CPU供电电路原理及检修流程

时间:2019-05-12 14:05:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《CPU供电电路原理及检修流程》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《CPU供电电路原理及检修流程》。

第一篇:CPU供电电路原理及检修流程

CPU供电电路原理及检修流程

显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00,主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。

CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。

场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。

一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。

电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。

整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。

主板空载: o主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。

所以主板在空载的情况下,只会输出以上几个不同的电压值。即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。

主板插上CPU: 6 M当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。其具体工作原理如下:当主板在加电的瞬间,12V、5V、3.3V等电压进入主板,这时CPU的5个电压 识别管脚就会提供固定的一组电压识别指令,给电源管理器,电源管理器在供电和VID信号的作用下,其芯片内部电路完全工作。当电源管理器的高端门向场效应管Q1的栅极(G极)输出高电平,此时Q1导通,同时,电源管理器的低端门向场效应管Q2栅极(G极)输出低电平,Q2截止。电源Vcc的5V通过Q1调整,由电感电容滤波加入负载CPU,这时电感L2产生一个感应电动势(左正、右负),阻止电流增大,电感这时处于一个储能状态,电感具滤波储能的作用,当Q1截止,Q2导通,电感为阻止电流变小,也会产生一个感应电动势(左负、右正),给电容充电。当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电感的电流或电压增大,最容易烧坏我们的场效应管,当下一周期到来时,重复上面的动作,这样周而复始,CPU就会得到恒定的电压能量。因此,通过Q1,Q2的导能和截止,电感和电容滤波整流,产生CPU所需要的稳定电压。D这就是它的一个整体的工作流程。这是多项供电中的供电中的单项原理,370主板接口的内核电压1.5V和2.5V的产生,各个主板是不同的1、直接通过电源管理芯片外的电阻产生,一般1.5V电流比较大,不会使用这种方法 2、电源管理芯片输出并控制场效应管G极和三极管B极,一般在场效应管D极或三极管C极上接5V或是3.3V电压,S极输出。

3、1.5V与2.5V线性模块降压等得到,一般输入电压为3.3V。

478的CPU只有一个供电

CPU通过电源识别管脚告诉电源管理芯片所需要的电压,电源管理芯片控制场效应管,通过电感,电容产生CPU所需要的电压。在478中,CPU需要电流很大,一对场效应管不能满足要求,需要并联4个或6个场效应管,俗称多项供电。像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。' ^在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电。主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常。在主板的Q1X极,场效应管的X极就可以测定供电是是否正常。将万用表打在直流20V档上,红表笔接地,黑表笔点测试点Q2的D极或者说点Q1的X极;或者点电感线圈L2,即可判断出供电电压是否正常。那哪个才是Q1哪个才是Q2,Q1D极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄SE12V里面天蓝科技,另一支去连接Q1的D极,点哪个D极,响有蜂鸣声哪个就是Q1。& `当找到Q1,那Q2就容易找到,当我们确定Q1以后,红表笔点入Q1的X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,那就可以确定出它的单组供电,确定出一项供电。x那像有些主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU高功耗的需求,使功率达到80瓦,工作电流达到50A,i采用多项供电不仅可以为CPU提供足够可靠的电能天蓝科技,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极(G极),另一支表笔和旁边的芯片去连接一下,连通以后即可知道它是不是电源管理芯片。找到电源管理芯片,就不用找电压识别管脚。

如何检修CPU供电路:

1、测Q1的D极5V或12V,他是由ATX电源的红色5V或黄SE12V直接提供。如果不正常,查电源红线或黄SE线到D极。如果正常,进行下一步工作。

2、测Q1的G极3~5V控制电压,由电源管理芯片提供,如果正常,场效应管坏,更换场效应管。如果不正常,把Q1的G极悬空,测电源芯片的输出端电压。

3、测电源芯片输出电压,如果没输出,查电源芯片的供电12V或5V,由ATX电源提供,如果没有供电,查相关线路。如果有供电,换电源芯片。

4、测PG电源源好5V(电源灰线),如果正常,换电源芯片,如果不正常,更换与电源灰线

相连的芯片。

注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。一般在1.5,2.5V都有情况,主供电如果没有,一般是Q1或Q2、D1损坏比较多。在有2.5V主供电的情况下,如果1.5V没有,百分之八十是控制

1.5V输出场效应管损坏;如果有2.5V不输出的话,与修1.5V同样;如果1.5V,2.5V主供电同时没有,而且电源芯片供电正常时(12V、5V),百分之八十是芯片坏了。?由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。所以要检修中不要盲目的去折看供电电路中的场效应管,可用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。这就是整个CPU供电电路的检修流程。

CPU不工作,测试卡只跑00、CF、C0、FF等。不能跑到C1:

y但有些朋友还问,为什么CPU供电都正常了,为什么测试卡还是跑FF或00呢,为什么CPU还没有工作呢?这可就要按我们的维修规则了,先修供电,再修时钟,后修复位。就算你CPU供电正常了,但时钟不正常或复位不正常,也会导致CPU不工作南桥没供电,供电偏高或偏低,也会导致CPU不工作。北桥没供电,供电偏高或仿低,也会导致CPU不工作。南桥、北桥虚焊、不良,也会导致CPU不工作,: d内存没供电也会导致CPU不工作(相对板来说)。CPU座的数据线,如果有一条和北桥开路,或短路,也会导致CPU不工作。最好有一个CPU灯座,放到CPU插座上,一通电,就知道哪条数据线开路,短路等,总比你一根根的去量CPU的数据线。

