第一篇:必修一值域单调性(打印两份)
1-3 函数的表示与值域陈毅东
映射:1.设f:xx2是集合A到集合B的映射,如果B=1,2,则A∩B=()
1C.A.B.1 或2D.或
1.函数的表示法:,2.函数的值域:{f(x)|x∈A}为值域。
3.求值域的常用的方法:
①配方法(二次或四次);②判别式法;③换元法(代数换元法);⑥单调函数法.4.常用函数的值域,这是求其他复杂函数值域的基础。
① 函数ykxb(k0,xR)的值域为R;
② 二次函数yax2bxc(a0,xR)2当a0时值域是[4acb,),当a0时值域是(,4acb];
24a4a
③ 反比例函数yk(k0,x0)的值域为{y|y0};
x
④指数函数yax(a0,且a1,xR)的值域为R;
⑤ 对数函数ylogax(a0,且a1,x0)的值域为R;
⑥ 函数ysinx,ycosx(xR)的值域为[-1,1];
⑦ 函数ytanx,xk,ycot x(xk,kZ)的值域为R; 2
1、图象法:通过作出函数的图象草图得到函数值域的方法。
例题:求函数的值域。
2、分离常数法:形如的函数均可由此法求得值域。我们可以采用凑配分子的方法,把函数分离成一个常数和一个分式和的形式,而此时的分式,只有分母上含有变量,进而可利用函数性质确定其值域
例题
小结:
已知分式函数如果在其自然定义域(代数式自身对变量的要求)内,值域为
换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如
例题:
判别式法:把函数转化成关于x的二次方程F(x,y)=0;通过方程有实数根,判别式且a不等于0)从而求得原函数的值域的函数的值域,常用此方法求解。例题:
练习题
1. 求函数的值域:y=-3x2+2;
2.求函数的值域:y=
4. 求函数y =
5.求函数y=
6.求函数的值域:y=x4xx2 x13x的值域 x245的值域.2x24x3
7.求yx22x3(x[2,3])的值域
ex
8.求y的值域 1ex
1-4 函数的单调性
1.设函数yf(x)的定义域为A,区间IA
如果对于区间I内的任意两个值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说yf(x)在区间I上是,I称为yf(x)的如果对于区间I内的任意两个值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说yf(x)在区间I上是,I称为yf(x)的2.对函数单调性的理解
(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;
(2)函数单调性定义中的x1,x2有三个特征:一是任意性;二是大小,即x1x2;三是同 属于一个
单调区间,三者缺一不可;
(4)关于函数的单调性的证明,如果用定义证明yf(x)在某区间I上的单调性,那么就要用严格的四
个步骤,即①取值;②作差;③判号;④下结论。但是要注意,不能用区间I上的两个特殊值来代替。而要证明yf(x)在某区间I上不是单调递增的,只要举出反例就可以了,即只要找到区间I上两个特殊的x1,x2,若x1x2,有f(x1)f(x2)即可。
1分别在(,0)和(0,)内x
1都是单调递减的,但是不能说它在整个定义域即(,0)(0,)内是单调递减的,只能说函数y的x(5)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数y
单调递减区间为(,0)和(0,)
(6)一些单调性的判断规则:①若f(x)与g(x)在定义域内都是增函数(减函数),那么f(x)g(x)在其公共定义域内是增函数(减函数)。②复合函数的单调性规则是“异减同增”
1.下列函数中,在区间0,1上是增函数的是
A.yxB.y3xC.y1D.yx24 x
2.已知yx22(a2)x5在区间(4,)上是增函数,则a的范围是()
A.a2B.a2C.a6D.a6
.求y
5.若f(x)
ax1在区间(2,)上是增函数,则a的取值范围是。x2
第二篇:必修一《函数的单调性》教学设计
必修一《函数的单调性》教学设计
必修一《函数的单调性》教学设计
本节课是北师大版必修1,§3《函数的单调性》新授课的微课程教学设计。
课程标准:
通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义。
教学目标:
1.理解函数单调性的定义,掌握其图象特征;
