第一篇:《实际问题与一元一次不等式》说课稿
《实际问题与一元一次不等式》第1课时说课稿
北京市楼梓庄中学
张东
尊敬的各位老师:大家好!
今天我说课的内容是《实际问题与一元一次不等式》第1课时,课题选自人教版《义务教育课程标准实验教科书·数学(七年级下册)》.我将从教学目标的设定;教学重点、难点的分析;教学方式与手段的选择及教学过程的设计几方面来阐述我对本节课的教学设计.
一、教学目标
本节课在学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的基础上,继续结合一些实际问题,重点讨论了两方面内容:
1、如何用一元一次不等式解决实际问题,归纳其基本过程;
2、如何解不等式,归纳解一元一次不等式的一般步骤。从而使学生体会到不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础。
在课程标准中,有关本节课的要求是:会解简单的一元一次不等式,并能在数轴上表示出解集;能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
根据《课程标准》对本节内容的教学要求,以及学生的认知水平,制定的教学目标如下:
1列一元一次不等式解决具有不等关系的实际问题 2进一步掌握一元一次不等式的解法
3通过应用一元一次不等式描述不等关系解决实际问题,发展学生由实际问题转化为数学问题的能力,体会不等式是解决实际问题有效数学模型,渗透数学建模思想。
4通过类比一元一次方程解决实际问题的过程以及一元一次方程的解法,体会一元一次不等式中蕴含的类比、化归思想。
二、教学重点、难点
以不等式为工具,分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能,因此,本节课的教学重点为:由实际问题中的不等关系列出不等式,进一步掌握一元一次不等式的解法。由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题有一定难度,本节课的教学难点为:不等关系的分析与数学表示。
三、教学方式与手段
在本节课的设计中,从学生已有的生活实际经验出发,通过设置若干个具有层次性、挑战性的探究点,激发学生探究兴趣,教师引导学生在独立思考、互相交流的活动中主动学习、探究学习,并适时恰当地引导、帮助学生找到解决问题的方法。因此,本节课采用的教学方式是启发式教学方式。
教学中利用幻灯片,一方面创设强烈的生活气息,激发学生学习兴趣;另一方面扩大课堂教学容量,节省课堂教学时间,提高课堂教学效率。
四、教学过程
本节课的教学程序分为创设情境、激趣质疑;探究新知、解决问题;巩固训练、加深理解;归纳小结、分层作业四个环节进行.
(一)创设情境、激趣质疑
教师首先引导学习回忆一元一次不等式的初步解法,然后提问:“你觉得我们学习一元一次不等式可以解决哪些问题呢?对于我们的生活实际有帮助吗?”然后教师出示问题情境:
甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,假如派你去购买这种商品若干件,从节省费用考虑,你应选择哪个商场购物呢?
这是一个生活中常见的购物问题,与学生生活距离较近,有利于激发起学生的学习兴趣,使学生体会到学数学的价值。
(二)探究新知,解决问题
本题具有一定综合性,考虑到学生的认知水平,为了降低学生探究的难度,设置了5个由易到难的问题,引导学生分情况分问题进行有效探究:
(1)甲商场购物款达到多少元后可以优惠;乙商场购物款达到多少元后可以优惠?(2)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
(4)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?
(5)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠?你能为消费者设计一套方案吗?
教学中,首先让学生独立思考,然后组织学生分组讨论,交流解决问题的过程,教师深入小组参与活动,适时予以指导。5个问题中,问题(3)最为复杂,需要列不等式解决,是本节课的重点也是难点,应予以重点讨论。教师可提出以下问题启发学生:
1此时,你能计算出两个商场的花费吗?为什么? 2你能用式子表示出两个商场的花费吗?怎样表示?
3如果假设在甲店购物花费小,你能用不等式表示两个商场的花费关系吗? 4这个不等式你会解吗?如果不会,那么把不等号换为等号后你会解吗?他们的解法相同吗?