CPU频率跳线不对,也会不工作

BIOS坏CPU也会不工作,对于CPU不工作的原因还有很多,修主板前装先准备一套好的东西:电源、CPU、内存、显卡、风扇、数据线、硬盘还有一个好的系统。先用最小系统法和代换法,把故障确定在那里,然后再检修,因为很多人都犯这个错误,不会判断、不知道故障出在那里,就知道乱叫。以下所有的关键测试点,如果发现有不正常的,就沿着不正常的点去跑电路,把故障找出来。如果你熟悉主板所有工作电路的工作原理的话,你就能很快的把相关故障找出来。新手平常多学跑电路,和学习几大电路的工作原理,视频都有。

一、初步工作:询问用户:

主板在出现故障前的状况,工作的状态,什么原因造成的故障

主板工作时在何种坏境中出现故障,故障的规律性等等。目测法观察:主板上的电容是否有鼓包、漏液或严重损坏,是否有被烧焦的芯片以及各电子元件,PCB板有无断线,割坏

各插糟有无明显损坏、内异物造成短路等。

被别人焊接过的地方

然后注意要把主板上的灰尘扫干净。

电阻测量:

测量电源接口的5V、12V、3V等对地阻值是否正常,.如果没有对地短路,就可进行下一步工作

如果阻值偏小,主板可能有短路的地方。

二、加电测试:

插好ATX电源、上好CPU假负载,插好测试卡

用手触摸各芯片元件有无发烫,太烫短路,太凉开路。

测主板上的各大供电路是否正常。

测CPU:

主供电1.7V

内核供电1.5V,外核供电2.5V

PG信号好2.5V,SLOT的3.3V

时钟供电1.1~1.6V复位电压跳变1.6V~0V

测旁边的供电管:

北桥:1.2V、1.5V、1.8V、2.5V、2.6V、3.3V。

南桥:3.3V、1.5V

AGP:12V、5V、3.3V

内存:2.5V、3.3V

内存排阻1.2V.不同结构的主板有不同的供电,这个要靠平常维修中记住。

还有,以上各电压的高一点或低一点,都会引起主板的工作不稳定。

在平常维修主板时,遇到正常的板,测电压时就要多留个心眼记一下正常的工作电压。CPU无电压或电压不正常:

量场效应管有无损坏

量电源芯片工作电压12V或5V

量场效应管控制极与IC之间的连线4 V:

换电源芯片或场效应管,无时钟:

量时钟发生器的供电3.3V和2.5V

看14.318MHz晶振有无波形

更换时钟芯片

无复位:

量Reset排针电压是否够高

量时钟IC有无时钟输出

查排针往门电路或南桥的连线

南桥坏

CPU电压值不对

量VID线有无开路或短路

三、插上CPU通电

CPU不工作,测试卡只跑00、CF、C0、FF等。

不能跑到C

1查CPU的三大工作条件:

供电、时钟、复位

看BIOS有无片选信号:

有片选

换BIOS,或用编程器刷BIOS

量BIOS数据线、复位、时钟,把BIOS拨下量

量PCI的AD线

量CPU的HD,HA线或排阻

无片选:

量PCI的Frame

如无帧信号再量CPU的ADS#和DBSY

如有ADS或DBSY而无CPI之帧信号则北桥芯片可能坏

如有帧信号则南桥可最终量CPU之HA、HD和PCI的AD来确定南桥或北桥好坏 无CPU复位,包括复位不动作

量HWBlink总线

南桥北桥

四、插上内存

测试卡跑C1、C3、C6、d3、A7、AD、E0、E1、E3等代码:

内存插糟不良

量内存工作电压

量内存时钟

量MA、MD

量CPU旁边的排阻

北桥坏量DDR的负载排阻和数据排阻

SMBDARA、SMBCLK

C1~C5循环跑07、0

532.768是否OK,有无杂波

IO坏,LA、LD

IO与南桥的连线

南桥

BIOS坏

刷BIOS

跑0b:

换BIOS

量HD的数据线

跑b0:

量内存的数据负电压1.25V或2.5V

清CMOS

量北桥的供电

北桥坏

跑24、25:

量AGP工作电压4X为1.5V,北桥坏

五、插上显卡:

跑0b:量74F244可编程跑龙套的供电,即倍频调节

74F244坏

PCI糟之间的电阻和排阻

跑2d:

量AGP糟之AD线

查INTR讯号

查北桥供电

北桥芯片坏

跑26:

刷BIOS或换BIOS

时钟发生器不良

查北桥供电+

清除CMOS

北桥坏

跑50:

查IO供电+

查IO不良

查南桥和南桥供电

查北桥供电

41刷BIOS或换BIOS

量BIOS的数据线有无短路

量MD和HD有无短路

六、鼠标、键盘口死机,不能用

查供电5V,阻值500欧左右查数据线5V,阻值500欧左右 排容或电容漏电,电感线圈坏!