2.能够根据函数的图象,读出函数的单调区间;
3.会用定义法证明函数的单调性;
4.能够判断抽象函数的单调性.教学重点:
函数单调性的定义,及单调函数的图象特征。
教学难点:
数形结合的数学思想方法在函数单调性中的应用。
教学过程:
第1个环节:复习函数单调性的定义。
一般地,设函数f(x)的定义域内的一个区间A上:
如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2).那么就说f(x)在这个区间上是减函数.给出函数单调性的定义,强调定义中的“任意”二字,指出函数的单调性是一个整体的概念,在给定的区间内的所有的 均要满足单调性的数学表达式。
【设计意图】对函数单调性的定义进行学习,特别是要领会定义中的“任意”二字。
第2个环节:单调函数的图象特征。
给出3个具体的例子,剖析函数单调性的图象特征。
然后给出一个函数的图象,读出单调递增和单调递减区间,将抽象的定义具体化。
在本环节,要重点突出的两个问题:
(1)单调区间区间端点的“开”和“闭”的问题;
因为函数的单调性是一个整体的概念,在区间端点讨论单调性是毫无意义的。但是要注意,如果函数在区间端点处没有定义,则区间端点必须是“开”的,有定义则“可开可闭”。
(2)单调区间不能写成并集的形式。
两个集合的并集相当于是进行集合的运算,结果是一个集合,而显然函数在[0,4]∪[14,24]图象不是一直下降的,所以不能写成并集的形式。
【设计意图】数形结合提升学生对函数单调性的认识,会根据图象读出函数的单调区间。
第3个环节:用定义法证明函数的单调性。
给出一个具体的例题,讲解单调性证明的步骤。
例:证明函数f(x)=3x+2在R上是增函数.步骤:
(1)任取定义域内某区间上的两变量x1,x2,设x1< (2)判断f(x2)– f(x1)的正、负情况; (3)得出结论.证明: 在R上任取x1,x2,设x1< △y= f(x2)– f(x1) =(3x2+2)-(3x1+2) =3(x2-x1)0 ∴ f(x)=3x+2在R上是增函数.强调符号的判断是最重要的一个环节,特别是要将最终的式子化简成因式相乘和相除的形式,然后逐一判断符号。 【设计意图】强调单调性判断或证明的步骤。结合具体的证明步骤学习如何用定义法证明函数的单调性。 第4个环节:抽象函数的单调性的判断。 研究两个问题: (1)函数y=f(x)与y=f(x)+c(c为常数)具有相同的单调性。 借助一个函数的图象进行学习,深化理解。 举例: 如:函数y=x2 与y=x2-1具有相同的单调性.(2)函数y=f(x)与y=c f(x)(c为常数)的单调性之间的关系。 举例: 如:函数y=x2与y=-x2的单调性.分析:在(-∞,0)单调性相反,(0,+ ∞)单调性相反.如:函数y=x2与y=2x2的单调性.分析:在(-∞,0)单调性相同,(0,+ ∞)单调性相同.对这两个问题,只要求借助于具体的函数单调性归纳得出,不要求给出严格的证明。对学生的要求是记住结论,能够使用这两个结论进行简单函数单调性的判断即可。 【设计意图】将许多函数单调性的判断简单化,克服每题从定义出发,进行证明的弊端,从而提升能力。 第5个环节:课堂小结。 1.函数单调性的定义是什么? 2.单调函数的图象特征是什么? 3.函数单调性的判断有哪两种方法? 4.本节课你学习了哪些数学思想方法? 【设计意图】总结回顾本节课学过的知识。 评价设计: 本微课程的设计具有以下特色: (1)突出学生自主学习能力的提升。 微课程的设计旨在让学生通过自主学习,让学生在课前预习、上课听讲、课后复习等环节得到提升,因此特别注重举例,例子虽然简单,却能激发学生思考。 (2)注重数形结合思想方法的培养。 对函数单调性的学习,定义是抽象的,如果仅从定义出发,学生会“照葫芦画瓢”,而结合图象学习,学生对单调性的认识会上升到一个新的层次。 (3)重视学生的数学学习发展。 在讲解完函数单调性的概念之后,引入抽象函数单调性的学习,不要求证明,只要求会应用。结合具体的函数来学习,体现的是归纳的思想和由特殊到一般的方法。 必修1《1.3.1 函数的单调性》说课稿 酒泉中学 马长青 一.教学内容分析 1.本课定位与内容 本节课选自《普通高中课程标准实验教科书数学必修1》A版第一章第三节函数的基本性质第一小节函数的单调性与最大(小)值,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性,共2课时,本节课为第一课时。 2.