问题解决完之后,引导学生归纳用一元一次不等式解决实际问题的一般过程,并与一元一次方程解决实际问题的一般过程进行对比,使学生体会到二者之间的区别与联系。
(三)巩固训练、形成技能
解不等式,并在数轴上表示解集:(1)5x3﹥4x1(2)2x5﹤3x5
教师出示问题,引导学生独立思考并解答,然后小组内交流解法,教师用实物投影矫正错误,用多媒体展示解题的规范步骤,要求学生在每一步解答之前,先写出该步名称。最后教师引导学生归纳解一元一次不等式的基本过程,并与一元一次方程的解法作对比,强调系数化1时,要注意不等号的方向。
此环节是为了落实本节课的第二个教学重点而设计。使学生通过具体的练习,然后经历一元一次不等式与一元一次方程的解法的类比、对比过程,进一步掌握一元一次不等式的解法及解集的几何表示,规范解题步骤,养成按步骤操作的解题习惯,夯实双基,同时发展学生运用类比、化归等数学思想的意识,从而进一步完善已有的知识体系。
(四)应用新知,解决问题
由教师出示问题:
甲乙两家商店出售同样的茶壶和茶杯,茶壶每只定价都是20元,茶杯每只定价都是5元。两家商店的优惠办法不同:甲商店是购买1只茶壶赠送1只茶杯;乙商店是按售价的92%收款。某顾客需购买4只茶壶和若干只(超过4只)茶杯,何时到甲商场购买更优惠呢?
教师提出问题后,学生先独立思考,对于学习有困难的学生,教师可出示下列问题,予以提示,并组织学生讨论:
(1)本题中包含着怎样的不等关系?
(2)在甲商店购买时,所有茶杯都需要付款吗?
(3)如果设顾客需购买x只茶杯(x﹥4),那么在甲商店购买茶壶和茶杯需付款 元,在甲商店购买茶壶和茶杯需付款 元,不等式列为 本次活动中教师重点关注两个方面:(1)学生能否通过独立思考或讨论交流,运用一元一次不等式这一 工具解决问题(2)学生解决问题的能力。
此环节意在使学生独自经历用一元一次不等式解决实际问题的全过程,获得更多的解决问题的经验,进一步发展学习分析问题、解决问题的能力。
(五)归纳小结、分层作业
由教师提出小结问题,学生总结:
1用一元一次不等式解决实际问题的基本过程是什么?与用一元一方程解决实际问题的基本过程有何异同?
2解一元一次不等式与解一元一次方程在方法上有何异同? 3受本节课的启发,你会解不等式:4谈一谈你学完本节课的心得体会?
通过小结,引导学生回味本节课的主要内容,体会数学的思想方法,并为学生提供课下继续思考的空间,为下节课作铺垫。
最后是作业布置:
1看书P131—P133(补全书上留白,划出重点内容,完成读书笔记)2习题9.2第1(1)(2)、3(1)、(2)、5题 3选作:习题9.2第10题
读书作业有利于学生养成主动复习的学习习惯,分层作业为不同认知水平的学生提供了不同的发展空间。
以上是我对《实际问题与一元一次不等式》第一课时的认识,一定还有不足之处,请在座的专家、老师们多多批评、指正,谢谢!
x17﹤
2x53吗?
第二篇:实际问题与一元一次不等式说课稿(参赛作品)
9.2《实际问题与一元一次不等式》说课稿 大南中学七年级数学备课组 吴权明
尊敬的各位评委老师:大家好!
