《电路原理》课程简单介绍

时间:2019-05-14 10:53:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《电路原理》课程简单介绍》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《电路原理》课程简单介绍》。

第一篇:《电路原理》课程简单介绍

《电路原理》课程简介

“电路原理”课程是高等学校本科电子与电气信息类专业重要的基础课,该课程以分析电路中的电磁现象,研究电路的基本规律及电路的分析方法为主要内容,担负着为后续的专业基础课和专业课提供电路理论基础知识及电路分析方法支撑的重任。对电气工程及其自动化专业,电路课程尤为重要,因为正是电路理论为电力系统运行分析建立了理论体系,并产生了电力系统分析学科。学习本课程要求学生先修高等数学、大学物理,具备相关的数学和物理知识基础。

电路课程理论严密、逻辑性强,有广阔的工程背景。从1800年法国物理学家伏特发明伏打电池、获得持续的电流并形成电路以来,到一个多世纪后的20世纪30年代,电路理论已形成为一门独立的学科;20世纪50年代末,电路理论在学术体系上基本完善,这一发展阶段称为经典电路理论阶段。在20世纪60年代以后,由于大量新型电路元件的出现和计算机的冲击,电路理论无论在深度和广度方面又经历了一次重大的变革并得到了巨大的发展,这一发展阶段称为近代电路理论阶段。现在电路理论已成为一门体系完整、逻辑严密、具有强大生命力的学科领域,是当前电子科学技术的重要理论基础之一。学生通过对本课程的学习,有助于树立严肃认真的科学作风和理论联系实际的工程观点,对科学思维能力、分析计算能力、实验研究能力和科学归纳能力的培养也具有重要的作用。但就本科电路课程的主要任务而言,目前国内外的一致意见认为是为学生以后的学习和工作打基础,故课程着重点在于电路理论的基础知识和电路分析的基本方法,而不应过多强调电路理论学科本身的要求。学生通过“电路原理”课程的学习,应该掌握电路的基本理论知识、电路的基本分析方法和初步的实验技能,为进一步学习电路理论打下初步的基础,为学习后续专业课程准备必要的电路知识。

第二篇:晶振电路原理介绍

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。

石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。

石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR的大小直接影响电路的性能,也是各商家竞争的一个重要参数。

概述

微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC(电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。图1给出了两种时钟源。图1给出了两个分立的振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路。图1b为简单的RC反馈振荡器。

机械式谐振器与RC振荡器的主要区别

基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。

振荡器模块

上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成硅振荡器。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。

功耗

选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值。比如,HC04反相器门电路的功率耗散电容值是90pF。在4MHz、5V电源下工作时,相当于1.8mA的电源电流。再加上20pF的晶振负载电容,整个电源电流为2.2mA。

陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。

相比之下,晶振模块一般需要电源电流为10mA至60mA。

硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2mA的电流。

结论

在特定的微控制器应用中,选择最佳的时钟源需要综合考虑以下一些因素:精度、成本、功耗以及环境需求。下表给出了几种常用的振荡器类型,并分析了各自的优缺点。

晶振电路的作用

电容大小没有固定值。一般二三十p。晶振是给单片机提供工作信号脉冲的。这个脉冲就是单片机的工作速度。比如 12M晶振。单片机工作速度就是每秒 12M。和电脑的 CPU概念一样。当然。单片机的工作频率是有范围的。不能太大。一般 24M就不上去了。不然不稳定。

接地的话数字电路弄的来乱一点也无所谓。看板子上有没有模拟电路。接地方式也是不固定的。一般串联式接地。从小信号到大信号依次接。然后小信号连到接地来削减偕波对电路的稳定性的影响,所以晶振所配的电容在10pf-50pf之间都可以的,没有什么计算公式。

但是主流是接入两个33pf的瓷片电容,所以还是随主流。晶振电路的原理

晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。晶振电路中常见问题

晶振电路中如何选择电容C1,C2?

(1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。

(2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间。

(3):应使C2值大于C1值,这样可使上电时,加快晶振起振。

在石英晶体谐振器和陶瓷谐振器的应用中,需要注意负载电容的选择。不同厂家生产的石英晶体谐振器和陶瓷谐振器的特性和品质都存在较大差异,在选用,要了解该型号振荡器的关键指标,如等效电阻,厂家建议负载电容,频率偏差等。在实际电路中,也可以通过示波器观察振荡波形来判断振荡器是否工作在最佳状态。示波器在观察振荡波形时,观察OSCO管脚(Oscillator output),应选择100MHz带宽以上的示波器探头,这种探头的输入阻抗高,容抗小,对振荡波形相对影响小。(由于探头上一般存在10~20pF的电容,所以观测时,适当减小在OSCO管脚的电容可以获得更接近实际的振荡波形)。工作良好的振荡波形应该是一个漂亮的正弦波,峰峰值应该大于电源电压的70%。若峰峰值小于70%,可适当减小OSCI及OSCO管脚上的外接负载电容。反之,若峰峰值接近电源电压且振荡波形发生畸变,则可适当增加负载电容。

用示波器检测OSCI(Oscillator input)管脚,容易导致振荡器停振,原因是: 部分的探头阻抗小不可以直接测试,可以用串电容的方法来进行测试。如常用的4MHz石英晶体谐振器,通常厂家建议的外接负载电容为10~30pF左右。若取中心值15pF,则C1,C2各取30pF可得到其串联等效电容值15pF。同时考虑到还另外存在的电路板分布电容,芯片管脚电容,晶体自身寄生电容等都会影响总电容值,故实际配置C1,C2时,可各取20~15pF左右。并且C1,C2使用瓷片电容为佳。

问:如何判断电路中晶振是否被过分驱动?