教材的地位和作用 从单调性本身看,学生的学习分为三个层面,首先是在初中学习了一次函数、二次函数、反比例函数图象的基础上对函数的增减性有一个初步的感性认识,其次在高一对单调性进行严格定义,最后在高三从导数的角度再次研究单调性。本节课的学习处于对单调性学习的第二层面,通过图象归纳、抽象出单调性的准确定义,并在高中首次经历代数的严格证明,是对初中学习的一次升华。 从本节的教学看,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,从本章的教学看,本节课的学习是后续研究指数函数、对数函数内容的基础。 从函数知识网络看,单调性起着承上启下的作用,一方面,是初中学习内容的深化,使学生对函数单调性从感性认识提高到理性认识。另一方面,函数的单调性为后面学习指数函数、对数函数、三角函数及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值,导数等都有着紧密的联系。 从高中数学学习看,函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围的有力工具。3.教学目标 根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为: 知识与技能: (1)从形与数两方面理解单调性的概念 (2)初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法 (3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力 过程与方法: (1)通过对函数单调性定义的探究,渗透数形结合思想方法(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。情感态度价值观: 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法 4.教学重难点 根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性的概念形成。 二.学生情况分析 知识结构 学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。 能力结构 通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。 学习心理 函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。 本班学生特点 本班为酒泉中学高一(4)班,学生数学素养较好。三.教学模式 《普通高中数学课程标准(实验)》指出:“高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的‘再创造’过程。” 因此,根据教学内容和学生的认知、能力水平,本节课作为新授课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。 五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新 四.教学设计 为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新 单调性的概念是本节课的重点,而形成过程则是本节课的难点,为了突破这一难点,让学生能够充分感受单调性概念的形成过程,经历观察发现、抽象概括,自主建构单调性概念的过程,本节课设置了前三个环节,后两个环节的设计,是为了使学生对函数单调性认识的再次深化。 (一)创设情境,引入新课 数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本节课的开始,我作了这样的情境创设,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。 提出问题1:分别作出函数y=x,二次函数y=2x,y=-2x和y=x的图象,并且观察函数变化规律? 2首先引导学生观察两个一次函数图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.二次函数的增减性要分段说明,进而提出问题:二次函数是增函数还是减函数? 进一步讨论得出:增减性是函数的局部性质 据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数? 