今天我说课的内容是《实际问题与一元一次不等式》,课题选自人教版《义务教育课程标准实验教科书·数学(七年级下册)》第九章第二节第2课时.下面我分别从教学内容的分析、教学目标及重、难点的确定、教学方法的选择和教学过程的设计四个方面来说明我对这节课的教学设想。
设计理念:《数学课程标准》指出:新课程实施的基本点是促进学生全面、持续、和谐地发展。
一、教学内容的分析
本节课是在学生学习了用一元一次方程解决实际问题、不等式的性质、一元一次不等式的初步解法等知识的学情上,继续结合一些实际问题,主要学习两方面内容:第一:强化如何解不等式,再次归纳解一元一次不等式的一般步骤。第二:如何用一元一次不等式解决实际问题,引导学生完成抽象过程,建立数学模型进行分类讨论,再将数学问题转化为实际问题进行解答。其中前者性质属于基本技能的学习与提升,后者属于数学知识的实际应用。通过对两部分知识的学习使学生掌握一元一次不等式的解法,体会不等式与方程的联系与区别,体会不等式是解决涉及求未知数取值范围的有力工具,是刻画现实世界中不等关系的一种有效数学模型,本节课的学习既是对已学知识深化和运用,又是为下一课时以及下一节一元一次不等式组的学习奠定基础。
二、教学目标及重、难点的确定
1、教学目标:
《初中数学新课程标准》对本节课的教学要求为:会解简单的一元一次不等式,并能在数轴上表示出解集。能够根据具体问题中的数量关系,列出一元一次不等式解决简单的实际问题。
根据本课教材的特点、课标对本节课的教学要求以及本班学生现有的认知水平,我从三个方面确定了以下教学目标:(1)知识目标:
会从实际问题中抽象出数学模型,能用不等式熟练地表示出不等关系。(2)能力目标:
通过思考、观察、类比等实践活动,感知方程与不等式的内在联系,积累利用一元一次不等式解决实际问题的经验,提高分类讨论问题的能力,体会不等式和方程同样都是刻画现实世界数量关系的重要模型,体会数学建模的思想。(3)情感目标:
在数学学习和探究的过程中,形成实事求是的态度和独立思考的习惯;在解决问题的同时,学会与其他同学交流,形成互帮互助的意识。2.教学的重点和难点:
以不等式为工具,分析问题、解决问题是本章的重点,掌握一元一次不等式的解法及解集的几何表示是本章的基本技能也是本节课的重点之一。根据考试说明所要求的会用移项法则解一元一次不等式,能够根据具体问题中的数量关系列出一元一次不等式是本节的重点之二。结合本班学生目前的教学实情以及考虑到本课时是《实际问题与一元一次不等式》,本课时的教学重点为:掌握用一元一次不等式解决实际问题。由于学生初次接触含有不等关系的实际问题,因此对于如何分析出其中的不等关系,并应用一元一次不等式描述不等关系,从而解决实际问题有一定难度,所以本节课的教学难点:用一元一次不等式抽象出隐含在实际问题中的不等关系。
三、教学方法的选择:
根据教学内容、教学目标和学生的认知水平,在本节课的设计中,我主要从学生已有的学习经验出发,通过对一个具有层次性、挑战性的实际问题分层理解、引出一元一次方程,再对题目作相应的修改,从而引出一元一次不等式,这样促使学生思考、类比从而探究出解决问题的新方法并对该新方法进行有梯度的训练。此外在讲解例2之前,展示一系列身边商场的图片,激发学生的好奇心以及兴趣。在整个学习中,教师激发学生小组合作探究,引导学生独立思考、主动学习,并适时恰当地引导、帮助学生找到解决问题的方法。使学生感受数学学习中类比、分类讨论的思想,体会从方程到不等式的迁移,同时使学生经历将生活中的数和数量关系转化为数学符号的具体建模过程,体会不等式作为刻画现实世界数量关系的重要模型的价值。因此,本节课采用的教学方式是启发式、小组合作教学方式,用到类比、分类讨论的思想。
四、教学过程的设计
以我们学校正在实施的课改理念为中心,以学习单为载体,《学习单》教学模式:遵循“先学后教”、“以学定教”的教学理念,充分发挥学生自主学习、自主探究,小组合作交流积极性。课堂教学中师生、生生互动是我们展示才艺传递信息的主要形式。从本班学生的实际学情为出发点本节课的教学程序主要分为:复习引入,启发引导;创设情境,激趣思考;探究新知,解决问题,尝试练习;方法总结,深刻理解;课堂小结;课后分层练习六个环节进行。
一、复习引入,启发引导
教师首先通过一道方程和一道不等式:(1)1000.9(x100))=500.95(x50)
(2)x+365×0.6> 0.7×365 为本节课能够顺利开展、节省时间做好铺垫。接着以一道修改后的方程题引出本节课的例1,这样循序渐进地过渡到新课中去,也符合学生的认识规律。注意的问题是:对于本题部分学生不知道怎么设未知数,因为问题中出现了“至少”词语,导致无从下手。教师可以这样来引导学生:它与一元一次方程设未知数是一样的,当你求出不等式的解集后再做判断,这样问题中反映出的不等关系的词语会与你算出的结果一致的。尝试练习1:通过类比的思想,学生自己尝试模仿练习,加深学生对新知识的理解与应用
二、创设情境、激趣思考
教师展示一系列学生身边商场的促销图片,激发学生的好奇心以及兴趣,从而引出例2,(此题不好理解,教师要求小组1号、2号学生掌握,而其它学生作了解。)
三、探究新知,解决问题 引导分析:
甲的优惠方案的起点为购物款达到 元后; 乙的优惠方案的起点为购物款达到 元后;
(1)如果累计购物不超过50元,在两家商店购物花费有区别吗?为什么?
