第一篇:奥数题精选 教师招考必看
五年级行程问题
难度:高难度
甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。
解题思路:注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!
多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。另外ST图也是很关键。
第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)
第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24
第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504
第四步:收官之战:5048-24=39(千米)五年级奥数试题及答案:行程问题
1.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要()分钟,电车追上骑车人
考点:行程问题。
分析:由题干可知:电车追及距离为2100米.1分钟追上(500-300)=200米,追上2100米要用(2100÷200)=10.5(分钟).但电车行10.5分钟要停两站,电车停2分钟,骑车人又要前行(300×2)=600米,电车追上这600米,又要多用(600÷200)=3分钟.由此即可解决.
解答:解:根据题意可得:
①追上2100米要用:(2100÷200)=10.5(分钟).
②但电车行10.5分钟要停两站,1×2=2(分钟),③电车停2分钟,骑车人又要前行(300×2)=600米,电车追上这600米要用:(600÷200)=3分钟.
所以电车追上骑车人共需10.5+2+3=15.5(分钟);
故答案为:15.5.
点评:此题要注意电车到站停车1分钟骑车人还在前行.
2.A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行行42千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,这样一直飞,燕子飞了多少千米,两车才能相遇?
考点:相遇问题.
分析:要求燕子飞了多少千米,就要知道燕子飞行所用的时间和燕子的速度,燕子的速度是每小时50千米,关键的问题是求出燕子飞行所用的时间,燕子飞行的时间就是甲乙两车的相遇时间,甲乙两车的相遇时间是400÷(38+42)=5(小时),求燕子飞了多少千米,列式为50×5,计算即可.
解答:解:燕子飞行的时间就是甲乙两车的相遇时间,即:
400÷(38+42),=400÷80,=5(小时);
燕子飞行的距离:
50×5=250(千米);
答:燕子飞了250千米两车才能相遇.
点评:本题解题的关键是要知道燕子飞行的时间就是甲乙两车的相遇时间,同时考查了下列关系式:总路程÷速度和=相遇时间、速度×时间=路程
3.四年级行程问题:二次相遇、追及问题难度:中难度
甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?
解答:【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)
4.四年级行程问题:二次相遇、追及问题2
难度:中难度
甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
解答:丙遇到乙后此时与甲相距(50+70)×2=240米,也是甲乙的路程差,所以240÷(60-50)=24分,即乙丙相遇用了24分钟,A、B相距(70+60)×24=3120米
小学六年级奥数试题及答案:应用题
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(67.5+75)=5130米。
3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?
解:由于两车同时从A出发,所以
第一次相遇时乙必须行完一全程后又返回才与甲相遇
第二次相遇又在P地,说明第二次相遇时甲行的路程 = 乙第一次相遇时多行的路程,即乙是甲的2倍.每相遇一次两车合走了2个全程
2×540=1080千米 所以每相遇一次乙车走了
1080×2/(1+2)=720千米
所以第三次相遇时,乙车共走了
720×3=2160千米始终不明白乙是甲路程的两倍,即速度是2倍,求解释
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?
解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。
例1:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?(设人和汽车都作匀速运动,他上车及调头时间不记)
解析:设专家从家中出发后走到M处(如图1)与小汽车相遇。由于正常接送必须从B→A→B,而现在接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟。这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55(分钟)。
例2:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?
解析:相遇时甲乙的行程比也是:5:4,即甲行了全程的:5/(4+5)=5/9,乙行了:4/9 又相遇时甲比乙多行了:48*2=96千米 所以路程是:96/(5/9-4/9)=864千米.
