排成的矩阵B与A的关系。
分析 关键在于反写形式内积 a1 + a2 + a3 =(a1,a2,a3)(1,1,1)ˊ a1 + 2a2 +4a3 =(a1,a2,a3)(1,2,4)ˊ a1 + 3a2 + 9a3 =(a1,a2,a3)(1,3,9)ˊ
于是,这三个线性组合为列排成的矩阵,等于A乘以 “三个系数列排成的矩阵”。
乘法变形4.(m×n)(n×s)=(m×s)—→(m×n)(n×1)=(m ×1)AB =(a i j)(B的行分块式)
乘积AB具行分块式。且它的各行都是B的行向量的线性组合。
分块矩阵乘法形式多样,内函丰富。每一类形式变换都带来理论新意。充分体现出《线性代数》的特点,也是重点难点。对学生来说又相当陌生,史无前遇。考研复习《线性代数》的第一任务,就是熟悉矩阵乘法,熟悉分块矩阵乘法变换的各种形式及其新含义。
第二篇:考研高数复习大纲
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
第三篇:考研高数知识总结1
考研数学讲座(17)论证不能凭感觉
一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。
1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1),你敢不敢作等价无穷小替换?
分析 只凭感觉,多半不敢。依据定义与规则,能换就换。
x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小,sinα(x)~ α(x)且 sinα 处于“因式”地位。可以换。
等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2
2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性)?
分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x)周期为T的函数 f(x+T)= f(x)等式两端分别求导,得 fˊ(-x)= fˊ(x)fˊ(x+T)= fˊ(x)(实际上,由复合函数求导法则,(f(-x))ˊ= fˊ(-x)(-x)ˊ= -fˊ(-x))
所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为(x)ˊ= 1,有的非周期函数,比如y = x + sinx,的导数却是周期函数。
(潜台词:周期函数的原函数不一定是周期函数。)
单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。
如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。
有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。
取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。这个反例说明有界函数的导数不一定有界。
(画外音:写出来很吓人啊。x → 1 时,lim f(x)= 0,而 lim fˊ(x)= -∞)
3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?
分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:
取分段函数 g(x)为,x > 0 时 g =1,x ≤ 0 时 g = -1,0是其间断点。取 f(u)=√u,则 f(g(x))= 1 在 x > 0 时有定义且连续。还有一些原因让“病态点”消失。
如果只图简单,你可以取 f(u)为常函数。以不变应万变。
取 f(u)= u的平方,则 f(g(x))= 1,显然是个连续函数。
4.设 f(x)可导,若x趋于 +∞ 时,lim f(x)= +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。例如 y = x 更复杂但颇为有趣的是 y = ln x,x 趋于 +∞ 时,它是无穷大。但是 yˊ = 1∕x 趋于0,这就是对数函数异常缓慢增长的原因。5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x)= +∞ , 是否必有 lim f(x)= +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x)= +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式
f(x)= f(x0)+ fˊ(ξ)(x-x0), x0 <ξ< x(潜台词: ξ=ξ(x)。你有这种描述意识吗?)进而就有, x >x0 时, f(x)>f(x0)+ 1(x-x0)(画外音:这一步是高级动作。)因为 f(x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f(x)= +∞ 6。设 f(x)可导,若 x 趋于-∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f(x)=-∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。请你还是老老实实地象5中那样写出推理吧。结论是
若 x 趋于-∞ 时,lim fˊ(x)=-∞ , 则必有 lim f(x)= +∞
7.设 f(x)可导,若x 趋于+∞时,lim f(x)= c(常数,)是否必有lim f ˊ(x)= 0 分析 否。lim fˊ(x)有可能不存在。
这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x)= c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”
想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。
由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如,曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x)不存在的后果。对比条件强化 —— 如果 lim fˊ(x)存在,则必有 lim fˊ(x)= 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x)= A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有
f(x)>f(x0)+ A(x-x0)/2 —→+∞ 矛盾。
8.函数在一点可导,且导数大于0,能说函数在这一点单增吗?