(2)如果累计购物超过50元不超过100元,在两家商店购物花费有区别吗?为什么?如果有,则在哪家商店购物花费小?
(3)若累计购物超过100元,设累计花费x元,则在甲商店需要花费 元,在乙商店需要花 元。
此时,两家商店都有优惠,究竟到哪家购物更优惠呢?可能有几种情况?(分类讨论思想的体现)(4)购物累计达到多少钱时(超过100元),在哪家购物花费更少? ①当选择任意商店时候,列出等式
②当选择 商店时候,请列出不等关系: ③当选择 商店时候,请列出不等关系:
[设计目的] 这是一个生活中常见的购物问题,与学生生活距离较近,体现出数学来源于生活,服务于生活的理念,并且有利于激发起学生的学习兴趣,使学生体会到学数学的价值,也充分体现了《课标》的基本理念:人人学有价值的数学,人人都能获得必需的数学。对于下列不等式
50+95%(x-50)>100+90%(x-100)50+95%(x-50)<100+90%(x-100)或着:
设计目的:该问题的设计不仅可以解决学生预习导学中存在的问题更能引出本节课所需突破的重点,起到承上启下的作用。
教师提问:我们学习过的解一元一次不等式的方法是什么?能用此方法解决上述不等式吗?
老师根据学生的回答继续引导,加入我们用不等式的性质解决上述这不等式很麻烦,有没有更简单的方法呢?教师可以引导学生采用特殊值法辅助判断。
尝试练习2:通过类比的思想,学生自己尝试模仿练习,加深学生对新知识的理解与应用 [设计目的]此环节是为了落实本节课的教学重点而设计。
四、方法总结,深刻理解
学生自由回答,老师围绕以下问题引导:
1、你对本节课内容有哪些认识?
实际问题————审题、设未知数————根据不等关系列出不等式————建立数学模型(一元一次不等式)————解一元一次不等式————数学问题的解————实际问题的解
2、本节课你了解到了哪些数学思想? 类比思想、分类讨论思想、特殊值法
[设计目的]通过小结,引导学生回味本节课的主要内容,体会数学的思想方法,并为学生提供课下继续思考的空间。
五、课后分层练习
这一环节我主要设计道习题: 第一题:务实基础---修筑高楼
中山市某旅游区向本地游客优惠开放,每张票20元.另外,每天还将售出每张60元 的普通票300张,如果要保持每天票房收入不低于20000元,那么平均每天至少应出售本地优惠票多少张? 第二题:巅峰对决——服务生活
A购物中心和B购物中心以同样的价格出售同样的商品,现在两家商场服装专柜打出这样的广告:
母亲节快到了,阿芳想去购买衣服送给妈妈以尽孝心,不知道选哪家商场,请你做她的参谋,去哪家商场购物能获得更大优惠?
[设计目的] 分层作业为不同认知水平的学生提供了不同的发展空间,减轻部分学生的学习负担。
第三篇:一元一次不等式与实际问题练习
一元一次不等式与实际问题练习题
1、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,则至少要答对几道题,其得分才会不少于80分?
2、某次数学竞赛有50道选择题,评分标准为答对一题2分,答错一题倒扣1分, 不答题不得分,也不扣分,某学生4道题没有答,但得分超过70分,取得了复赛资格,问他可能答对多少道题?