排阻坏

IO坏南桥坏

七、检测不到硬盘

查硬盘接口、复位,数据线。

南桥不良

看IDE接口到南桥之间的电路有问题

排容、排阻'

八、按F1死机:

查北桥供电

南桥不良

北桥不良

九、不能进系统查BIOS查南桥旁边电阻、排阻

查南桥

十、引导成功,出现LogoF死机,不稳定查时钟发生器 查IO不良查南桥不良

查亲桥不良各参考电压偏低

十一、显卡无法装驱动即不能装颜色 量AGP之INIT有无断线, 量AGP之INTR有无断线

北桥供电或北桥不良

第二篇:CPU供电电路原理及检修

CPU供电电路原理及检修

2009-08-14 信息来源:PC急救网

视力保护色:【大 中 小】【打印本页】【关闭窗口】显示器点不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。

CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。

场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。

一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。

整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。

主板空载:主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。

所以主板在空载的情况下,只会输出以上几个不同的电压值。即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。

主板插上CPU:当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。

其具体工作原理如下:当主板在加电的瞬间,12V、5V、3.3V等电压进入主板,这时CPU的5个电压 识别管脚就会提供固定的一组电压识别指令,给电源管理器,电源管理器在供电和VID信号的作用下,其芯片内部电路完全工作。

当电源管理器的高端门向场效应管Q1的栅极(G极)输出高电平,此时Q1导通,同时,电源管理器的低端门向场效应管Q2栅极(G极)输出低电平,Q2截止。

电源Vcc的5V通过Q1调整,由电感电容滤波加入负载CPU,这时电感L2产生一个感应电动势(左正、右负),阻止电流增大,电感这时处于一个储能状态,电感具滤波储能的作用,当Q1截止,Q2导通,电感为阻止电流变小,也会产生一个感应电动势(左负、右正),给电容充电。

当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电感的电流或电压增大,最容易烧坏我们的场效应管,当下一周期到来时,重复上面的动作,这样周而复始,CPU就会得到恒定的电压能量。因此,通过Q1,Q2的导能和截止,电感和电容滤波整流,产生CPU所需要的稳定电压。

这就是它的一个整体的工作流程。这是多项供电中的供电中的单项原理,370主板接口的内核电压1.5V和2.5V的产生,各个主板是不同的1、直接通过电源管理芯片外的电阻产生,一般1.5V电流比较大,不会使用这种方法

2、电源管理芯片输出并控制场效应管G极和三极管B极,一般在场效应管D极或三极管C极上接5V或是3.3V电压,S极输出。

3、1.5V与2.5V线性模块降压等得到,一般输入电压为3.3V。

478的CPU只有一个供电CPU通过电源识别管脚告诉电源管理芯片所需要的电压,电源管理芯片控制场效应管,通过电感,电容产生CPU所需要的电压。在478中,CPU需要电流很大,一对场效应管不能满足要求,需要并联4个或6个场效应管,俗称多项供电。

像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。

在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。

在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电 主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常

在主板的Q1X极,场效应管的X极就可以测定供电是是否正常。将万用表打在直流20V档上,红表笔接地,黑表笔点测试点Q2的D极或者说点Q1的X极;或者点电感线圈L2,即可判断出供电电压是否正常。

那哪个才是Q1哪个才是Q2,Q1D极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄SE12V里面,另一支去连接Q1的D极,点哪个D极,响有蜂鸣声哪个就是Q1。

当找到Q1,那Q2就容易找到,当我们确定Q1以后,红表笔点入Q1的X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,那就可以确定出它的单组供电,确定出一项供电。

那像有些主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU高功耗的需求,使功率达到80瓦,工作电流达到50A。

采用多项供电不仅可以为CPU提供足够可靠的电能,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。

怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极(G极),另一支表笔和旁边的芯片去连接一下,连通以后即可知道它是不是电源管理芯片。找到电源管理芯片,就不用找电压识别管脚。

如何检修CPU供电路:

1、测Q1的D极5V或12V,他是由ATX电源的红色5V或黄SE12V直接提供。如果不正常,查电源红线或黄SE线到D极。如果正常,进行下一步工作。

2、测Q1的G极3~5V控制电压,由电源管理芯片提供,如果正常,场效应管坏,更换场效应管。如果不正常,把Q1的G极悬空,测电源芯片的输出端电压。

3、测电源芯片输出电压,如果没输出,查电源芯片的供电12V或5V,由ATX电源提供,如果没有供电,查相关线路。如果有供电,换电源芯片。

4、测PG电源源好5V(电源灰线),如果正常,换电源芯片,如果不正常,更换与电源灰线相连的芯片。

注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。

一般在1.5,2.5V都有情况,主供电如果没有,一般是Q1或Q2、D1损坏比较多。在有

2.5V主供电的情况下,如果1.5V没有,百分之八十是控制1.5V输出场效应管损坏;如果有2.5V不输出的话,与修1.5V同样;如果1.5V,2.5V主供电同时没有,而且电源芯片供电正常时(12V、5V),百分之八十是芯片坏了。

由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。所以要检修中不要盲目的去折看供电电路中的场效应管,可用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。这就是整个CPU供电电路的检修流程。

CPU不工作,测试卡只跑00、CF、C0、FF等。不能跑到C

1但有些朋友还问,为什么CPU供电都正常了,为什么测试卡还是跑FF或00呢,为什么CPU还没有工作呢?这可就要按我们的维修规则了,先修供电,再修时钟,后修复位。

就算你CPU供电正常了,但时钟不正常或复位不正常,也会导致CPU不工作

南桥没供电,供电偏高或偏低,也会导致CPU不工作。

北桥没供电,供电偏高或仿低,也会导致CPU不工作。

南桥、北桥虚焊、不良,也会导致CPU不工作

内存没供电也会导致CPU不工作(相对板来说)。

CPU座的数据线,如果有一条和北桥开路,或短路,也会导致CPU不工作。最好有一个CPU灯座,放到CPU插座上,一通电,就知道哪条数据线开路,短路等,总比你一根根的去量CPU的数据线。

