第一篇:微软公司的面试问题---头脑
★如果你有一个许多部件可以拆卸的时钟,你将它一块块拆开,但是没有记住是怎样拆的。然后你将各个零件重新组装起来,最后发现有三个重要零件没有放进去。这时你如何重新组装这个时钟?
★如果你需要学习一门新的计算机语言,你会怎样做?
★假设由你负责设计比尔·盖茨的卫生间。当然,钱不成问题,但是你不可以和比尔谈。你会怎样做?
★到目前为止,你遇到的最难回答的问题是什么?
★如果微软公司说,我们愿意投资500万美元用来开发你提出的方案。那么你会做什么?为什么?
★如果你将世界上所有的计算机制造商召集起来,告诉他们必须要做一件事,你会让他们做什么事?
★如果你在五年内会得到一笔奖金,你认为会是因为什么?关注你的成绩的人会是谁?
★你如何教自己的奶奶使用微软Excel表格系统?
★为什么当我们在任何一家宾馆打开热水龙头时,热水会马上流出来?
★你为什么想在微软工作?
★假设你回到家,进入自己的房间,打开电灯开关,可是一点反应都没有——灯没有亮。这时,你在判断问题出在哪里时,会依次采取怎样的做法?
第二篇:微软公司的面试问题---应用
★如何将计算机技术应用于一幢100层高的办公大楼的电梯系统上?你怎样优化这种应用?工作日时的交通、楼层或时间等因素会对此产生怎样的影响?
★你如何对一种可以随时存在文件中或从因特网上拷贝下来的操作系统实施保护措施,防止被非法复制?
★你如何重新设计自动取款机?
★假设我们想通过电脑来操作一台微波炉,你会开发什么样的软件来完成这个任务?
★你如何为一辆汽车设计一台咖啡机?
★ 如果你想给微软的Word系统增加点内容,你会增加什么样的内容?
★你会给只有一只手的用户设计什么样的键盘?
★你会给失聪的人设计什么样的闹钟?
第三篇:微软公司的面试问题---运算题
★链接表和数组之间的区别是什么?
★做一个链接表,你为什么要选择这样的方法?
★选择一种算法来整理出一个链接表。你为什么要选择这种方法?现在用O(n)时间来做。
★说说各种股票分类算法的优点和缺点。
★用一种算法来颠倒一个链接表的顺序。现在在不用递归式的情况下做一遍。
★用一种算法在一个循环的链接表里插入一个节点,但不得穿越链接表。
★用一种算法整理一个数组。你为什么选择这种方法?
★用一种算法使通用字符串相匹配。
★颠倒一个字符串。优化速度。优化空间。
★颠倒一个句子中的词的顺序,比如将“我叫克丽丝”转换为“克丽丝叫我”,实现速度最快,移动最少。
★找到一个子字符串。优化速度。优化空间。
★比较两个字符串,用O(n)时间和恒量空间。
★假设你有一个用1001个整数组成的数组,这些整数是任意排列的,但是你知道所有的整数都在1到1000(包括1000)之间。此外,除一个数字出现两次外,其他所有数字只出现一次。假设你只能对这个数组做一次处理,用一种算法找出重复的那个数字。如果你在运算中使用了辅助的存储方式,那么你能找到不用这种方式的算法吗?
★不用乘法或加法增加8倍。现在用同样的方法增加7倍。
第四篇:这些题目有多难?微软公司的面试问题
以下是微软公司的员工在面试时所遇到的问题。微软的顾问有时会得到一些特殊待遇,因此在面试时询问他们的问题并不真的算数,所以没有列在下面。
这些问题往往遵循以下一些基本主题:难题、运算、应用、头脑。
难题
★你让某些人为你工作了七天,你要用一根金条作为报酬。这根金条要被分成七块。你必须在每天的活干完后交给他们一块。如果你只能将这根金条切割两次,你怎样给这些工人分?