结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。 学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导 (二)初步探索,概念形成 提出问题三:以y=x+1在(0,+∞)上单调性为例,如何用精确的数学语言来描述函数的单调性? 这是本节课的难点,因此我将概念形成设置了三个阶段 1.提问学生什么是“随着” 经讨论得出,随着是由于当x取一定的值时,y有确定值与之对应,因此x变化时,y会根据法则随着x发生变化 2.如何刻画“增大”? 要表示大小关系,学生会想到取点,比大小,学生也许会用特殊点说明问题,比如x取2、3,2<3,对应的函数值是5<10 提出质疑:这个点的变化能否说明y随着x增大而增大,进一步引导学生从特殊到一般,进入第三阶段,对“任取”的理解。 3.对“任取”的理解 针对特殊值,学生可能会举反例证明其是不充分的,那么应该如何取值呢?学生可能会多取一些,也可能会想到将取值区间任意小,进一步讨论得出“任取”二字。 用对随着的理解再次深化函数概念,用对增大的理解得到要表示大小关系,最后再强调取值的任意性,这样就实现了从“图形语言”到 “文字语言”到 “符号语言”的过渡,实现“形”到“数”的转换,形成了单调性的定义。 得到定义后,再提出如何得到f(x1) (三)概念深化,延伸拓展 通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。 2提出问题四:能否说从这个例子能得到什么结论? 在它的定义域上是减函数? 学生思考、讨论,提出自己观点 学生可能会提出反例,如x1=-1,x2=1 进一步得出结论: 函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数 教师给出例子进行说明: 进一步提问: 函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数。 学生会提出将函数图象进行变形(如x<0时图象向下平移) 性 回归定义,强调任意 在问题四的背景下解决本题,体会在运动中满足任意性。拓展探究:已知函数 是(-∞,+∞)上的增函数,求a的取值范围.这个问题有一定难度,但是学生在前面集合的学习中已经接触过在运动中求参数a的取值范围,此处可看作是对前面学习的巩固。 (四)证法探究,应用定义 在概念已经完善的基础上,提出例1 例1:证明函数 在(0,+)上是增函数 本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。 学生根据单调性定义进行证明,教师在黑板上书写证明步骤,再引导学生总结证明步骤。 提出例2判断函数在(0,+∞)上的单调性。 根据定义进行判断,体会判断可转化成证明。 课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。 进一步提问:如果把(0,+∞)条件去掉,如何解这道题?为学生提供思考空间。 (五)小结评价,作业创新 从知识、方法两个方面引导学生进行总结。学生回顾函数单调性定义的探究过程;证明、判断函数单调性的方法步骤;数学思想方法。 小结过程使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义。 作业的设计实现了分层,既巩固了基础,又给了学生充足的思考空间。 通过本节课的学习,预计学生能理解单调性的定义,绝大多数学生能按照单调性的证明步骤进行证明,能判断函数的单调性,本节课的评价方式为课堂反馈、教师评价、学生自评相结合。 在本节课的设计中,我有一些新的尝试,在教学过程中,创设一个探索的学习环境,通过设计一系列问题,使概念得到形成和深化,学生亲身经历数学概念的产生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。在情境设置中,严格按照课标要求以二次函数y=x+1为例,经历画图、描述图象、找单调区间、形成单调性定义、证明其单调性的过程,将学生对单调性的认识从感性上升到理性,并将定义进行应用。五.板书设计 六.课堂评价 七.资源开发 2 函数的单调性 北京景山学校 许云尧 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到; (2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1:分别作出函数变化时,函数值有什么变化规律? 