相似三角形复习课的教学反思

时间:2019-05-12 06:06:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《相似三角形复习课的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《相似三角形复习课的教学反思》。

第一篇:相似三角形复习课的教学反思

相似三角形复习课的教学反思

————王小莉

在学生学完“相似三角形”一章后,我们及时组织了两节复习课,第一节课着重复习比例线段的基本知识及基本技能,第二节课则采取“探究式教学”,培养学生的实践能力、探索能力,收到了较好的效果。

我们认为“探究式教学”注重学生自己提出问题或自己提出解决问题的方法、寻找问题解决的途径、体验解决问题的过程,从而提高解决问题的能力,逐步改变学生的学习方式。在初中数学教学中,开展探究式教学活动,既是对教师的教学观念和教学能力的挑战,也是培养学生创新意识和实践能力的重要途径。下面是这节课的过程描述及课后反思。

在数学课堂中开展探究式学习是接受性学习的补充,它有效地促进了学生学习方式的改变,学生从被动的接受性学习变为主动的探究性学习。本案例力争在以下三个方面有所体现:尊重学生主体地位

本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。教师发挥主导作用

在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。三次恰到好处的电脑演示,向学生展示了电脑的省时、高效以及对数学实验的巨大帮助,推荐给他们运用电脑技术的学习研究方法。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。提升学生课堂关注点

学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。

第二篇:相似三角形复习课教案

《相似三角形》复习课教案

城区二中 章松岩

目的:使学生掌握相似三角形的判定和性质和应用,并能灵活运用。重点:相似三角形的判定和性质和应用。难点:相似三角形的灵活运用。教法:三疑三探。教具:多媒体。过程:

课前热身:时间为3分钟

1、根据下列条件能否判定△ABC与△A′B′C′相似?为什么?

(1)∠A=120°,AB=7,AC=14

∠A′=120°,A′B′=3,A′C′=6(2)AB=4,BC=6,AC=8 A′B′=12,B′C′=18,A′C′=21

(3)∠A=70°,∠B=48°, ∠A′=70°, ∠C′=62°

2、已知△ABC∽△ A′B′C′,其相似比为,则△ABC 与△A′B′C′的周长比为__对应高的比为__对应中线的比为__对应角平分线的比为__面积比为__。提问学生后教师简单总结,并让学生说说本单元的复习任务是什么? 相似三角形的判定

(1)两边对应成比例且夹角相等,两个三角形相似。(2)三边对应成比例,两个三角形相似。(3)两角对应相等,两个三角形相似。相似三角形的性质

(1)相似三角形对应边成比例,对应角相等。(2)相似三角形的周长比等于相似比。

(3)相似三角形的面积比等于相似比的平方。

(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。要求学生读几遍。介绍相似三角形的应用: 相似三角形的应用:

1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等;

3、利用三角形相似,可以解决一些不能直接测量的物体的长度。如求河的宽度、求建筑物的高度等。课堂抢答:

1、D是△ABC的边AB上的点, 请你添加一个条件,使△ACD与△ABC相似, 这个条件是()

2、如果一个三角形三边长分别为5、12、13,与其相似的三角形最大边长是39,则该三角形最短的边长为()

3、如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F,BE:AB=2:3,则△BEF与△CDF的周长比为();若△BEF的面积为8平方厘米,则△CDF的面积为()

4、如图,铁道口的栏杆的短臂长1米,长臂长16米,当短臂端点下降0.8米时,长臂端点升高()(杆的宽度忽略不计)

5、如图,身高为1.6m的某同学想测量一棵大树的高度,她沿树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树高为()

A、4.8m

B、6.4m

C、8m

D、10m 竞赛角

如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F。求证:BD·CF=CD·DF 证明:∵CD⊥AB,E为AC的中点

∴ DE=AE

∴∠EDA=∠A

∵ ∠EDA=∠FDB

∴∠A=∠FDB

∵∠ACB= Rt ∠

∴ ∠A=∠FCD

∴ ∠FDB=∠FCD

∵ △FDB∽△FCD

∴ BD:CD=DF:CF

∴ BD·CF=CD·DF 中考链接:

在∆ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向B点以2cm/秒的速度移动,点Q从点B开始沿BC向点C以4cm/秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟∆BPQ与∆BAC相似?