3、有人问一位老师,他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学英语,七分之一的学生在学音乐,还剩不足六位同学在操场上踢足球”.试问这个班有多少学生?
4.七年级6班组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔多少支.5、某个体商店第一天以每件10元的价格购进某种商品15件,第二天又以每件12元的价格购进同种商品35件,然后以相同的价格卖出,如果商品销售这些商品时,至少要获得10%的利润,这种商品每件的售价应不低于多少元?
6、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
7.某市自来水公司按如下标准收取水费,若每户每月用水不超过5cm3,则每立方米收费1.5 元;若每户每月用水超过5cm3,则超出部分每立方米收费2元。小童家某月的水费不少于 10元,那么她家这个月的用水量至少是多少?
8.某城市一种出租车起价为5元,(即行驶路程在2.5千米以内都只需付5元,达到或超过2.5千米后每增加1千米加价1.2元,(不足1千米按1千米算).现在某人乘这种出租车从甲地到乙地,支付车费13.4元,则甲地到乙地路程大约是多少千米?
9.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:
(1)该采购员最多可购进篮球多少只?
(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则 采购员至少要购篮球多少只,该商场最多可盈利多少元?
10、某电信公司的“全球通”手机用户的收费标准是:不管通话时间长短,每月必须缴月租费30元,另外每通话1分钟交费0.4元;“快捷通”手机用户的收费标准是:没有月租费,但每通话1分钟交费0.6元。
(1)设每月通话时间为x分,试分别写出“全球通”每月应交费和“快捷通”每月应交费。
(2)当每月的通话时间x在什么范围时,选择“全球通”较合算?
(3)当每月的通话时间x在什么范围时,选择“快捷通”较合算?
第四篇:一元一次不等式说课稿
《一元一次不等式》说课稿
说课人:袁宗涛
各位评委老师:
大家好!
我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。
一、教材分析
<一> 教材的地位和作用
在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。
<二>教学目标
根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标: 知识与技能
1.了解一元一次不等式.2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.过程与方法
1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法.2.通过练习巩固,能正确应用不等式性质解一元一次不等式.情感、态度与价值观
3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法.4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣.<三>教学重难点和教学关键
根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集.为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。根据教材分析和学生对不等式的性质3掌握不好的实际情况,特确定教学难点是:不等号方向改变问题。为突破难点,教学关键是运用类比的方法,比较解不等式和解方程不同的地方,并加强“去分母”和“化系数为1”这两个步骤的训练。
二、说教法
为创设宽松民主的学习气氛,激发学生思维的主动性,顺利完成教学任务、达到教学目标,坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。鉴于教材特点以及学生的年龄特点、心理特征和认知水平,主要采用动手操作、观察比较,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。给学生充分的自主探索时间,引导学生与已有知识联系,减少学生获取新知识的难度。通过教师的引导,启发调动学生的积极性,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来。同时,还充分利用多媒体教学,提高课堂实效,让每个学生动手、动口、动眼、动脑,培养学生多方面的能力。