第二篇:2010年教师招考心理学必看题
公务员考试别发愁——中人网助您考试无忧☆
心理学必看试题
一、单项选择题
1、心理现象分为(A)
A、心理过程与个性心理 B、认知过程与个性心理 C、情感过程与个性心理 D、意志过程与个性心理
2、心理过程包括(D)
A、认识过程、情感过程、行为过程B、知觉过程、情感过程、行为过程 C、感觉过程、知觉过程、意志过程D、认识过程、情感过程、意志过程
3、个性心理特征是在(D)实践的基础上形成和发展起来的
A、认知过程 B、情感过程C、意志过程D、认知过程、情感过程、意志过程
4、(C)在深度上对心理学的基本理论问题进行细致研究 A、普通心理学B、发展心理学C、理论心理学D、生理心理学
5、(B)在广度上研究各个社会领域内的心理
A、社会心理学B、应用心理学C、发展心理学D、比较心理学、6、(F)是理论的心理学基础,主要研究心理学的基本原理与心理现象一般规律、(E)是研究个体心理发生、发展规律的科学、(D)是在实验室控制条件下进行研究工作的心理学、(C)是研究个体和群体的社会心理现象的心理学分支、(B)是研究心理现象和行为产生的以脑内的生理事件、生理基础的心理学分支,试图通过 大脑为中枢神经系统的活动来解释心理现象、(A)是研究动物行为进化的基本理论和不同进化水平的动物约各种行为特点的心理学分支、A、比较心理学B、理论心理学C、社会心理学D、实验心理学E、发展心理学F、普通心理学
7、进一步探索研究在各个社会领域中心理活动的具体现象及其规律的心理学是(C)A、社会心理学B、理论心理学C、应用心理学D、普通心理学
8、自然实验法的优点是(A)
A、减少人为性,提高真实性B、减少人为性,降低真实性C、提高人为性,增加真实性D、提高人为性,降低真实性
9、(C)的《生理心理学原理》一书被心理学界认为是心理学的独立宣言、A、笛卡尔B、洛克C、冯特D、缪勒
10、(B)年,冯特在德国的莱比锡大学建立第一个心理学实验室被界定为心理学的诞生、A、1789 B、1879 C、1798 D、1897
11、(A)被誉为心理学之父或心理学第一人、A、冯特 B、洛克 C、笛卡儿 D、缪勒
12、精神分析学派(精神动力学派)是(C)创立的、A、笛卡尔 B、华生 C、弗洛伊德 D、罗杰斯
13、“心理学的第一大势力”是指(A)
A、精神分析 B、行为主义C、认知 D、人本主义
14、行为主义创立的标志是1914年美国心理学家(B)出版了《行为:比较心理学导论》一 书,由此他被称为行为主义的创始人、公务员考试别发愁——中人网助您考试无忧☆
公务员考试别发愁——中人网助您考试无忧☆
A、罗杰斯 B、华生 C、弗洛伊德 D、马斯洛
二、多项选择题
1、心理现象分为(A、C)
A、心理过程 B、认知过程 C、个性心理 D、情感过程 E、意志过程
2、心理过程包括(C,E,G)
A、感知过程 B、知觉过程 C、认识过程 D、注意过程 E、情感过程 F、行为过程 G、意志过程
3、个性心理特征包括(B,C,E)
A、认知 B、能力 C、气质 D、情感 E、性格
4、心理学可分为(A,D)
A、理论心理学B、发展心理学C、普通心理学D、应用心理学 E、社会心理学
5、下列属于理论心理学的是(A,B,D,E)
A、普通心理学B、社会心理学C、教育心理学D、生理心理学E、实验心理学
6、下列属于应用心理学的是(B,C,D,E)
A、社会心理学B、教育心理学C、咨询心理学D、管理心理学E、消费心理学
7、以下哪些是理论心理学的研究内容(A,B,C,D,F)
A、心理学学科性质B、心理学方法论C、身心问题D、学习心理机制E、心理的生理基础F、心理的起源
8、科学的三大特征是(A,B,D)
A、客观性B、可验证性C、准确性D、系统逻辑性E、描述性
9、(A,B,C)决定了心理学的自然科学属性、A、心理学的研究对象B、心理学的历史渊源C、心理学的研究方法D、人的社会性
10、(A,C)的基本原理是心理学研究的根本指导思想、A、辩证唯物主义 B、形而上学 C、历史唯物主义 D、唯物主义 E、机械唯物主义
11、在心理学研究中必须坚持的基本原则是(A,B,C,D)、A、客观性原理 B、系统性原理 C、发展性原理 D、教育性原理E、协同性原理
12、观察法可以分为(A,B,C,E)、A、参与观察法与非参与观察法 B、现场观察与情景观察 C、长期观察与短期观察 D、情景观察与控制观察 E、全面观察与重点观察
13、观察法要有效,就要特别注意(B,C,D,E)
A、每次尽可能长 B,有明确观察目的C、随时记录 D、可利用现代手段E、每次时间不宜过长
14、实验法就是要在保持其他因素恒定的前提下研究(A,B)的关系和变化的规律、A、自变量 B、因变量 C、人脑 D、客观世界
15、实验法可分为(A,D)
A、实验室实验法 B、情景实验法 C、参与实验法 D、自然实验法
16、在实验室实验研究中,主要要控制哪些方面(A,B,C,D)、A、实验情境 B、控制被试 C、控制实验刺激 D、控制被试的反应