CPU频率跳线不对,也会不工作。BIOS坏CPU也会不工作,对于CPU不工作的原因还有很多

第三篇:CPU供电电路原理及检修流程学习

主板维修资料 之《CPU供电电路原理及检修流程》

显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。

CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。

场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。

一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。

电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。

整个工作流程:

主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。

主板空载:

主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。

根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。

所以主板在空载的情况下,只会输出以上几个不同的电压值。即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。

主板插上CPU:

当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。:

其具体工作原理如下:

当主板在加电的瞬间,12V、5V、3.3V等电压进入主板,这时CPU的5个电压 识别管脚就会提供固定的一组电压识别指令,给电源管理器,电源管理器在供电和VID信号的作用下,其芯片内部电路完全工作。

当电源管理器的高端门向场效应管Q1的栅极(G极)输出高电平,此时Q1导通,同时,电源管理器的低端门向场效应管Q2栅极(G极)输出低电平,Q2截止。

电源Vcc的5V通过Q1调整,由电感电容滤波加入负载CPU,这时电感L2产生一个感应电动势(左正、右负),阻止电流增大,电感这时处于一个储能状态,电感具滤波储能的作用,当Q1截止,Q2导通,电感为阻止电流变小,也会产生一个感应电动势(左负、右正),给电容充电。

当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电感的电流或电压增大,最容易烧坏我们的场效应管,当下一周期到来时,重复上面的动作,这样周而复始,CPU就会得到恒定的电压能量。因此,通过Q1,Q2的导能和截止,电感和电容滤波整流,产生CPU所需要的稳定电压。这就是它的一个整体的工作流程。这是多项供电中的供电中的单项原理,370主板接口的内核电压1.5V和2.5V的产生,各个主板是不同的1、直接通过电源管理芯片外的电阻产生,一般1.5V电流比较大,不会使用这种方法)

2、电源管理芯片输出并控制场效应管G极和三极管B极,一般在场效应管D极或三极管C极上接5V或是3.3V电压,S极输出。

3、1.5V与2.5V线性模块降压等得到,一般输入电压为3.3V。

478的CPU只有一个供电

CPU通过电源识别管脚告诉电源管理芯片所需要的电压,电源管理芯片控制场效应管,通过电感,电容产生CPU所需要的电压。在478中,CPU需要电流很大,一对场效应管不能满足要求,需要并联4个或6个场效应管,俗称多项供电。

像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。

在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电。

主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常。

在主板的Q1X极,场效应管的X极就可以测定供电是是否正常。将万用表打在直流20V档上,红表笔接地,黑表笔点测试点Q2的D极或者说点Q1的X极;或者点电感线圈L2,即可判断出供电电压是否正常。

那哪个才是Q1哪个才是Q2,Q1D极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄SE12V里面,另一支去连接Q1的D极,点哪个D极,响有蜂鸣声哪个就是Q1。

当找到Q1,那Q2就容易找到,当我们确定Q1以后,红表笔点入Q1的X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,那就可以确定出它的单组供电,确定出一项供电。

那像有些主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU高功耗的需求,使功率达到80瓦,工作电流达到50A。

采用多项供电不仅可以为CPU提供足够可靠的电能,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。

怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极(G极),另一支表笔和旁边的芯片去连接一下,连通以后即可知道它是不是电源管理芯片。找到电源管理芯片,就不用找电压识别管脚。

如何检修CPU供电路:

1、测Q1的D极5V或12V,他是由ATX电源的红色5V或黄SE12V直接提供。如果不正常,查电源红线或黄SE线到D极。如果正常,进行下一步工作。

2、测Q1的G极3~5V控制电压,由电源管理芯片提供,如果正常,场效应管坏,更换场效应管。如果不正常,把Q1的G极悬空,测电源芯片的输出端电压。

3、测电源芯片输出电压,如果没输出,查电源芯片的供电12V或5V,由ATX电源提供,如果没有供电,查相关线路。如果有供电,换电源芯片。

4、测PG电源源好5V(电源灰线),如果正常,换电源芯片,如果不正常,更换与电源注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。

一般在1.5,2.5V都有情况,主供电如果没有,一般是Q1或Q2、D1损坏比较多。在有2.5V主供电的情况下,如果1.5V没有,百分之八十是控制1.5V输出场效应管损坏;如果有2.5V不输出的话,与修1.5V同样;如果1.5V,2.5V主供电同时没有,而且电源芯片供电正常时(12V、5V),百分之八十是芯片坏了。

由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。所以要检修中不要盲目的去折看供电电路中的场效应管,可用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。这就是整个CPU供电电路的检修流程。

CPU不工作,测试卡只跑00、CF、C0、FF等。不能跑到C

1但有些朋友还问,为什么CPU供电都正常了,为什么测试卡还是跑FF或00呢,为什么CPU还没有工作呢?这可就要按我们的维修规则了,先修供电,再修时钟,后修复位。就算你CPU供电正常了,但时钟不正常或复位不正常,也会导致CPU不工作)

南桥没供电,供电偏高或偏低,也会导致CPU不工作。

北桥没供电,供电偏高或仿低,也会导致CPU不工作。

南桥、北桥虚焊、不良,也会导致CPU不工作

内存没供电也会导致CPU不工作(相对板来说)。

CPU座的数据线,如果有一条和北桥开路,或短路,也会导致CPU不工作。最好有一个CPU灯座,放到CPU插座上,一通电,就知道哪条数据线开路,短路等,总比你一根根的去量CPU的数据线。