★一列火车以每小时15英里的速度离开洛杉矶,朝纽约进发。另外一列火车以每小时20英里的速度离开纽约,朝洛杉矶进发。如果一只每小时飞行25英里的鸟同时离开洛杉矶,在两列火车之间往返飞行,请问当两列火车相遇时,鸟飞了多远?
★假设一张圆盘像唱机上的唱盘那样转动。这张盘一半是黑色,一半是白色。假设你有数量不限的一些颜色传感器。要想确定圆盘转动的方向,你需要在它周围摆多少个颜色传感器?它们应该被摆放在什么位置?
★假设时钟到了12点。注意时针和分针重叠在一起。在一天之中,时针和分针共重叠多少次?你知道它们重叠时的具体时间吗?
★你有两个罐子,分别装着50个红色的玻璃球和50个蓝色的玻璃球。随意拿起一个罐子,然后从里面拿出一个玻璃球。怎样最大程度地增加让自己拿到红球的机会?利用这种方法,拿到红球的几率有多大?
★中间只隔一个数字的两个奇数被称为奇数对,比如17和19。证明奇数对之间的数字总能被6整除(假设这两个奇数都大于6)。现在证明没有由三个奇数组成的奇数对。
★一个屋子有一个门(门是关闭的)和3盏电灯。屋外有3个开关,分别与这3盏灯相连。你可以随意操纵这些开关,可一旦你将门打开,就不能变换开关了。确定每个开关具体管哪盏灯。
★假设你有8个球,其中一个略微重一些,但是找出这个球的惟一方法是将两个球放在天平上对比。最少要称多少次才能找出这个较重的球?
★假设你站在镜子前,抬起左手,抬起右手,看看镜中的自己。当你抬起左手时,镜中的自己抬起的似乎是右手。可是当你仰头时,镜中的自己也在仰头,而不是低头。为什么镜子中的影像似乎颠倒了左右,却没有颠倒上下?
★你有4瓶药。每粒药丸的重量是固定的,不过其中有一瓶药受到了污染,药丸的重量发生了变化,每个药丸增加了一点重量。你怎样一下子测出哪瓶药是遭到污染的呢?
★下面玩一个拆字游戏,所有字母的顺序都被打乱。你要判断这个字是什么。假设这个被拆开的字由5个字母组成:
1.共有多少种可能的组合方式?
2.如果我们知道是哪5个字母,那会怎么样?
3.找出一种解决这个问题的方法。
★有4个女人要过一座桥。她们都站在桥的某一边,要让她们在17分钟内全部通过这座桥。这时是晚上。她们只有一个手电筒。最多只能让两个人同时过桥。不管是谁过桥,不管是一个人还是两个人,必须要带着手电筒。手电筒必须要传来传去,不能扔过去。每个女人过桥的速度不同,两个人的速度必须以较慢的那个人的速度过桥。
第一个女人:过桥需要1分钟;
第二个女人:过桥需要2分钟;
第三个女人:过桥需要5分钟;
第四个女人:过桥需要10分钟。
比如,如果第一个女人与第4个女人首先过桥,等她们过去时,已经过去了10分钟。如果让第4个女人将手电筒送回去,那么等她到达桥的另一端时,总共用去了20分钟,行动也就失败了。怎样让这4个女人在17分钟内过桥?还有别的什么方法?
★如果你有一个5夸脱的水桶和一个3夸脱的水桶,如何准确量出4夸脱的水?
★你有一袋糖,有红色的,蓝色的,绿色的。闭上眼睛,拿出两块颜色一样的糖,你需要拿多少次才能确保有两块颜色相同的?