17、调查法可分为(B,C,D,E)、A、一般调查法和特殊调查法 B、一般调查法和专题调查法 C、事实特征调查和征询意见调查 D、结构式调查和非结构式调查 E、访谈法、邮寄问卷法和电话调查法等
公务员考试别发愁——中人网助您考试无忧☆
公务员考试别发愁——中人网助您考试无忧☆
18、调查法的缺点是(B,C,D)
A、难以在短时间内获得大量第一手的资料 B、被调查者可能有意不作出真实回答 C、封闭式的问题损失数据有效性 D、问题措词不易确定
19、一般研究法主要包括(A,B,D)
A、实验和研究设计 B、对数据的统计处理 C、抽样法 D、逻辑思维法 20、心理学发展的历史分为(A,C)
A、孕育阶段 B、转折阶段 C、确立阶段 D、发展阶段
21、冯特对心理学的历史功绩主要有(A,B,D)
A、心理学的确立 B、实验心理学的创立 C、出版〈〈生理心理学原理〉〉 D、建立心理学专业队伍
22、弗洛伊德把人的意识分为(A,B,C)A、意识 B、前意识 C、潜意识 D、后意识
23、弗洛伊德的早期理论包括(A,B,C)
A、潜意识理论 B、梦的解释 C、泛性论 D、本能学说 E、人格理论
三、判断题
心理学是研究人的行为的科学。
心理是人脑的机能,是人脑对内在心理活动的反应。
3、在心理过程中,认知和情感是基础,意志是将认知和情感转化为行为的动力。
4、个性心理特征包括能力、气质和知觉。
5、心理过程是在个性心理特征的基础上形成和发展起来的,反过来有影响着个性心理特征的进行与发展。
6、以揭示各种心理现象之间以及心理现象与现实之间相互联系的规律为任务的是应用心理学。
7、心理学是属于自然科学性质的学科。
8、心理学是对人进行研究的,而人是社会性的,所以心理学是属于社会科学性质的学科。
9、辩证唯物主义哲学为心理学提供了依据。
公务员考试别发愁——中人网助您考试无忧☆
第三篇:奥数题
1、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?
2、仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
3、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
4、建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
5、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?
6、在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
7、甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
8.某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
第四篇:奥数题
1,57辆军车通过一座桥,前后两车间保持2米距离。桥长1403米,每辆车长5米,车队每分钟前进45米。从第一辆车车头上桥到最后一辆车的车尾离开桥共需多少分钟?
2明明和丽丽同时从学校出发步行去动物园,明明每分钟走60米,丽丽每分钟走45米。结果明明先到,并在动物园门口等了10分钟丽丽才到,学校到动物园的距离是多少米?
3物业公司要给296户业主买296本挂历。挂历每本15元,现在正在促销优惠,每买7本送1本。算算物业公司买挂历需多少元?
4妈妈在超市买了4支小梦龙和3支可爱多冰激凌,共用去24元。妈妈对小丽说:“上星期我买了3支小梦龙和5支可爱多冰激凌共用去29元。;请你算算,小梦龙和可爱多每支各多少钱?
第五篇:四年级奥数题精选200题
四年级奥数精选200题
一、算式谜
1.在下面的数中间填上“+”、“-”,使计算结果为100。
123456789=100
2.ABCD+ACD+CD=1989,求A、B、C、D。
3.□4□□-3□89=3839。
4.1ABCDE×3=ABCDE1,求A、B、C、D、E。
二、找规律
5.找找规律填数
76,2,75,3,74,4,(),();
2,3,4,5,8,7,(),();
2,1,4,1,8,1,(),()。
6.在()内填入适当的数
1,1,2,3,5,8,(),();
1,1,1,3,5,9,(),();
0,1,2,3,6,11,(),();
7.找规律在()内填上合适的数
(1)0,1,3,8,21,55,();
(2)2,6,12,20,30,42,();
(3)1,2,4,7,11,16,()。
(1)1,6,7,12,13,18,19,(); 8.选择
一个锐角三角形的一个内角是44度,其余两个角可能是()36度和100度
90度和46度 75度和61度
18度和96度 9.简便计算 12×102-24
69×56+32×56-56
13×94+13×10-13×4
10.解决问题
一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=?