大胆质疑:

通过本节课的学习同学们还有什么疑问或新的发现请大胆提出来? 教师预设:

某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图)他们想在△AMD和△BMC地带种植单价为10元 /米2的太阳花,当△AMD地带种满花后,已经花了500元,请你算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由。

小结:

通这一节的复习之后你有哪些收获?

(1)掌握相似三角形的判定方法及性质;

(2)能灵活运用相似三角形的判定方法及性质进行计算或证明;(3)利用相似解决一些实际问题

(4)分类讨论思想: 遇到没有明确指明对应关系的三角形相似时,要注意考虑对位相似和错位相似两种情况,采取分类讨论的方法解决问题.作业:

1、必做题:学习指导第82页2,3,5题。

2、选做题: 板书设计: 教后记:

相似三角形复习课教案

城区二中

章松岩

2013年1月8日

教后反思

结合上课时的感受及课后评课,我对这节课作出如下反思: 成功地方:

1.能科学运用三疑三探模式上课。

2.能有效开展小组活动。充分发挥小组协作功能。

3.注重学生动口动手能力的培养,教师只起辅助引导作用。不足地方:

1.课前可创设问题情境,结合日常生活实际设计一个问题。2.课前热身习题可设计成学案的形式。3.学生评价素质有待于进一步提高。

4.部分习题处理过快影响了中差生的学习。5.中招链接题因为时间关系为处理。6.竟赛角题目设计过难。7.教师未使用普通话。整改措施:

1.复习期间认真备好复习课。2.注重发挥教研组集体协作功能。

3.注重数学思想方法的教学,注重讲题的效果,注重总结归纳解题方法。4.精选习题,不搞题海战术。5.注重批改,反馈,考后总结。6.注意培优补差,努力降低过差率。

第三篇:《相似三角形》教学反思

《相似三角形》,其主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。

在这节课中,我认为有以下几点感受较好:

一、这一节课通过情景创设,引入新知较恰当,切合实际。教师用4分钟回顾提高后,教师用教学用的三角板提出要学生举起看起来与老师的这块相似的一块学生用三角板。接着让学生通过猜测、变量、计算和比较得出两块三角板相似的结论。这样引入能很好的使学生体验到生活中的数学知识的乐趣,从而能调动学生探索新知的兴趣和学习的积极性。

二、这节课多给学生提供自主学习,自主操作、自主活动的机会。不论是回顾旧知,还是探究新知,都是教师引导,学生自主探索。比如画一画、量一量、算一算这些设计都能给学生提供自主探索新知的空间,体现了学生是数学学习的主人的新理念。

三、教师在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力。比例对特殊三角形,教师提出这两个三角形有什么关系?理由是什么?对任意两个三角形,老师请学生量一量、算一算,结果都是由学生自己操作、判断得出。体现了教师是数学学习的组织者、引导者和合作者的新理念。

这节课感到遗憾的是有些学生操作计算速度慢,没有时间等待他们探索出给论。这样他们对这节课所学的内容理解不透彻,不能更好应用新知解决问题。

第四篇:《相似三角形》复习教学设计

《相似三角形》复习的教学设计

修武县郇封一中 薛海明

一、教材和学生现状的分析

相似三角形判定和性质是本册教材的重点也是难点。在期中考试中时,我发现学生对这部分的知识掌握基本上比较死板的。尤其是在以下几个方面比较欠缺:1.相似三角形的对应边找不来;2.对应顶点易写错

3、当出现动点时,学生不能把所有相似的情况想全;4.在相似的性质中,对于面积比等于相似比的平方,要么把平方漏掉,要么反过来,把相似比写成面积比的平方.二、教学目标

知识目标: 1.熟悉相似三角形的判定定理和性质定理。

2.灵活应用相似三角形的判定定理和性质定理,主要是两角对应相等、两边对应成比例及夹角相等。

技能目标: 通过动点问题,发展学生的思维能力,培养学生的思维能力和

语言表达能力。

情感目标: 培养学生独立思考问题的能力,以及团结协作的精神。

三、教学过程的设计:

本节内容为复习课,主要是组织学生回忆、思考、归纳,逐渐把这些知识内化于自己的知识结构体系中。1.从基本定理的复习入手,加以简单练习的巩固。针对学生对相似三角形中对应边不熟,练习1至7的设计就是让学生熟练寻找对应边和对应角。以及周长比和相似比,面积比和相似比性质。如:

1、两个相似三角形对应中线之比是1:2,则对应角平分线之比也是1:2。()

2、两个相似三角形面积比是1:2,则相似比是1:4。()

3、△ABC∽△A′B′C′,相似比为2:3,若△ABC周长为6,则△A′B′C′周长为9。()

2.两个相似五边形的面积比为9:16,其中较大 的五边形的周长为64cm,则较小的五边形.如图,DE∥BC,AD:DB=1:2,DC,BE交于点O,则△DOE与△BOC的周长之比是_________, ________._______cm.6.四边形ABCD面积比是是平行四边形,点E是 的周长为BC的延长线上的一点,而CE:BC=1:3,则 △ADG和△EBG的周长比

面积比。

4、两相似三角形对应高之比为3∶4,周长之和为28cm,则两个三角形周A 长分别为

B 2.“相似判定定理”的应用.因此,探索发现设计主要是对这个判定的应用。如例1.已知:如图,△ABC中,P是AB边上的一点,连结CP.满足一个什么条件时△ ACP∽△ABC.这个例题的设计具有一定的开放性.问学生图中有多少个理由判定相似三角形.A G C F D B

E P 2

C 3.相似部分中的动点问题,通常要求学生能全面地考虑各种可能的情况。对于学生来说有一定的难度。因此我制作课件,利用幻灯片的动画功把这个动点真正地动起来,加强直观和生动,让学生对问题掌握得更加全面。这是练习题的设计目的之一。如图,正方形ABCD的边长为8,E是AB的中点,且CM=2,点N在CD上滑动,则当CN=_________时,以C、M、N为顶点的三角形与△ADE相似。

同时,相似的判定中“AA”“SAS”是重点,而练习就包含了这两种方法的应用。数形结合是初中数学思想的重要组成部分,在相似中,这种思想的应用是非常多的。同时,相似与函数的综合应用也是学生必须掌握的内容。因此温故知新的设计正是为了达到以上目的。

4.练习题大多学生平时的易错题组成,这样设计,既与复习的内容密切联系,使学生能巩固这部分的知识。同时让那些乐于思考、对数学有很大兴趣的学生有更多的锻炼机会,更好地深化和完善知识。

四、教法

由于本节课是复习,老师组织好学生探索,引导他们归纳。1.让他们更多地体验知识的应用过程,主动获取知识。2.鼓励学生一题多解,从各种角度来思考问题,以达到对知识的灵活,娴熟应用。3.与信息技术相整合, 扫除学生的思维障碍。通过幻灯片动画的应用,变静为动,变抽象为直观。培养学生的形象思维能力。4.通过动点问题的研究,演示,培养学生思维的严密性。4.B

M

E A

D

N C 必要的点拨与指导.虽然我们提倡学生主动学习,但是老师指导也不可少。课堂上有许多问题是课前所不能预测的,老师的应变能力非常重要。如在不打击学生积极性的前提下纠正学生的错误。

五、学法

本节课中,学生的自主学习得到较好的体现。1.独立思考,探究.定理的复习以及简单的练习,学生均是独立完成.2.小组合作,积极讨论。在动点问题的研究中,由于学生思维的局限,许多学生并不能想全各种情形。因而小组成员的合作就非常必要。向同伴学习,印象更深。同时彼此之间能发现优点。

六、设计意图。

为了实现预期的教学目标,激发学生的学习需求,精心设计问题,设计层层递进的问题,能照顾到部分基础较弱的学生,又能使较好的学生思维得到拓展。在教学实施过程中,教师给予学生探索、研究以充分的时间,在教师的指导下,以学生个人和学生之间的合作与交流为主,师生互动,让学生在学习活动过程中体会自我建构的乐趣。对于思维创新的火花,哪怕它是很稚嫩、很欠缺的,教师也要积极鼓励,让学生的创新精神得以发扬。