的图象,并且观察自变量 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ① ②若函数 ③若函数数. 在区间 和(2,3)上均为增函数,则函数 . . 在区间(1,3)上为增函④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 〖设计意图〗让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究: 上是增函数.(1)证明:函数在区间上是增函数的充要条件是对任意的,且 有. (2)研究函数 的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学方法和教学手段的选择 本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识. 四、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔. 激发兴趣,自主探索,模式构建---函数的单调性教学设计 陕西省三原县北城中学 慕建斌 一、教材分析 本节选自《普通高中课程标准实验教科书·数学(必修一)》(北师大版),第二章《函数》的第三节“函数的单调性”(第一课时).函数的单调性是函数最重要的性质,从初中开始学习函数就已经予以渗透,到高一刚开始学习函数,首先学习的函数性质就是函数单调性,因为对任何一个函数都必须研究函数的单调性,而且函数单调性是解决函数问题、方程问题、不等式问题最有力的工具,同时也是函数与导数研究的最重要工具.本节课是以具体函数一次函数、二次函数、反比例函数等为基础,抽象归纳出函数单调性的定义,并为高三利用导数研究函数的单调性奠定基础.本节课的设计基于以下考虑:一是如何把握这个过渡阶段的学习,在初中阶段对函数的增减性有了初步的感性认知,但在高中阶段就得升华为定量分析;二是如何处理好用数学符号语言来刻画函数单调性的概念;三是函数的单调性是学习不等式、极限、导数等其他数学知识的重要基础,也是常用方法之一.因此,本节课主要培养学生将图像语言转化为符号语言的能力、逻辑推理能力和数形结合思想的渗透.二、学情分析 本节课是在高一第一学期进行的,初中阶段已经学习了一次函数、二次函数、反比例函数,并认识了是函数单调性的语言描述,本节课重点是将这种语言描述如何转化为数学符号语言.但是,学生对知识的归纳、概括能力差,主动迁移能力较弱,数形结合的意识与思维还需要进一步培养.三、教学目标 结合本节课在教材中的地位及学情分析,可将本节课的教学目标定位如下: 1、通过实例,使学生理解单调性的概念,并能依据函数单调性的定义证明简单函数的单调性; 2、培养学生发现问题与解决问题的能力,通过观察—猜想—推理—证明的思想方法,进一步渗透数学思想; 3、与实际结合,引发学生对数学的欲望,激发学生的动手能力.依据本节课的教学目标可将本节课的重点和难点定为: 重点:函数单调性概念的形成、及其实质的理解.难点:如何将文字语言转化为数学语言符号.四、教学设计 (一)复习旧知识,引出新问题 问题1 初中已经学习过一次函数、二次函数等,请同学们画出一次函数yx2,二次函数yx的图像,观察图像说明图像从左到右是如何变化的? 2意图 通过函数图象,让学生直观认识函数是递增的、递减的图像特征.追问 由描点法画函数图象的过程可知,由于自变量的变化才引起函数值的变化,函数图像从左到右是上升的或者下降的,反映函数值随着自变量的变化怎样变化? 意图 通过图像直观感知函数值y随着自变量x的增大而增大(或减小)的过程.追问 函数yx2中,函数值y随自变量x是如何变化的? 意图 在区间(,0)内,y随x的增大而增大,在区间(0,+)内,y随x的增大而减小,体现单调性是对于区间而言的.问题2 函数值y随自变量x的增大而增大(或减小)只是语言描述,而数学符号语言是最简洁、最清楚地反映事物的本质属性,如何用准确的数学符号来反映这一现象? 意图 提出新问题,引出本节课的主题 (二)归纳探索,形成概念 问题3 首先,在x轴上,从左到右自变量在增大,如何用数学符号反映? 意图 自变量x取两个值x1、x2,当x1x2时,表示自变量在增大.问题4 若自变量x在x1、x2处的函数值分别为f(x1)、f(x2),那么自变量在增大,引起函数值在增大(或减小),如何用数学符号表示? 