CPU频率跳线不对,也会不工作

BIOS坏CPU也会不工作

对于CPU不工作的原因还有很多,这些需要大家在维修经验中慢慢总结。

没电路基础的朋友,不会测电子元件的朋友请下载《电子电路基础》

开始学主板维修的朋友,请下载《主板知识与维修工具》.没有一套主板维修思路与方法的朋友,请下载《主板维修方法》《主板维修思路》

想学焊接的朋友也下载《帖片元件焊接指南》

还有新CPU针脚图:775、754、939、940

DDR2台式机内存测试点

第四篇:主板维修教程之CPU供电电路原理及检修

主板维修教程之CPU供电电路原理及检修.txt两人之间的感情就像织毛衣,建立的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。主板维修教程之CPU供电电路原理及检修 显示器在不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏的一个区域,它损坏后测试卡显示FF00。主板可以加电,但CPU不工作,因为CPU需要一个稳定供电电流,才能工作。

CPU主供电损坏的特征,如一些网吧的,个人用户,单位用户可以很明显的看到周围电容鼓包漏液,电容防爆槽爆开,接到这样的主板,首先将鼓包漏液的电容进行更换,更换的耐压值可以大一点,容量可以误差不超过20%。

场效应管击穿,用万用表打在蜂鸣档上就可以判断出是哪个场效应管击穿。通过测ATX电源的接口对地数值也可以判断出来是5V不是12V击穿根据电容的特征去修。

一般CPU主供电电路所有与之相关电路都设置在CPU插座附近。不会在主板上的任何地方设置它的主供电电路。电压识别管脚VID0—VID4,也就是说CPU需要量多大的电压,需要多大的电流。如P3的CPU需要的电压稍高,P4CPU需要的电压比较低,针对不同频率的CPU需要的电压也是一样的,所以这个主板CPU需要多大的电压必需要将自己的信息告诉电源管理芯片,电源管理芯片经过内部编程之后,输出CPU所需要正确电压。相知道CPU供电电压是多少,自己去下载CPU底视图,里面有教你如何测CPU供电。

整个工作流程:主电的产生,电路由电源控制芯片(CPU的供电芯片U1)、声效应管(其中场效应管Q1是起电压调整作用,Q2为续流稳压作用),滤波电容(C1~CN)、电感(L1、L2)、稳压二极管(D)和一些帖片电阻电容元件等构成。其中电源控制器的供电为12V,由ATX电源的黄线直接提供。场效应管的供电为5V,由ATX电源红线提供(P4以上的主板由附加电源共色线提供12V)。

主板空载:主板空载,就是主板在未装CPU的情况下,按PS—ON键,U1由于得到一个12V供电电压,控制场效应管通过电感、电容会产生一个功率很低的主电压或者U1不工作,这时电压输出为零,其主要原因是CPU没有提供一个电压识别信号,来控制电源管理器产生CPU所需要的电压。根据不同品牌不同型号的主板,此电压值一般有以下几种可能:0.?V、1.?V、2.0V、5.0V。原因是因为在未装CPU的情况下,电源控制器的电压识别管脚(VID0~~VID4)没有得到CPU加过来的电压识别指令,无电平信号。所以电源控制器芯片内部电路就不能完全工作,也就是说电源控制器输出时不知把该电压控制在多少伏,同时电源控制器也不会向场效应管的G极输出脉冲控制电压,场效应管就不会工作。

所以主板在空载的情况下,只会输出以上几个不同的电压值。即使偶尔在空载时,能测出2.0V电压值,此时的电压功率也是很小的,因为场效应管没有完全工作。

主板插上CPU:当主板装上CPU之后,CPU的5个电压识别管脚就会自动的固定一组电压识别指令信号,将电平信号加到电源控制器的电压识别引脚上,这时电源控制器内部电路就会完全工作,然后根据CPU加来不同的电压识别指令信号,氢电压自动的调整在CPU工作时所需要的电压。它是通过向场效应管G极输出脉冲控制电压,让两个场效应管轮流导通,使其工作在开关状态。

其具体工作原理如下:当主板在加电的瞬间,12V、5V、3.3V等电压进入主板,这时CPU的5个电压 识别管脚就会提供固定的一组电压识别指令,给电源管理器,电源管理器在供电和VID信号的作用下,其芯片内部电路完全工作。

当电源管理器的高端门向场效应管Q1的栅极(G极)输出高电平,此时Q1导通,同时,电源管理器的低端门向场效应管Q2栅极(G极)输出低电平,Q2截止。

电源Vcc的5V通过Q1调整,由电感电容滤波加入负载CPU,这时电感L2产生一个感应电动势(左正、右负),阻止电流增大,电感这时处于一个储能状态,电感具滤波储能的作用,当Q1截止,Q2导通,电感为阻止电流变小,也会产生一个感应电动势(左负、右正),给电容充电。

当Q1属于截止状态的时候它内部存储的电容经过CPU消耗以后经过Q2形成一个回路,Q2在这个位置主要起到一个储留和保护的作用。往往它这个特定的作用决定它不是一个容易受损坏的一个元件,当这个电感的电流或电压增大,最容易烧坏我们的场效应管,当下一周期到来时,重复上面的动作,这样周而复始,CPU就会得到恒定的电压能量。因此,通过Q1,Q2的导能和截止,电感和电容滤波整流,产生CPU所需要的稳定电压。

这就是它的一个整体的工作流程。这是多项供电中的供电中的单项原理,370主板接口的内核电压1.5V和2.5V的产生,各个主板是不同的1、直接通过电源管理芯片外的电阻产生,一般1.5V电流比较大,不会使用这种方法