三、排列组合
11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。三个人争着要站在排头,无法拍照了。后来照相师傅想了一个办法,说:“我给你们每人站在不同位置都拍一张,好不好?”这下大家同意了。那么,照相师傅一共要给他们拍几张照片呢?
12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备“
六、一”演出。在演出过程中,队形不断变化。(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式?
13.“69”顺倒过来看还是“69”,我们把这两个顺倒一样的数,称为一对数。你能在“0,1,6,9,8”这五个数中任意选出3个,可以组成几对顺倒相同的数?
14.有五种颜色的小旗,任意取出三面排成一行表示各种信号。问:共可以表示多少种不同的信号?
15.用数码0、1、2、3、4可以组成多少个没有重复数字的三位数?
四、简单推理
16.红、黄、蓝三个盒子,两个盒子是空的,一个盒子放了乒乓球,每个盒子盖上都写入一句话:红盒上写着“乒乓球不在这里”;黄盒上写着“乒乓球不在这里”;蓝盒上写着“乒乓球在红盒里”;不过,其中只有一句话是真的,想一想:乒乓球究竟在哪个盒子里?
17.甲、乙、丙、丁四个人比赛乒乓球,每两个人都要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?
18.A、B、C、D、E五人参加乒乓球单打比赛,每两人都要赛一盘,并且只赛一盘,规定胜者得2分,负者得0分,现在知道比赛结果是:A和B并列第一名,C是第三名,D和E并列第四名,那么C得多少分?
19.二年级举行数学竞赛,马林、王强和李伟取得了前三名,已知马林不是第一名,李伟不是第一名也不是第二名,()是第一名,()是第二名,()是第三名。
20.四个小朋友称体重,甲比乙重;乙比丙轻;丙比甲重;丁最重。这四个小朋友体重按从轻到重的顺序是怎样的?
五、图形计数
六、巧算简算
27。计算
(1)9999+999+99+9
(2)1797-(797-215)
(3)999×999+2999
七、平均问题
28。期中考试小明3科的平均成绩是95分,数学得了99分,英语得90分,语文得了多少分?
29。小李参加了5科的期末考试,数学成绩没有公布,其他4科的平均成绩是90分,如果将数学成绩加进去,小李5科的平均成绩是92分。小李的数学成绩是多少?
30。小明从家到学校的路程是540米,小明上学要走9分,回家只用6分,那么小明往返一次平均每分走多少米?
31。一位登山运动员以每小时6千米的速度从山脚登上山顶,又以每小时4千米的速度立即从山顶按原路返回山脚。在一个上下的过程内平均速度是多少?
32。一次数学考试中,小明和小王的成绩之和是196分,小明和小英的成绩之各是198分,小英和小王的成绩之和是194分。求3人的平均成绩。
八、等量代换
33。一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?
34。一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。一只小猪的重量等于几只鸭的重量?
35。一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等,已知一头牛一天吃青草18千克,一只兔子和一只羊一天共吃青草多少千克?
36.A+A+A=18,A+B=10。A和B各是多少?
37.A-B=8,A+A+B+B=20。A和B各是多少?
九、重叠问题
38。有两块木板各长80厘米,钉在一起的地方长10厘米,钉好后共长多少厘米?
39。有两块同样的木板钉在一起后长88厘米,中间重叠的地方长8厘米,这两块木板各长多少厘米?
40。两根钢条焊接后长4米,已知一根长233厘米,焊接的地方长10厘米,另一根钢条长多少厘米?
41。丁老师出了两道数学题给数学兴趣小组的18名同学做,做对第一道题的有10名同学,做对第二道题的有12名同学,没有一道也没有做对的同学。两道题都做对了的同学有几名?
42。丁老师出了两道数学题给数学兴趣小组的18名同学做,做对第一道题的有10名同学,做对第二道题的有12名同学,有3名同学一道题也没有做对。两道题都做对了的同学有几名?