意图 当x1x2时,则f(x1)f(x2)(或f(x1)f(x2)) 问题5 在函数yx2中,自变量x从2增大到1,而相应的函数值则从-4增大到-1,能否说明函数yx在(2,1)是递增的? 意图 进一步说明函数的增减性是相对于区间而言的,同时也为自变量在区间内取值是任意的做铺垫.函数yx在区间(,220)上是递增的,在区间(0,)上也是递减的,但在其定义域内不能说是递增的或递减的.追问 自变量取两个具体的值时,函数值在增大(或减小),不能反映函数是递增的(或递减的),那么,如果自变量取三个、四个、„„甚至无数个值,函数值都是递增的(或递减的),是不是就能说明函数是递增的(或递减的)? 意图 自变量和因变量的区别就是取无数个值,函数都是递增的(或递减的),都不能说明函数是递增的(或递减的),比如对于函数f(x)x而言,若当 210.8……20.3时,有0f(1)f(0.8)…f(0.3)f(0.1),但是函数f(x)x在区间(1,0.1)上不是递增的.问题6 由上述问题及追问可知,自变量取两个值、三个值、四个值、甚至无数个值,函数值都在增大,却不能说明函数是递增的,那么自变量x应该怎样取值,才能保证满足上述条件时,函数f(x)是递增的(或递减的)? 意图 自变量的取值必须是区间内的任意两个数.这就类似于直线在垂直于平面内的无数条直线,都不能说明直线垂直于这个平面,只有直线垂直于平面内的两条相交直线,则直线就一定垂直于这个平面.这也是为后续学习这些内容做铺垫.问题7 结合上述问题的认识,你认为函数是递增的(或者递减的),需要抓住哪些关键因素? 意图 递增(或递减)是针对定义域内的某个区间;自变量x的取值必须是任意两个数x1、x2;当x1x2,则f(x1)f(x2)(或f(x1)f(x2)).问题8 函数是递增的、递减的应该如何定义更准确? 意图 在学生对增函数、减函数定义中的几个关键因素的必要性认识清楚后,自然得到增函数、减函数的定义,而且在今后利用其定义在解决问题时,对其关键因素也就认识到位、应用到位了.(三)实例应用,加深理解.问题9 函数yf(x)的图像如图所示,请写出该函数的增区间和减区间.意图 由于函数的单调性是针对区间而言的,因此先通过函数图像,让学生直观认识函数的单调区间,这也是函数图像和性质应用中的一个基本问题看,已知函数图像认识函数的单调区间.同时也为已知函数的单调性描绘函数图像做铺垫.问题10 说出函数f(x)=意图 函数f(x)=1的单调区间,并用单调性的定义加以证明.x1在整个定义域内不是减函数,进一步说明单调性是针对区间而言x的,同时熟悉函数单调性的定义,培养学生的逻辑推理能力,这也是进入高中阶段第一次进行代数推理.变式练习:证明函数f(x)=x+1在区间(0,1)上是减函数,在区间(1,+∞)上是增x函数. 意图:进一步加强单调性的定义,特别是在作差变形时,只有化为两个因式之乘积,才容易判断其值的正负,这也是利用函数单调性定义证明的关键.(四)归纳总结,提升层次 问题10 函数单调性定义中关键因素是什么?利用函数单调性定义证明时,作差之后的变形需要注意什么? 意图 对函数单调性定义中的关键因素的进一步熟悉,同时再利用函数单调性定义证明时,作差变形是关键.培养学生自己的知识体系,从开始就能有一定的构建能力.(五)作业布置,不断强化 习题2—3 A组 2、4、5.B组1、2.五、教学设计反思 函数单调性是函数中最重要的性质,对于这节课的理解与掌握情况如何,将直接影响着对函数的进一步学习,同时,函数单调性又是学生第一次接触代数推理问题,所以,无论从哪个角度说,这节课都是非常关键,也非常重要的.基于以上考虑,为了让学生能够很好的理解本节课,采用问题发现式教学法,通过设计环环相扣的问题,让学生在分析问题、解决问题的过程中,对函数单调性定义及其关键要素的必要性的理解.如自变量的增大如何用数学符号表示,自变量增大引起函数值增大又如何用数学符号表示,对自变量取值为什么是“任意的”,单调性是相对区间而言的,等等,通过逐层深入的分析、讨论,让学生认识到知识的产生、发展过程,从而领会知识的实质.在练习巩固问题的设计上,先通过直观感知,让学生认识单调区间,在对其进行证明,特别是在利用函数单调性证明时,先是通过简单问题,让学生熟悉代数推理的思路,再逐渐增加试题难度,证明函数f(x)=x+1的单调性,主要是在单调性定义证明时,作差变形是x关键,只有化为因式之乘积,才容易判断其正负,这是对作差比较大小思路方法的复习,更重要的是体现数学解题方法的连贯性.第三篇:必修1函数单调性说课稿
第四篇:高中数学必修一函数的单调性教学设计
第五篇:高一必修一函数单调性教学设计