2、电源管理芯片输出并控制场效应管G极和三极管B极,一般在场效应管D极或三极管C极上接5V或是3.3V电压,S极输出。

3、1.5V与2.5V线性模块降压等得到,一般输入电压为3.3V。

478的CPU只有一个供电CPU通过电源识别管脚告诉电源管理芯片所需要的电压,电源管理芯片控制场效应管,通过电感,电容产生CPU所需要的电压。在478中,CPU需要电流很大,一对场效应管不能满足要求,需要并联4个或6个场效应管,俗称多项供电。

!像现在的CPU供电电路,一般是三对场效应管,这属于多项工作原理,三组供电,在现在一般的CPU工作功率达到了80瓦,所需要的电流是非常大的。这时为CPU能在高频大电流下稳定的运行,稳定的工作,必需采用多项供电,那这就是多项供电中的单项工作原理。

在以后遇到主板,检修CPU主供电电路的时候,同样只要会单项中的原理,多项供电检修原理是一样的。

。在主板插上CPU以后,测示卡显示的是FF00,那就证明CPU没有工作,CPU没有工作,第一个检查的就是它的工作条件——供电 主板上的所有设备,要想保证其工作稳定或工作正常,首要问题就是它的动力源也就是供电源必需,其次时钟也就是芯脉跳动必需正常,检修它的复位是否正常。

在主板的Q1X极,场效应管的X极就可以测定供电是是否正常。将万用表打在直流20V档上,红表笔接地,黑表笔点测试点Q2的D极或者说点Q1的X极;或者点电感线圈L2,即可判断出供电电压是否正常。

那哪个才是Q1哪个才是Q2,Q1D极接的是红色5V或者12V,这时将万用表打在蜂鸣档上,一支表笔放在ATX电源的黄SE12V里面,另一支去连接Q1的D极,点哪个D极,响有蜂鸣声哪个就是Q1。

当找到Q1,那Q2就容易找到,当我们确定Q1以后,红表笔点入Q1的X极,黑表笔在它旁边找跟Q2的地极哪个相连或蜂鸣,那就可以确定出它的单组供电,确定出一项供电。

那像有些主板它属于三相供电,在主板中多项供电也主是单项供电的并联,为了增大电流采取了并联关系,现在多数主板的供电电路都采用了两项电路,或多项设计,用力满足CPU高功耗的需求,使功率达到80瓦,工作电流达到50A。

采用多项供电不仅可以为CPU提供足够可靠的电能,还可通过分流的使作用使每项场效应管的负载减少,为主板的稳定运行创造一个良好的工作环境,三项供电电路采用Intel公司一个特定的工作模式。

怎么样才能找到CPU供电电路中的电源管理芯片?只要确定出一项供电以后,用万用表打在蜂鸣档上,一支表笔接差场效应管Q1控制极(G极),另一支表笔和旁边的芯片去连接一下,连通以后即可知道它是不是电源管理芯片。找到电源管理芯片,就不用找电压识别管脚。如何检修CPU供电路:

1、测Q1的D极5V或12V,他是由ATX电源的红色5V或黄SE12V直接提供。如果不正常,查电源红线或黄SE线到D极。如果正常,进行下一步工作。

2、测Q1的G极3~5V控制电压,由电源管理芯片提供,如果正常,场效应管坏,更换场效应管。如果不正常,把Q1的G极悬空,测电源芯片的输出端电压。

3、测电源芯片输出电压,如果没输出,查电源芯片的供电12V或5V,由ATX电源提供,如果没有供电,查相关线路。如果有供电,换电源芯片。

4、测PG电源源好5V(电源灰线),如果正常,换电源芯片,如果不正常,更换与电源灰线相连的芯片。

注:常坏是电源控制芯片和场效应管以及R1限渡电阻,一般CPU供电中15V,主供电会无输出时,电源控制芯片坏的可能性最,如果具有基某中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的1.5V输出)。

一般在1.5,2.5V都有情况,主供电如果没有,一般是Q1或Q2、D1损坏比较多。在有

2.5V主供电的情况下,如果1.5V没有,百分之八十是控制1.5V输出场效应管损坏;如果有

2.5V不输出的话,与修1.5V同样;如果1.5V,2.5V主供电同时没有,而且电源芯片供电正常时(12V、5V),百分之八十是芯片坏了。

由于主供电电路中的采用的是多项并联的关系,它每单项的供电,单项场效应管损坏,都会导致整个CPU供电电路的不稳定。所以要检修中不要盲目的去折看供电电路中的场效应管,可用断路法来排除,首先将场效管断开一组,然后再判断其好坏这个就是CPU主供电电路的检修流程。这就是整个CPU供电电路的检修流程。

CPU不工作,测试卡只跑00、CF、C0、FF等。不能跑到C

1但有些朋友还问,为什么CPU供电都正常了,为什么测试卡还是跑FF或00呢,为什么CPU还没有工作呢?这可就要按我们的维修规则了,先修供电,再修时钟,后修复位。

就算你CPU供电正常了,但时钟不正常或复位不正常,也会导致CPU不工作

南桥没供电,供电偏高或偏低,也会导致CPU不工作。

北桥没供电,供电偏高或仿低,也会导致CPU不工作。

南桥、北桥虚焊、不良,也会导致CPU不工作

内存没供电也会导致CPU不工作(相对板来说)。

CPU座的数据线,如果有一条和北桥开路,或短路,也会导致CPU不工作。最好有一个CPU灯座,放到CPU插座上,一通电,就知道哪条数据线开路,短路等,总比你一根根的去量CPU的数据线。