三、说学法
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、类比、归纳的思想方法。在类比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用自主探究和合作交流的方法组织教学,鼓励学生积极参与其中,使学生真正成为教学的主体,体验参与的乐趣和成功的喜悦。
四、说教学过程
1.温故知新 铺垫新知
在这节课开始之初先引领学生复习不等式的三条基本性质,不等式的性质是对不等式进行变形的依据,而本课的重点就是要掌握一元一次不等式的解法,所以复习旧知是为学习新知做准备。
2.创设情境 导入新知
课件出示一些简单的不等式,要求学生观察分析,讨论这些不等式的共同特点。学生归纳总结出共同特点后,启发学生类比一元一次方程给这些不等式取名字。通过观察,猜想,设置悬念,激发学生强烈的求知欲,培养学生类比推理,归纳总结,发展学生分析问题,解决问题的能力。
3.类比推理 深化新知
在学生识别了什么是一元一次不等式后,出示一元一次方程;并解此方程,让学生回忆起解一元一次方程的一般步骤,为后续解一元一次不等式的一般步骤的形成做铺垫。解完方程在老师的引导下让学生类比归纳:解一元一次方程,就是把一元一次方程逐步变形为x=a(a为常数)的形式,解一元一次不等式,就是把不等式逐步变形为x﹥a(x≥a)、x﹤a(x≤a)的形式。继该程序之后,出示较简单的一元一次方程和一元一次不等式,通过类比,思考并比较解不等式与解方程,寻找联系和区别。尝试用解一元一次方程的解法来解这个不等式.在讲解时要求学生说出每一步的依据,让学生熟练掌握一般一元一次不等式的解法的同时理解一元一次不等式解法的真谛,同时为后面解复杂一元一次不等式做铺垫.例题讲解设计到的不等式相对于前面的不等式而言较为复杂,故让学生先独立思考,后用化归的思想将不等式化为一般不等式来解.在讲解的时候先给学生分析清楚,如何用划归的思想将不等式化为一般的一元一次不等式然后再求解。此环节在从简单到复杂,类比一元一次方程的解法,运用不等式的性质,顺利完成了解不等式,对总结解一元一次不等式的一般步骤起了水到渠成的作用。熟练掌握一元一次不等式的解法后,让学生运用上节课所学的知识在数轴上将其解集表示出来,利用数形结合,使解集更加形象直观.此环节的设置培养学生团结合作,类比推理的能力,让学生养成勤动笔,勤动脑的习惯.积累学生分析问题,解决问题的能力。为了突破难点,让学生在解一元一次不等式时,心中有数,避免出错,总结完一元一次不等式的一般步骤后,提出了在每一步中应注意的细节问题,强调“去分母”和“将系数化为1”时结合性质2、3,考虑不等号的方向是否要改变。
4.运用新知 形成能力
为了巩固本节课的教学效果,反馈学生学习的情况,本着学以致用的原则,设置了两道解不等式的练习题,让学生熟练掌握刚学的知识.。
5.回顾反思 知识梳理
引导学生回顾本节课内容,让学生自己说出本节课得到的收获,体会教学方法,把知识纳入系统。帮助学生理解所学知识,提高学生认知水平,从而培养学生的归纳总结能力,语言表达能力,自我评价能力。
6.课外作业 知识延伸
在学习了本节课的知识内容后,为了让每一个学生及时巩固这一节的内容,同时检测本节课教学成效,也为下一课时做准备,布置了两道作业题。这样,既系统化了学生的知识,加深了学生对本节课知识的印象,又使教师在课后辅导时,层次分明,有的放矢。
五、课后反思:
本节课的教学过程中,本着重视过程,主动建构,突出应用的原则,从学生已有认知出发,让学生主动地建构其新的认知结构,提升学生的智能,让学生形成良好的思维习惯.很珍惜这次难得的学习机会,恳请大家对我的教学提出宝贵意见,我的说课到此结束,敬请各位评委老师批评指正。谢谢大家!
第五篇:《实际问题与一元一次不等式》教学反思
《实际问题与一元一次不等式》教学反思
《实际问题与一元一次不等式》教学反思1