★如果你有两个桶,一个装的是红色的颜料,另一个装的是蓝色的颜料。你从蓝色颜料桶里舀一杯,倒入红色颜料桶,再从红色颜料桶里舀一杯倒入蓝颜料桶。两个桶中红蓝颜料的比例哪个更高?通过算术的方式来证明这一点。
第五篇:面试之头脑风暴
1、为什么下水道的井盖是圆的? 答案:因为下水道是圆的
2、有个农民挑了一对竹筐,赶集去买东西。当他来到一座独木桥上,对面来了个孩子,他想退回去让孩子先过桥,但是回身一看,后面也来了个孩子。正在进退两难之际,农民急中生智,想了个巧办法,使大家都顺利地通过了独木桥,而且三人之中谁也没有后退过一步。问:农民是用的什么方法? 答案: 一个筐放一个 然后转个180
3、巧入房间
某地质勘探队有12名队员,他们同住在一栋楼的12个房间内。由于工作关系,资料不能集中,各人的房间内都有别人需要查对的资料。这天,12位队员又要外出作业了。临行前,队长对大家说:“在外出作业期间,12个人一起回来是不可能的,如有队员回来查资料就困难了。现在咱们每个人都有打开自己门锁的两把钥匙,只准带走其中一把钥匙,余下的一把不准挂在门上,因为不安全,每个房间的门窗也必须关严,大家想一想,怎样才能使任何一个人回来都能打开12个房间呢?”
问:如果你是队员之一,你能想出办法来吗? 答案: 给队长不就OK了 1.4、入睡与醒来
请问:从你生下来的那一刻起,你入睡和醒来的次数哪个多?多多少次? 答案: 睡着可能多一次
烧一根不均匀的绳子,从头烧到尾总共需要1个小时,问如何用烧绳子的方法来确定半小时的时间呢? 一根绳子两头都烧,同时第二根只烧一头,第一根都烧完的时候就是30分钟了 同时点燃第二根的另一头 再次烧完就是45分钟了
2.10个海盗抢到了100颗宝石,每一颗都一样大小且价值连城。他们决定这么分:
(1)抽签决定自己的号码(1~10);
(2)首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼;
(3)如果1号死后,再由2号提出分配方案,然后剩下的4个人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼;
(4)依此类推……
条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?
4.中国有多少辆汽车?
5.你让工人为你工作7天,回报是一根金条,这根金条平分成相连的7段,你必须在每天结束的时候给他们一段金条。如果只允许你两次把金条弄断,你如何给你的工人付费?
6.有一辆火车以每小时15公里的速度离开北京直奔广州,同时另一辆火车以每小时20公里的速度从广州开往北京。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从北京出发,碰到另一辆车后就向相反的方向返回去飞,就这样依次在两辆火车之间来回地飞,直到两辆火车相遇。请问,这只鸟共飞行了多长的距离?
7.你有两个罐子以及50个红色弹球和50个蓝色弹球,随机选出一个罐子,随机选出一个弹球放入罐子,怎样给出红色弹球最大的选中机会?在你的计划里,得到红球的几率是多少?
8.想像你站在镜子前,请问,为什么镜子中的影像可以左右颠倒,却不能上下颠倒呢?
9.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
10.你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少次就可以确定你肯定有两个同一颜色的果冻?
11.连续整数之和为1000的共有几组?
12.从同一地点出发的相同型号的飞机,可是每架飞机装满油只能绕地球飞半周,飞机之间可以加油,加完油的飞机必须回到起点。问至少要多少架次,才能满足有一架绕地球一周。
参考答案:
1.两边一起烧。
2.96,0,1,0,1,0,1,0,1,0。
4.很多。
5.分1,2,4。
6.6/7北京到广州的距离。
7.100%。
8.平面镜成像原理(或者是“眼睛是左右长的”)。
9.3先装满,倒在5里,再把3装满,倒进5里。把5里的水倒掉,把3里剩下的水倒进5里,再把3装满,倒进5里,ok!