CPU频率跳线不对,也会不工作。BIOS坏CPU也会不工作,对于CPU不工作的原因还有很多,这些需要大家在维修经验中慢慢总结。

CPU 主供电的检修流程图

注:常坏的元器件是电源控制芯片和场效应管以及R1限流电阻,一般CPU供电中15V,25V,主供电全无输出时电源控制芯片损坏的可能性最大,如果只有其中一项输出不正常,则是输出此项的场效应管坏的最多(如Q3的15V输出)。

第五篇:电脑主板CPU供电电路原理图解

电脑主板CPU供电电路原理图解 一.多相供电模块的优点

1. 可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。2. 可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。3. 利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。

二.完整的单相供电模块的相关知识

该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。

图1单相供电电路图

主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。

小知识

场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。

PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。

实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2 主板上的电感线圈和场效应管

了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。

三.判断方法

1. 一个电感线圈、两个场效应管和一个电容构成一相电路。

这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

图3一个电感线圈和两个场效应管组成一相回路 该图是一个两相供电电路,其中一个电感线圈和两个场效应管组成一相回路。这是最常见的,也是最为标准的一种供电模式。

2.电感线圈数目减一等于相数。

由于许多主板有CPU辅助供电电路,其第一级电感线圈也做在附近,所以,有了电感线圈数目减一等于相数的说法。但对于没有CPU辅助供电的主板,这种方法就不太适用。

图4 带有辅助供电电路的主板 该图所示的是一个两相供电电路,最左面的那个电感线圈是单独用来给CPU供电的(既第一级电感线圈),所以三个电感线圈减一即为两相供电。

查看PWM芯片编号

PWM芯片一般位于电感线圈或场效应管的周围,该芯片的功能在出厂的时候都已经确定,如一个两相的控制芯片是不可能用在三相的供电电路上。所以查询主板使用的PWM控制芯片的型号,就可以知道主板采用几相供电了。

PWM芯片设计厂商众多,大约有一百多家,包括IGS、CMA、ITE、CW、Winbond、Atmel、SANYO、Intersil以及Richtek等 两相的控制芯片Richtek RT9241 注:有的控制芯片是有一定的弹性的,比如Richtek RT9237就是一个2-4相的控制芯片。这时我们需要通过观察元器件数量,才能最终判断是几相供电回路。这种方法应该是最为简易,也最为准确的。

两相和三相或多相的到底孰优孰劣?

笔者认为主板几相供电并不重要,贵在设计和用料的选择。

1.一个合理的电路设计应该考虑诸多因素,如信号的稳定性、干扰、散热等。如果一个三相回路的设计仅仅只是为了实现大功率的电流转换分配,忽视了电源的稳定性,因而产生了大幅度纹波干扰等情况的副作用,那它必然是个失败的设计!

2.同样设计下的三相供电理论上优于两相供电。

3.从电路工作原理上来讲,电源做的越简单越好。从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。这样多相供电的系统就更容易出现问题,所以选料用料对多相供电电路来说就更为重要。

不过,我们没有必要怀疑两相供电的稳定性,只要稳定、设计合理,没有理由拒绝两相供电的产品。

我们经常会听到主板供电回路的相数、电容、电感线圈和场效应管(MOS管)等这些关键词,可对这神秘的供电电路部分,你又知道多少呢?我们这里谈的主板供电系统,一般是指CPU、内存和显卡供电单元。CPU供电单元是大家经常接触到的,我们平时所说的N相供电指的就是CPU供电,同时CPU供电电路也是整个主板中最重要的供电单元,这部分的品质好坏,直接关系着系统的稳定性。阅读完本文您将对主板供电模块有一个更加深刻的了解

这就是一个单相供电系统:由ATX电源提供的+12V电源输入后,先通过由一个电感线圈和电容组成的L1振荡电路进行滤波处理,然后经过PWM控制芯片与两个晶体管,导通后达到需要的输出电压,再经过L2和C2组成的滤波电路后,就可以达到CPU所需要的Vcore了。从电路工作原理上来讲,电源做的越简单越好。从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。所以供电电路越简单,越能减少出问题的概率。单相电路元器件最少,但是主板除了要承受大功率的CPU外,还要承受显卡等其他设备的功耗,做成单相电路需要采用大功率的MOS-FET管,发热量会很恐怖,而且花费的成本也不是小数目。所以,大部分厂商都采用多相供电回路。多相供电就是将多个单相电路并联而成的,所以可以提供N倍的电流。

有了上面的知识做铺垫,我们来看一下目前主流的供电模块的构成。

这是最常见,最正规的供电模块,由“1个线圈+2个场效应管”组成一相电路。目前市场中大多数的主板供电模块都采用此设计,不管是K7还是K8,甚至耗电大户Pentium D的主板也采用此设计。图2中靠近4Pin插头部位还有一个线圈(没有场效应管与之匹配,下面的图示中,如果出现这种情况,其作用是类似的),是第一级电感线圈,也有人认为是为CPU辅助供电的线圈,所以此图示为三相供电。

常大家看到图3中的供电系统,便会用“完整的供电模块”来说明。这种方式或许在散热方面更有优势,但实际使用效果应该没有太大的差别。图3是由“一个线圈+三个场效应管”组成一相电路,所以图3是两相供电。其实,两相供电系统未必就比三相供电差,虽然更多的相数可以有效地控制热量,但更容易出现问题也是事实;另外,选料设计更重要。所以请理智看待供电相数。