43.甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?
44.一个除式,商是18,余数是4,被除数、除数、商、余数的和是292,除数与被除数各是多少?
十一、定义新运算
45。规定:x★y=(x+y)+(x-y),求13★5;13★(5★4)
46。规定A▲B=(A+B)×(A-B)。求27▲9。
47。规定:m◎n=(m+n)×(m-n);求30◎(5◎3)。
48。如果1☆5=1+11+111+1111+11111,2☆4=2+22+222+2222,3☆3=3+33+333,4☆2=4+44,那么7☆4=_____________
49.买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张?
50.扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张?
51.一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。这批水泥有多少吨?
52.李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张?
53.老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼?
十二、和差问题
54。两个水桶共盛水50千克,如果把第一桶里的水倒出6千克,两个水桶中的水就一样多了。第一桶原盛水千克。
55。甲筐里有苹果30千克,乙筐里有桔子若干千克,如果从乙筐里取出12千克桔子,苹果就比桔子多10千克,乙筐原有桔子千克。
56。甲乙两船共载客623人,若甲船增加34人,乙船减少57人,这时两船乘客同样多,甲船原有乘客人。
57.张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个?
58.副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克?
十三、和倍问题
59。乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,两个粮库原来各存大米多少吨?
60。水果店运来水果380千克,其中苹果比梨的3倍还少40千克,水果店运来苹果和梨各多少千克?
61。乙两个油桶共存油240千克,如果把乙根的油注入甲桶40千克,这时甲桶存油正好是乙桶存油的3倍,甲、乙根原来各存油多少千克?
十四、差倍问题
62.张老师买回篮球足球排球,其中足球是篮球的3倍,足球比排球多7个,排球比篮球多11个。这三种球各有多少个?
63.小明的存款数是小刚的3倍,现在小明取出380元,小刚取出110元,两人的存款数变得同样多。小明和小刚原来各存款多少元?
64.甲仓存粮吨数是乙仓的3倍,如果甲仓中取出60吨,乙仓中运进80吨,甲、乙两个粮仓存粮吨数正好相等。甲、乙两个粮仓各存粮多少吨?
65.甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中运进60吨,乙仓中运进260吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨?67。妈妈比小兰大24岁,今年妈妈的年龄是小兰年龄的5倍,多少年后,妈妈年龄是小兰年龄的3倍?
66.三(1)班学生去公园划船,如果每条船坐4人,则多出4人;如果每条船坐6人,则多出了4条船;公园里有多少条船?三(1)班有多少名学生?
67.学校给新生分配宿舍,如果每间住8人,则少了2间房,如果每间住10人,则多出了2间房,一共有几间房分给新生?新生有多少人住宿?
十五、年龄问题
68。爸爸、妈妈现在的年龄和是72岁,5年后,爸爸比妈妈大6岁。今年爸爸和妈妈各多少岁?
69。今年父亲比儿子大28岁,明年父亲的年龄正好是儿子的5倍,父子今年的年龄各是多少岁?
70。方方今年11岁,她妈妈今年43岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?
71。芳芳家有三口人,三个人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,问:三人各是多少岁?
72。王英5年前的年龄等于李明7年后的年龄,王英4年后与李明3年前的年龄和是35岁。李明、王英两人今年各多少岁?
73.乘法分配律的简算: a×105-6×a+a
a×9+9×b-9×(a+b)
97×23+23+23+23
74.填空
1.整数部分是零的最大两位小数与最小两位小数的和是(),差是()。2.整数的最小计数单位与小数的最大计数单位相差()。
3.在20厘米,10厘米,10厘米,8厘米的4条线段中选择3条,围成一个三角形,围成的是()三角形,它的周长是()厘米。
75.判断钝角的一半一定是锐角()
十六、周期问题
76。有一列数:1,3,5,1,3,5,1,3,5„„第20个数字是(),这20个数的和是()。
77。甲问乙:今天是星期五,再过30天是星期()。乙问甲:假如16日是星期一,这个月的31日是星期()。
78。甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?
79.小红把一个小数的小数点向右移动两位后,得到的新数比原来多了198,原数是多少?
十七、还原问题
80。小虎做一道减法题目时,把被减数十位上的6错写成了9,减数个位上的9错写成了6,最后所得的数差是577,这题的正确答案应该是多少?