10.一次。
11.首先1000为一个解。连续数的平均值设为x,1000必须是x的整数倍。假如连续数的个数为偶数个,x就不是整数了。x的2倍只能是5,25,125才行。因为平均值为12.5,要连续80个达不到。125/262.5是可以的。即62,63,61,64,等等。连续数的个数为奇数时,平均值为整数。1000为平均值的奇数倍。10002×2×2×5×5×5;x可以为2,4,8,40,200排除后剩下40和200是可以的。所以答案为平均值为62.5,40,200,1000的4组整数。
12.答案是5架次。一般的解法可以分为如下两个部分:
(1)直线飞行
一架飞机载满油飞行距离为1,n架飞机最远能飞多远?在不是兜圈没有迎头接应的情况,这问题就是n架飞机能飞多远?存在的极值问题是不要重复飞行,比如两架飞机同时给一架飞机加油且同时飞回来即可认为是重复,或者换句话说,离出发点越远,在飞的飞机就越少,这个极值条件是显然的,因为n架飞机带的油是一定的,如重复,则浪费的油就越多。比如最后肯定是只有一架飞机全程飞行,注意“全程”这两个字,也就是不要重复的极值条件。如果是两架飞机的话,肯定是一架给另一架加满油,并使剩下的油刚好能回去,就说第二架飞机带的油耗在3倍于从出发到加油的路程上,有三架飞机第三架带的油耗在5倍于从出发到其加油的路程上,所以n架飞机最远能飞行的距离为s1+1/3+…+1/(2n+1)这个级数是发散的,所以理论上只要飞机足够多最终可以使一架飞机飞到无穷远,当然实际上不可能一架飞机在飞行1/(2n+1)时间内同时给n1个飞机加油。
(2)可以迎头接应加油
一架飞机载满油飞行距离为1/2,最少几架飞机能飞行距离1?也是根据不要重复飞行的极值条件,得出最远处肯定是只有一架飞机飞行,这样得出由1/2处对称两边1/4肯定是一架飞机飞行,用上面的公式即可知道一边至少需要两架飞机支持,(1/3+1/5)/2>1/4(左边除以2是一架飞机飞行距离为1/2),但是有一点点剩余,所以想像为一个滑轮(中间一个飞机是个绳子,两边两架飞机是个棒)的话,可以滑动一点距离,就说加油地点可以在一定距离内变动(很容易算出来每架飞机的加油地点和加油数量,等等)
2006-08-27 08:19:51 牛一 IBM面试试题
1.有50家人家,每家一条狗。有一天警察通知,50条狗当中有病狗,行为和正常狗不一样。每人只能通过观察别人家的狗来判断自己家的狗是否生病,而不能看自己家的狗,如果判断出自己家的狗病了,就必须当天一枪打死自己家的狗。结果,第一天没有枪声,第二天没有枪声,第三天开始一阵枪响,问:一共死了几条狗?
2.已知两个数字为1~30之间的数字,甲知道两数之和,乙知道两数之积,甲问乙:“你知道是哪两个数吗?”乙说:“不知道”。乙问甲:“你知道是哪两个数吗?”甲说:“也不知道”。于是,乙说:“那我知道了”,随后甲也说:“那我也知道了”,这两个数是什么?