《实际问题与一元一次不等式》是一节有难度的重量级实际应用课。在本节课的教学中,我先以购票问题送学生一个惊喜,让学生感受了数学魅力,激发了探究兴趣;同时又复习了不等式的性质,为解不等式要变号埋下伏笔。在较复杂的超市购物获得优惠的问题中,设计试购活动精彩纷呈,前二件商品的试购既让学生深入理解题意,体验优惠这一基本事实,又使分类讨论呼之欲出;后二件商品的试购既让学生的猜测不断清晰,又引发第二次分类,同时呈现方程与不等式,为类比提供了平台。通过修改关系符号类比方程解不等式,并进一步挑战带有中括号的不等式的'解法,实现跨越发展。而最后购车问题内化前面的知识与技能,同时又探究不等式的解如何转化为实际问题的解。三个问题层次分明,一线串珠,让数学的魅力在学生心中不断加深,数学源于生活又服务于生活的感悟不断积淀。而秘籍的总结形式增加趣味的同时,加深学生建模印象。
改进之处:因在演播室录课,面对镜头与灯光,学生有些拘谨。由于时间关系,在表达本课感受时没有让更多的学生参入,结尾有些仓促。在以后的教学中,我将关注学生的学习动态,随时注意学生专注性及学习习惯的培养。
《实际问题与一元一次不等式》教学反思2
课后随笔学完了不等式的性质,紧接着就是实际问题与一元一次不等式,浏览了一遍实际问题与一元一次不等式这一节后,总觉得很别扭,编者意图是本节重点讨论两方面的问题:
(1)如何根据实际问题列不等式,这是贯穿全章的中心问题。
(2)如何解不等式?这节重点比较解一元一次不等式与解一元一次方程的一般步骤。
可是,学生学完了不等式的性质,只会根据不等式的性质解最简单的不等式,如6x<5x+4,-2x>6等等,一些复杂的不等式还不会解,因此,有必要根据不等式的`性质得出移项法则,有分母的不等式利用、去括号、移项。合并同类项、系数化为一去解,就像解一元一次方程方程一样,我对教材进行了调整,先学怎样解不等式,再学列一元一次不等式解应用题,这样既降低了难度,又分散了难点,由于和一元一次方程对比着学,学生更容易接受,其实,最关键的一点是系数化为一这步,当不等式两边乘(或除)同一个负数时,不等号的方向要改变,>要变成<,<要变成>,其余和解一元一次方程一样。
《实际问题与一元一次不等式》教学反思3
学习了实际问题与一元一次不等式后,我发现在学生学习起来比较困惑,存在以下问题:
1.找不出广泛应用题中的不等关系,要解广泛应用题时相等关系比较明确,而在不等式中不等关系不是那样的明确,所以不少学生不太理解,因而列不出不等式,所以也不会解不等式的应用题。
2.一部分学生虽然能列出不等式,可是在解不等式时一直出现错误,特别是当不等工的两边都乘或除以一个负数时,学生一直记不住不等式的方向要改变,导致计算错误,这可能对不等式的性质没有真正理解吧。
3.不少应用题求出不等式的解集时往往都会根据题意,让求出不等式的整数解,到这时一部分学生往往不能准确的求出整数解,这可能是对不等式解集的取值范围不是太明白。
教后反思:在以后的教学中做注意的是,让学生熟练掌握不等式的性质,并能真正理解,能准确无误的求出不等式的`解集。多进行不等式应用题的练习,让学生逐步理解和掌握找不等关系的方法,从而熟练的掌握列不等式解应用题的。要加强一些基础概念的掌握理解,对于整数,正整数以一些大于小于等的数学语言,要让学生准确理解,不能含含糊糊。
《实际问题与一元一次不等式》教学反思4
1、内容的完成情况
本节课内容基本完成,但内容于学生来说有些简单,个别学生可能会出现“吃不饱”的现象。主要原因是对学生的了解不够到位。
2、教学环节处理
首先,对于例1后的练习题处理时间较长,基本是每个人都能顾及到,所以在讲课时,忽略了这一点。其次,例2的处理不好。对于例2我认为学生接触起来肯定有一定的难度,在设计课时,我特别设计了很多问题,引导学生进行分类。但是,当我问到“什么是更实惠?”时,学生立刻回答“要分情况。”这样就很自然的出现了分类讨论,可见学生对这种类型的题,已经是了解了,我想主要就是解题了,所以把更多的时间放在了分组解题上,并没有进行太多的分析,只是让学生自己完成,但是我在巡视的时候发现学生不知道如何写,所以我又重新分析带领学生完成三种情况的列式,然后再由学生完成,这样后面总结有些着急,练习题也就没能完成。
3、课件的.辅助作用
有人曾说过:“不要为了课件而课件”,我的这节课,有些地方处理的就不好,特别是例2的背景,总想给学生创设一个环境,使他们愿意学习,但忽略了PPT使用的真正价值,并没有起到突出教学重点的作用。特别是课件的背景没有突出数学的教学背景。作用反而适得其反,分散了学生的注意力,所以在后面的课件制作中要为突出内容和重点,不能流于形式。
《实际问题与一元一次不等式》教学反思5
本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的.方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。