81.某人去储蓄所取款,第一次取了存款的一半还多5元,第二次取了余下的一半还少10元,第三次取了存款15元,这时还剩125元,他原来有多少元存款?
82.一个书架分上、中、下三层,一共放书384本,如果从上层取出与中层同样多的本数放入中层,再从中层取出与下层同样多的本数放入下层,最后又从下层取出与现在上层同样多的本数放入上层,这时三层书的本数相同,求这个书架上原来上、中、下各放几本书?
十八、植树问题
83.在一块长100米,宽80米的长方形地的周围种树,每隔若干米种一棵,共种了20棵,求每两棵之间的距离。
84.在一条长250米的路两旁栽树,起点和终点都栽,一共栽了102棵,每两棵相邻的树之间的距离都相等,你知道是多少米吗?
85.四年级的全体学生参加广播操比赛,排成4路纵队入场,队伍长230米,每队中前后两人相距2米。四年级共有多少名学生?
86.有320盆菊花,排成8行,每行中相邻两盆菊花之间相距1米,每行菊花长多少米?
87.有一根木料长20米,先锯下2米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了5次,每根短木条长多少米?
十九、简单方阵
88.学校组织一次团体操表演,把男生排列成一个实心方阵,又在这个实心方阵四周站一排女生。女生有72人参加表演,男生有多少人?
89.在正方形的广场四周装彩灯,四个角上都装一盏,每边装25盏,问这个广场一共需装彩灯多少盏?
90.运动会上,在正方形操场四周站着执旗的同学28人,如四个角上都站一名同学,求这个操场每边站台多少个学生?
91.小强用棋子排成了一个每边11枚的中空方阵,共2层,求这个方阵共用多少枚棋子?
101.简便计算:(1)125×4×8×25
(2)26×101
(3)999×111+333×667
(4)1+2+3+4+„„+99+100
102.小明期中考试语文,数学,英语三科平均分为m分,常识公布后,他的平均分提高了一分,这时小明的总分为多少?
103.红红和明明共有邮票a张,明明给红红6张邮票后,他俩的邮票同样多,红红原来有多少张邮票?
104.小红和小青有同样多的糖,后来妈妈又给小红a块糖,而小青却吃了b块,这样小红的糖块数是小青的2倍,他们原来各有多少块糖?
105.四年级有男生a人,女生比男生的2倍少10人,那么这个班共有多少人?如果男女生人数相等,那么a等于多少?
假设问题
106.某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?
107.某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?
108.九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?
109.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?
110.乘法分配律的简算: 18×101
45×102
35×99
111.如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁?
112.在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?
113.一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页?
114.梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完。这个同学平均每天读多少页?
115.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分?
116.。把一个小数扩大到他的100倍以后,小数点又向右移动一位,得到27.5,这个小数原来是多少?
117.甲乙两数的和是682,甲数缩小到原来的 后就等于乙数,甲乙两数原来各是多少?
118.甲乙两数的和是374,甲数的小数点向右移动一位就与乙数相等,甲乙两数各是多少?
119.一个小数扩大1000倍是100,把这个小数的小数点去掉,它的值扩大了多少倍?
120.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶。然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?
121.四年级有60名同学去栽树,平均每人栽4棵,恰好栽完。随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学?
122.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人?
123.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人?
124..甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数。
125.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分?
126..如果四个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁?
127.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第三个数是多少?
128.梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分。梓涵数学考了多少分?
盈亏问题的关系式:
1、(盈+亏)÷两次分配的差=份数
2、(大盈-小盈)÷两次分配的差=份数
3、(大亏-小亏)÷两次分配的差=份数
每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量,解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
129.幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?
130.小明带了一些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?小明带了多少钱?
131一组学生去搬书,如果每人搬2本,还剩12本,如果每人搬4本,还缺6本,这组学生有几人?这批书有多少本?
132.某学校有一些学生住校,每间宿舍住8人,空出床位24张,如果每间宿舍住10人,则空出床位2张,学校共有几间宿舍?住宿学生有几人?
133学校排练节目,如果每行排8人,则有一行少2人,如果每行排9人,则有一行少7人,一共排了多少行?一共有多少人?