3.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄。有一个下属已知道经理的年龄,但仍不能确定经理的三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理的三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
答案:
1.死了3条(第几天枪响就有几条)。
简单分析:从有一条不正常的狗开始,显然第一天将会听到一声枪响。这里的要点是你只需站在那条不正常狗的主人的角度考虑。
有两条的话思路继续,只考虑有两条不正常狗的人,其余人无需考虑。通过第一天他们了解了对方的信息。第二天杀死自己的狗。换句话说每个人需要一天的时间证明自己的狗是正常的。有三条的话,同样只考虑那三个人,其中每一个人需要两天的时间证明自己的狗是正常的狗。
2.1和4,或者4和7。
3.分别是2,2,9。
简单分析: 1 11 11 伪穷举,呵呵
3 9 27 4 8 32 5 7 35 6 6 36 在所有的可能性中,只有这两个相同,如果经理的年龄为其他,则他下属就可以确定三个人分别为几岁了 2 9 36 所以只有两种可能:1,6,6或者2,2,9。如果是1,6,6的话,那么两个同样大的6岁的孩子应该都是黑头发
所以只有2,2,9比较合理,大的那个是黑头发,另外两个是黄毛丫头
5 6 60 3 7 42 4 6 72 5 5 75 4 5 80 有个法院开庭审理一起盗窃案件,某地的A,B,C三人被押上法庭。负责审理这个案件的法官是这样想的:肯提供真实情况的不可能是盗窃犯;与此相反,真正的盗窃犯为了掩盖罪行,是一定会编造口供的。因此,他得出了这样的结论:说真话的肯定不是盗窃犯,说假话的肯定就是盗窃犯。审判的结果也证明了法官的这个想法是正确的。审问开始了。
法官先问A:“你是怎样进行盗窃的?从实招来!”A回答了法官的问题:“叽哩咕噜,叽哩咕噜……”A讲的是某地的方言,法官根本听不懂他讲的是什么意思。法官又问B和C:“刚才A是怎样回答我的提问的?叽哩咕噜,叽哩咕噜,是什么意思?”B说:“禀告法官,A的意思是说,他不是盗窃犯。”C说:“禀告法官,A刚才已经招供了,他承认自己就是盗窃犯。”B和C说的话法官是能听懂的。听了B和C的话之后,这位法官马上断定:B无罪,C是盗窃犯。
请问:这位聪明的法官为什么能根据B和C的回答,作出这样的判断?A是不是盗窃犯? 分析与解答
不管A是盗窃犯或不是盗窃犯,他都会说自己“不是盗窃犯”。如果A是盗窃犯,那么A是说假话的,这样他必然说自己“不是盗窃犯”;
如果A不是盗窃犯,那么A是说真话的,这样他也必然说自己“不是盗窃犯”。
在这种情况下,B如实地转述了A的话,所以B是说真话的,因而他不是盗窃犯。C有意地错述了A的话,所以C是说假话的,因而C是盗窃犯。至于A是不是盗窃犯是不能确定的。
向导
在大西洋的“说谎岛”上,住着X,Y两个部落。X部落总是说真话,Y部落总是说假话。
有一天,一个旅游者来到这里迷路了。这时,恰巧遇见一个土著人A。旅游者问:“你是哪个部落的人?” A回答说:“我是X部落的人。”
旅游者相信了A的回答,就请他做向导。
他们在路途中,看到远处的另一位土著人B,旅游者请A去问B是属于哪一个部落的?A回来说:“他说他是X部落的人。”旅游者糊涂了。他问同行的逻辑博士:A是X部落的人,还是Y部落的人呢?逻辑博士说:A是X部落的人。为什么? 分析与解答
设:A是X部落的人。
(1)如果A遇见的B是X部落的人,那么,B就说自己是X部落的人(因X族人是说真话的),这时,A向旅游者如实地传达了这个回答。
(2)如果A遇见的B是Y部落的人,那么,B也会说自己是X部落的人(因Y族人是说假话的),这时,A也向旅游者如实地传达了这个回答。设:A是Y部落的人。
(1)如果A遇见的B是X部落的人,那么,B就说自己是X部落的人,由于A是Y部落的人,他是说假话的,所以,他会把B的回答向旅游者传达为“B说他是Y部落的人”。
(2)如果A遇见的B是Y部落的人,那么,B就说自己是X部落的人,而A也会把B的回答传达为”他说他是Y部落的人”。从题目的给定条件可知,A对旅游者传达的话是:“他(指B)说他是X部落的人。”可见,假定A是Y部落的人时得出的(1),(2)两个结论,都是与题目给定条件相矛盾的;只有前一个假定(即假定A是X部落的人),才符合题目给定条件。所以,做向导的A是X部落的人。