这个供电模块比较少见,这是蓝宝ATi RS482芯片的主板。此系统采用“1个线圈+4场效应管”构成一相电路的设计。如果说“1+3”是完整电路,那么“1+4”就只能用豪华来形容了。此系统采用四相供电,电路设计可谓豪华;但相数和采用的场效应管的个数并不是豪华的代名词。采用何种线圈,何种场效管,也就是说用料本身的性能更为关键;豪华的用料离开科学合理的设计恐怕也是白白的浪费材料。所以DIYer要修炼硬功夫,不要仅仅局限在供电相数的判断上。

图5是EPOX在8RDA6+上采用的供电模块。其供电系统就在DIYer中引起争议,有人说这是四相供电,判断理由:线圈数—1。图中明显有5个线圈,那么5-1=4是很显然的事情。有人说这是三相供电,判断理由:1个线圈+2个场效应管为一相电路。显然图中有6个场效应管,所以最多也就是三相供电了。第一种说法没有了解供电线路的组成,虽然大多数供电系统可以这样判断,不代表这种方法就是完全准确的。第二种说法就会产生一种困惑:多余的那个线圈是用来做什么的呢?之后EPOX的设计师说明:这是一个两相加强供电系统,其中“2个线圈+3个场效应管”为一相电路。但DIYer对此供电系统认可度不高。

是目前最常见的Intel 9系列(包括i915/925、i945/955)主板的供电系统,多采用四相供电。图5是采用“1个线圈+3个场效应管”构成一相电路的四相供电系统。在这里需要说明一下,支持Prescott主板要求供电部分的线圈必须采用单股粗线绕制(如图6);另外,Intel技术白皮书要求CPU周围的电容要采用固态电容(这也是在一系列主板爆浆事件后无奈而又明智的做法)。关于Intel的供电规范这里笔者简单地谈一下(如附表)。

Prescott最大要求91A的电流,而单相电路可以提供50A的电流,似乎成熟的两相供电就能够满足了。但巨大的热量I2R还是让主板厂商更趋向于采用四相供电系统。

随着主板设计技术的发展,有好多配件的安装或外在形式都发生了变化,如图7中的加固线圈,将线圈包住可以减少电磁干扰并对线圈起到加固作用,在场效应管上加上散热片来加强散热等等。还有某些主板竟然将场效应管“竖立”安装(既省空间又利用散热)。最后,希望本文对您轻松分辨供电电路的相数有一定帮助,并通过对供电电路的了解轻松选购高品质主板。

原理图分析

主板的供电部分设计好坏,关系到主板工作的稳定性和安全性,历来是广大DIYer评价一块主板优劣的重要依据之一。供电部分的电路设计制造要求通常都比较高,一套好的设计,需要考虑到PCB板及元器件特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。

现在的主板基本上都为开关电源供电方式,将输入的直流电通过一个开关电路转换为宽度可调的脉冲电流,然后再通过滤波电路转换回直流电。通过PWM控制器IC芯片发出脉冲信号控制MOSFET场效应管轮流导通和关闭。

其工作原理为ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管?WM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。上图中的电路就是我们说的“单相”供电电路。因为CPU工作于大电流、低电压状态,所以一个开关电路无法很可靠地给它供电,必须采用多个开关电路并连工作的方式才行,因此绝大部分主板都采取了两相、三相甚至多相的电路设计。

就是典型的两相供电示意图,其本质是两个单相电路的并联,因此可以提供双倍的电流。但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能,导体的电阻,都是影响Vcore的要素。实际应用中存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电器中最热的部分。

为了降低开关电源的工作温度,最简单的方法就是把通过每个元器件的电流量降低,把电流尽可能的平均分流到每一相供电回路上,所以又产生了三相、四相电源等设计。上图是一个典型的三相供电电路,原理与两相供电是一致的,就是由三个单相电路并联而成。三相电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡,在器件发热这项上三相供电具有优势。

源回路采用多相供电可以提供更平稳的电流,从控制芯片PWM发出来的是那种脉冲方波信号,经过LC震荡回路整形为类似直流的电流,方波的高电位时间很短,相越多,整形出来的准直流电越接近直流。

下载CPU供电电路原理及检修流程word格式文档
下载CPU供电电路原理及检修流程.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电路原理学习心得

    《电路原理》学习心得 在大一的下学期,按照专业的培养方案,我们学习了《电路原理》这门专业基础课程,也是对于我们电子信息工程专业相当重要的一门课程,这门课程涉及到下学期我......

    《电路原理》课程简单介绍

    《电路原理》课程简介 “电路原理”课程是高等学校本科电子与电气信息类专业重要的基础课,该课程以分析电路中的电磁现象,研究电路的基本规律及电路的分析方法为主要内容,担负......

    电路原理知识总结

    电路原理总结 第一章 基本元件和定律 1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i0反之u......

    电路实验原理心得

    电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大二上学期将要结束之际,我们进行了一......

    物业公司电工组检修电路

    物业公司电工组检修路灯保群众亮堂过元旦 2018年元旦佳节即将来临,为确保社区广大居民在元旦假日夜间出行平安、便利,营造节目欢乐祥和的气氛,物业公司积极组织电工组人员对辖......

    风电检修管理

    风电检修管理 XX年XX月XX日 目录 1 范围 ...................................................................... 4 2 规范性引用文件 ......................................

    风电检修工作总结

    风机检修员工作总结 时间一晃而过,转眼间到公司三年多了,伴随着公司的飞速发展我也在不断的进步着,因为我知道只有不断的学习,不断的完善自己的水平,才能从公司脱颖而出,成为一名......

    晶振电路原理介绍

    晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频......