134.同学们去划船,如果每条船坐5人,则有10人没船坐,如果每条船多坐2人,则多出两条船,共有几条船?有多少个同学?
135.小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则要早到4分钟,小明家到学校有多远?
136.如图,周长为52厘米的“L”形纸片可沿虚线
分成两个完全相同的长方形。如果最长的边长是16厘米,那么该“L”形纸片的面积是平方厘米。
137.48名学生参加聚会,第一个到会的男生和全部女生握手,第二个到会的男生只差一名女生没握过手,第三个到会的男生只差2名女生没握过手,„„最后一个到会的男生同9名女生握过手,这48名学生中共有名女生。
138.奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元?
139.3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克?
140.张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元?
141.粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克?
142.一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克?
143.一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克?
144.有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的个数相等,原来每筐苹果多少个?
145.一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人?
146.韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字?
147..陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤?
148.大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等?
149.电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?
150.某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度?
151.某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时?
152.学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱。由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?
153.某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?
154.锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天?
155.学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋。问鸡蛋价格下调后每千克是多少元?
156.18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?
157.张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?
158.3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?
159.一个机械厂4台机床5小时可以生产零件720个。照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时?
160.一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?
161.九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?
162.扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天?
163.师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。徒弟每小时加工多少个?
164.甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时。泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地?
165.旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务?
166.舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆?
167.德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题?
168.甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本?
169.甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元?
170.甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨?
171.甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克?
172..学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克?
173.四个人年龄之和是77岁,最小的10岁,他和最大的人的年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁?
174.小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米?
175.曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克?
176.苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?
177.甲乙两数和是150,甲数除以乙数的商是4,甲乙两数各是多少?
178.一块长方形木板,长是宽的2倍,周长54厘米,这块长方形木块的面积是多少?
179.有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那么甲堆、乙堆、丙堆煤各重多少千克?
180.张老师买回篮球足球排球共83个球,其中篮球比足球的2倍多5个,排球比足球的2倍少7个,这三种球各有多少个?
181.张老师买回篮球足球排球共83个球,其中篮球是足球的2倍,足球比排球多5个,这三种球各有多少个?
182.小张有36本课外书,小徐有24本课外书,两人捐出同样多的本数后,小张剩下的本数是小徐剩下本数的3倍,两人各捐出多少本书?
183.师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个,这时,徒弟剩下的个数是师傅的3倍。师徒要加工多少个零件?
用假设法解题
兔数=(总脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡数=鸡兔总数-兔数(假设鸡,先求出兔)或:鸡数=(每只兔脚数×鸡兔总数-总脚数)÷(每只兔子脚数-每只鸡脚数)兔数=鸡兔总数-鸡数(假设兔,先求出鸡)
184.鸡兔共30只,共有脚70只,鸡兔各有多少只?
185.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?
186.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?
187.王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?
188.某场足球比赛赛前售出甲、乙、丙三类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙类、丙类门票张数相同。则三种票各售出多少张?
189.甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本?
190.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
191.有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张?
192.三年级学生练习册,如果每人发5册还剩下32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么三年级学生有多少人?练习册有多少本?
193.小明买了一本《趣味数学》,他计划:如果每天做3题,则剩下16题,如果每天做5题,则最后一天只要做1题。那么这本书共有几道题?小明计划做几天?
194.三(2)班同学去植树,如果每人植5棵,还有3棵没有人植,如果其中4人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么参加植树的有几名同学?共植树多少棵?
195.小明从家到学校,出发时看看表,发现如果每分钟步行80米,他将迟到5分钟,如果先步行10分钟后,再改成骑车每分钟行200米,他就可以提前1分钟到校。问小明从家出发时离上学时间有多少分钟?
196.王云在计算325-□×5时先算了减法,结果得出1500,那么这道题的正确结果应该是。
197.今天(2010年4月11日)是星期日,则2010年的六一儿童节是星期。
198.今年,玲玲8岁,奶奶60岁,再过年,奶奶的年龄是玲玲的5倍。199.如果3台数控机床4小时可以加工960个同样的零件,那么1台数控机床加工400个相同的零件需要多长时间?
200.小红从家步行去学校,如果每分钟走120米,那么将比预定时间早到5分钟;如果每分钟走90米,则比预定时间迟到3分钟,那么小红家离学校有多远?