分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim(f(x)-f(x0))/(x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f(x)> f(x0)。但是,我们不知道函数值相互间的大小。
*9 设f(x)可导,若fˊ(a)·fˊ(b)< 0,则(a,b)内必有点c,fˊ(c)= 0
分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。
在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a)> 0 而 fˊ(b)< 0 分别在a,b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:
函数的端值 f(a),f(b)都不是 f(x)在[a,b] 上的最大值。最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。考研数学讲座(18)泰勒公式级数连
中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。
中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。
在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。1.“微分是个新起点” —— 若函数 f(x)在点x0可微,Δy = f ′(x0)Δx +ο(Δx);其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:
f(x)= f(x0)+ f ′(x0)(x-x0)+ ο(Δx)(ο(Δx)尾项,比Δx高阶的无穷小)
(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)
历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。
2.拉格郎日公式 —— 若 函数f(x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f(b)-f(a)= f ′(ξ)(b-a)
定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f(x)-f(x0)= f ′(ξ)(x-x0),ξ 在 x 与 x0之间,(潜台词:任意一点x,对应着一个客观存在的“点ξ”,ξ=ξ(x))即 f(x)= f(x0)+ f ′(ξ)(x-x0),ξ 在 x 与 x0之间,3.泰勒公式 —— 如果函数在点x0 邻近有二阶导数
f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(ξ)/2)(x-x0)²,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0),0<θ<1 一般情况下,我们无法知道
ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。
如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)
f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(x0)/2)(x-x0)²+ ο(|Δx| ²)泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0),f ′(x0),f ″(x0)/ 2!,f ′ ″(x0)/ 3!,„„
可以写出,f(x)= n 次泰勒多项式 + 拉格朗日尾项
4.泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数
f(x)= f(0)+ f ′(0)x +(f ″(0)/2)x²+(f ′ ″(0)/ 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!
(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)
关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。
美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。
exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞<x<∞ sin x = x - x³/3!+ „„ -∞<x<∞
(逐项求导,cos x = 1- x²/2!+ „„
-∞<x<∞)此外还有 ln(1+x)= x - x²/2 + x³/3 + „„ -1<x< 1(1+x)的μ次方 = 1 + μ x +(μ(μ-1)/ 2!)x²+(μ(μ-1)(μ-2)/ 3!)x³+ „„ 1/(1-x)= 1 + x² + x³ + „„ -1<x< 1,上同
泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。关键在于低阶项相互抵消。应用泰勒公式直接有,x → 0 时,exp(x)- 1 ~ x,exp(x)-1-x ~ x² / 2
sin x ~ x,sin x - x ~ - x³ / 3!,cos x -1 ~ - x²/2 ln(1+x)~ x,ln(1+x)-x ~ -x²/2(1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3)-A-B(x -1)-(x -1)²)/(x -1)² = 0,试确定常数,A,B,C 分析
已知表明 x → 1 时,分子是较分母高阶的无穷小。
题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有
常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。