第五篇:相似三角形复习教案

相似三角形复习教案

教学目标: 本课为相似三角形专题复习课,是对本章基本内容复习基础上的深化,通过对一个题目的演变,紧紧围绕一线三直角这个基本模型展开,由浅入深对相似三角形进行,同时结合数学中的方程思想,分类思想,模型思想,数形结合思想等拓展深化.教学重点:相似三角形的一些基本图形特别是一线三直(等)角的复习.教学难点: 一线三直(等)角模型的拓展深化.教学过程: 练习:1.如图,AB>AC,过D点作一直线与AB相交于 点E,使所得到的新三角形与原△ABC相似.2.如图,直角梯形ABCD中,E是BC上的一动点,使△ABE与△ECD相似,则AB、BE、CE、CD之间满足的关系为____________.得到相似中最基本的几种图形,即:

A型 斜A型 一线三直角反射型

在得到上述基本图形后,通过找相似三角形,让学生体会基本图形的应用。并通过对这个题目的演变,将本课内容提要呈现出来.例1:在平面直角坐标系中,两个全等Rt△OAB与Rt △A’OC’如图放置,点A、C’在y轴上,点A’在x轴上,BO 与A’ C’相交于D.你能找出与Rt△OAB相似的三角形吗? 请简要说明理由 在上述条件下,设点B、C’ 的坐标分别为(1,3),(0,1),将△ A’OC’绕点O逆时针旋转90°至△ AOC,如图所示:

(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;

(2)设抛物线的对称轴交x轴与点M,P为对称轴上的一动点,求当∠APC=90°时的点P坐标.本题主要是应用一线三直角这个基本图形,从而利用相似三角形的对应边关系求解,在教学过程中对P点的位置应作说明,可借助于几何画板演示.【变一变】线段BM上是否存在点P,使△ABP和△PMC相似?如存在,求出点P坐标,如不存在,请说明理由.本例让学生进一步应用基本图形,同时体会到数学思想——分类思想的应用.【拓展一】若点N是第一象限内抛物线上的一动点,当

∠NAA’=90°时,求N点坐标.通过添加一条辅助线构造一线三直角来提升对学生的要求。另外利用本题比较特殊的情况,即△AOA为等腰直三角形的 条件,采用一题多解的方法,帮助学生提高解题的能力.【拓展二】点N是抛物线的顶点,点Q是x轴正半轴上一点,将抛物线绕Q点旋转180°后得到新抛物线的顶点为M,与x轴相交于E、F两点(点E在点F的左边),当以点M、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

/本例难度较大,通过引导让学生知道本题仍然可通过构造一线三直角的模型来解决,因为要添加较多辅助线,教师可将第一种情况和辅助线添加出来,从而让学生类比得到第二种方法的辅助线.课堂小节:对本节课复习模型的整理;相似应用的技巧梳理;学生疑惑的交流.

下载相似三角形复习课的教学反思word格式文档
下载相似三角形复习课的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相似三角形小结与复习

    相似三角形小结与复习教学目标 1.对全章知识有一个系统的认识,掌握知识的结构和内在联系. 2.利用基本图形结构的形成过程,掌握本章的重点:平行线分线段成比例定理和相似三角形......

    相似三角形复习教案[全文5篇]

    设计意图: 1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。 2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”; 使学......

    相似三角形的性质教学反思

    反思一:相似三角形的性质教学反思 本节课的教学重点是探索相似三角形的性质并能应用相似三角形的性质。实际上就是在了解相似三角形基本性质和判定方法的基础上,进一步研究......

    相似三角形性质(一)教学反思

    类似三角形的本质是第四版第四版第四版第四章第四章内容的第四章。本课的重点是探索类似三角形的本质,并解决类似三角形属性的简单实际问题。事实上,在理解类似三角形的基本......

    关于《相似三角形的性质》教学反思

    [教学反思专用稿] 关于《相似三角形的性质(1))》教学反思 九 年级 数学 学科 姓名: 周晓焕 教材分析: 本节课内容是在学生学习了相似三角形的判定和利用相似三角形测高,以及一......

    相似三角形的判定教学反思

    相似三角形的判定教学反思 本节课的教学设计主要从以下三个方面来考虑的: 一、尊重学生主体地位 本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不......

    《相似三角形的判定》教学反思

    《相似三角形的判定》教学反思 马晓戎 最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似......

    《相似三角形的应用复习课教学案例与反思》 王玲玲

    《相似三角形的应用复习课》案例与反思一、背景分析《平面几何中的动态问题》这节课是复习了相似三角形的应用后的一节延伸课,《相似三角形的应用复习课教学案例与反思》 王......