于是 A = y(1)= 2,B = y ′(1)= 3/4,C = y″(1)/ 2 = 39/64(画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。如果只有两个参数,可看讲座(9)。)
泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限
例88 若 x→ 0 时,极限 lim(sin6 x+ f(x))/ x³ = 0,则
x→ 0 时,极限 l im(6 + f(x))/ x² = ? 分析
分子有两项。决不能把 sin6 x 换为 6x,(潜台词:sin6 x不是分子的因式,是分子的一项。)
这时正好用“带皮阿诺余项的一阶泰勒公式”,sin 6x = 6 x -(6x)³/3!+ ο(|Δx| ³)代入已知极限,移项得 lim(6 + f(x))/ x² = 36
例89 设函数 f(x)在 x = 0 的某邻域内有连续的二阶导数,且 f(0)≠0,f ′(0)≠0, 记 F(h)= λ1 f(h)+ λ2 f(2h)+ λ
f(3h)一 f(0),试证,存在唯一的实数组 λ1,λ2,λ3,使 h → 0 时,F(h)是比 h ² 高阶的无穷小。分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x +(f ″(0)/2)x²+ ο(|x| ²)
这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f(h),f(2h),f(3h)f(h)= f(0)+ f ′(0)h +(f ″(0)/2)h ²+ ο(| h | ²)
f(2h)= f(0)+ f ′(0)2 h +(f ″(0)/2)(2h)²+ ο(| h | ²)f(3h)= f(0)+ f ′(0)3 h +(f ″(0)/2)(3h)²+ ο(| h | ²)(潜台词:常数因子不影响尾项。)将各式代入F(h),整理得
F(h)=(λ1+λ2+λ3一1)f(0)+(λ1+2λ2 + 3λ3)f ′(0)h +(λ1+ 4λ2 + 9λ3)f ″(0)h ²/2 + ο(| h | ²)
要让 h → 0 时,F(h)是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0,这就得到未知量
λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式
如果函数 f(x)二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式
f(x)≥ f(x0)+ f ′(x0)(x-x0)(或≤)
实际上 f(x)= f(x0)+ f ′(x0)(x-x0)+(f ″(ξ)/2)(x-x0)²,ξ 在 x 与 x0之间
设 f ″(x)> 0,自然有(f ″(ξ)/2)(x-x0)² > 0,舍掉此项就得到不等式。
*例91 函数 f(x)在 [-1,1] 上有连续的三阶导数,且 f(-1)= 0,f(1)=1,f ′(0)= 0,试证明在区间 内至少有一点 ξ,使得 f ″′(ξ)= 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式
f(x)= f(0)+(f ″(0)/2)x²+(f ′ ″(η)/ 3!)x³ , η在0与x之间 既然这是 f(x)的又一个表达式,当然可以代入x = -1 , 1,它们分别相应有 ξ 1,ξ 2 0 = f(-1)= f(0)+(f ″(0)/2)(-1)²+(f ′ ″(ξ 1)/ 3!)(-1)³ , -1<ξ 1<0 1 = f(1)= f(0)+(f ″(0)/2)1² +(f ′ ″(ξ 2)/ 3!)1³ , 0 <ξ 2 < 1 到了这一步,仔细观察发现,两式相减,能得到只剩下有关三阶导数值的表达式。f ′″(ξ 2)+ f ′″(ξ 1)= 6 或着两个三阶导数值都等于3,本题得证。或者它们一大于3,一小于3,而函数 f ″′(x)连续,可以应用介值定理完成本题证明。
第四篇:2014年考研数学:线代复习三策略
2014年考研数学:线代复习三策略
复习线性代数要注重知识点的衔接与转换。由于线性代数各个部分之间的联系非常紧密,而且历年来的考题大多都涉及到几个部分的内容,所以复习线性代数一定要有一个整体意识。行列式和矩阵是基础知识,还有向量、方程组、特征值等一直是考点。复习要注意以下几点。
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。应该说考研数学最简单的部分就是线性代数,这部分的难点就在于概念非常多而且相互联系,但线代贯穿的主线就是求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。同时从考试内容来看,考的内容基本类似,可以说是最死的部分,这几年出的考试题实际上就是以前考题的翻版,仔细专研一下以前考题对大家是最有好处的。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,进而可求矩阵A或B中的一些参数。
凡此种种,正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,大家整理时要注重串联、衔接与转换。
第五篇:考研线代的特点与复习要点
考研线代的特点与复习要点
考研数学复习,对于线性代数这门课,同学们普遍感觉书容易看懂,但题目不会做,或者题目会做,但一算就错,这主要是大家对线性代数的特点不太了解,其实线性代数复习要注意以下几点。
一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算
线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
正是因为线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。
三、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
总之,数学题目千变万化,有各种延伸或变式,同学们要在考试中取得好成绩,一定要认真仔细地复习,华而不实靠押题碰运气是行不通的,必须要重视三基,多思多议,不断地总结经验与教训,做到融会贯通。