答:电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通过此办法就可以找到最接近的电阻RS值。

第三篇:浙江大学 电路原理 视频教程 下载及学科介绍

浙江大学 电路原理 视频教程 下载及学科介绍

该课程的下载地址:http://

学科介绍:

模拟电路系统处理的信号总是包含着一定的噪声。这意味着,电路系统随机的热偏差将造成模拟信号随机的偏差、扰动。模拟电路系统中各个不同部分的偏差积累起来,可以使偏差量的负面影响常常会比较显著,这些偏差将形成噪声。[2]由于模拟信号在电路中常常会通过电子放大器,噪声会被不断地放大,再加上原始信号在长距离传输的过程中也会有损耗,因此这些随机的噪声会造成信号严重失真。模拟电路中噪声的来源还来自于外部信号干扰以及设计欠佳的电子元件。通过使用屏蔽导线,或者在电路中引入低噪音放大器,可以尽量缓解噪声的负面影响。

与数字电路的比较在模拟电路和数字电路中,信号的表达方式不同。对模拟信号能够执行的操作,例如放大、滤波、限幅等,都可以对数字信号进行操作。事实上,所有的数字电路从根本上来说都是模拟电路,其基本电学原理,都与模拟电路相同。互补金属氧化物半导体(CMOS)就是由两个模拟的金属氧化物场效应管(MOSFET)构成的,其对称、互补的结构,使它恰好能处理高低数字逻辑电平。不过,数字电路的设计目标是用来处理数字信号,如果强行引入任意模拟信号而不进行额外处理,则可能造成量化噪声。

电子学发展史上第一个被发明出来并得到大规模生产的器件是模拟的。后来,随着微电子学的发展,数字技术的成本大大降低,加之计算机对于数字信号的要求,使得数字式的方法在人机交互等领域具有可行性和较高的性价比。

模拟电子和数字电子的主要区别如下:

噪声在模拟电路中,由于信号几乎完全将真实信号按比例表现为电压或电流的形式,造成模拟电路对于噪声的影响比数字电路更加敏感,信号的微小偏差都会表现为相当显著,造成信息损失。作为对比,数字电路只取决于高低电平,如果要造成信息传递的错误,那么信号的偏差必须至少达到高电平的一半左右(具体的大小根据不同的电路规格有所不同)。因此,对信息进行量化的数字电路对于噪声的抵御能力比模拟电路更强,只要偏差不大于某一规定值,信息就不会损失。在数字电路中,噪声在各个逻辑门的地方都可以得到消减。

精度参见:信噪比

有若干个因素会影响信号的精度,其中最主要的是原始信号中的噪声以及信号处理过程中混入的噪声。模拟信号的分辨率受到器件物理层面限度(例如散粒噪声)的制约。在数字电子中,可以采用增加信号的位数(例如8位分辨率的模拟数字转换器能够将其量程分为8段,其中每一段作为最小分度进行转换)来提高数字信号的分辨率,转换位数是模拟数字转换器的一项关键参数。模拟数字转换器将模拟信号转换为数字信号,这样原始信号就可以用二进制数来表示,方便数字电路(包括计算机)进行处理。用到这种转换器的应用产品包括数字式的温度计以及录音机等数据采集设备。相反的,数字模拟转换器则被用来将数字信号还原为模拟信号,它可以读入一系列二进制信号,经过转换后以电压值等形式的模拟信号输出。数字模拟转换器在许多运算放大器增益控制系统中较为常见。

设计的难度模拟电路的设计通常比数字电路更为困难,对设计人员的水平要求更高。这也是数字电路系统比模拟电路系统更加普及的原因之一。模拟电路通常需要更多的手工运算,其设计过程的自动化程度低于数字电路。然而,数字式电子设备要在真实物理世界中得到应用,就必须具有一个模拟的接口,因为自然界的大多数实际信号是模拟的。[7]例如,所有数字式收音机的信号接收器,都具有一个模拟的预放大器来进行信号接收的第一步操作

同步时序电路中所有存储元件都在时钟脉冲CP的统一控制下,用触发器作为存储元件。几乎现在所有的时序逻辑都是“同步逻辑”:有一个“时钟”信号,所有的内部内存('内部状态')只会在时钟的边沿时候改变。在时序逻辑中最基本的储存元件是触发器

同步逻辑最主要的优点是它很简单。每一个电路里的运算必须要在时钟的两个脉冲之间固定的间隔内完成,称为一个 '时钟周期'。只有在这个条件满足下(不考虑其他的某些细节),电路才能保证是可靠的。同步逻辑也有两个主要的缺点:

1.时钟信号必须要分布到电路上的每一个触发器。而时钟通常都是高频率的信号,这会导致功率的消耗,也就是产生热量。即使每个触发器没有做任何的事情,也会消耗少量的能量,因此会导致废热产生。2.最大的可能时钟频率是由电路中最慢的逻辑路径决定,也就是关键路径。意思就是说每个逻辑的运算,从最简单的到最复杂的,都要在每一个时脉的周期中完成。一种用来消除这种限制的方法,是将复杂的运算分开成为数个简单的运算,这种技术称为“pipelining”。这种技术在微处理器中非常的显著,用来帮处提升现今处理器的时钟频率。

虚电路又称为虚连接或虚通道,是分组交换的两种传输方式中的一种。

在通信和网络中,虚电路是由分组交换通信所提供的面向连接的通信服务。在两个节点或应用进程之间建立起一个逻辑上的连接或虚电路后,就可以在两个节点之间依次发送每一个分组,接受端收到分组的顺序必然与发送端的发送顺序一致,因此接受端无须负责在收集分组后重新进行排序。虚电路协议向高层协议隐藏了将数据分割成段,包或帧的过程。

虚电路通信与电路交换类似,两者都是面向连接的,即数据按照正确的顺序发送,并且在连接建立阶段都需要额外开销。但是,电路交换提供稳定的比特率和延迟时间,而虚电路服务的比特率和延迟时间要取决一下因素: 网络节点上包队列的长度,应用程序产生数据的比特率,使用统计多路复用技术时,共享同一网络资源的其他用户的负荷。许多虚电路协议通过数据重传,包括检错纠错和自动重传请求(ARQ),提供可靠的通信服务。

电路设计(英语:circuit design)可以涵盖电子系统的所有部分,从集成电路中各个分立的晶体管到整个复杂系统的全局考虑。个人可以完成简单的电路设计,甚至不需要详细的规划以及结构化的设计过程,但是对于许多复杂的系统,需要一个按照系统化方式协作的团队来承担,并通常需要计算机辅助模拟、设计。

在集成电路电子设计自动化中,术语“电路设计”通常指输出集成电路电路图的过程。这一步是逻辑综合和物理设计之间的一步。

第四篇:电路原理学习心得

《电路原理》学习心得

在大一的下学期,按照专业的培养方案,我们学习了《电路原理》这门专业基础课程,也是对于我们电子信息工程专业相当重要的一门课程,这门课程涉及到下学期我们学习的模拟电子技术和后面要学习到得数字电子技术,如果学不好的话直接影响到我们后面学习高频等课程。可以说使我们专业课程的重中之重。

《电路原理》这门课程的难度确实有点大,首先同学们的兴趣就是一方面问题,使得同学们上课的时候不能认真并且集中精力的听课。本书共有十八章,内容很多,课时太少,所以又加大了难度。那么前四章为基础运算,七八章为主要的分析方法,通过运算理解以及识图来解答问题。其中运用基础的KCL、KVL的独立方程数、支路电流法、网孔电流法、回路电流法、结点电压法构成了电阻电路的一般分析,主要的电路定理有叠加定理、替代定理、戴维南定理、诺顿定理、最大功率传输定理等原理,通过一阶二阶电路的分析法,相量法,正弦稳态电路的分析法对不同的电路进行分析,来解决不同的问题。

课程的难度比大一上学期的要大,理论性和计算能力也要求的更高了,对我们有了更大的挑战,所以我们要在考试前建立起系统的复习方法,来帮助我们通过考试,我希望能够缩减实验课的课时,可以把几个实验放到一起来做,把节省下来的课时,用于理论课程,减轻同学们的压力。

《电路原理》让我们更加系统的了解到了电路的基础知识,熟练的应用运算方法和解题过程。为我们后面的课程奠定了基础,确实让我们学习到了许多。

真心的感谢老师的付出,每一次上课都比同学们来的早走得晚,认真的批改作业,尽职尽责。作为一名专业年级长,我很惭愧没能将班级的学习风气带好,没有尽到自己的职责,希望我们班的同学们都能过在期末考试中取得一个好的成绩。

李新强

2012年6月

第五篇:电路原理知识总结

电路原理总结

第一章 基本元件和定律

1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。

电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。

2. 功率平衡

一个实际的电路中,电源发出的功率总是等于负载消耗的功率。

3. 全电路欧姆定律:U=E-RI 4. 负载大小的意义:

电路的电流越大,负载越大。电路的电阻越大,负载越小。5. 电路的断路与短路

电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 二. 基尔霍夫定律 1. 几个概念:

支路:是电路的一个分支。

结点:三条(或三条以上)支路的联接点称为结点。

回路:由支路构成的闭合路径称为回路。网孔:电路中无其他支路穿过的回路称为网孔。

2. 基尔霍夫电流定律:

(1)定义:任一时刻,流入一个结点的电流的代数和为零。

或者说:流入的电流等于流出的电流。(2)表达式:i进总和=0

或: i进=i出

(3)可以推广到一个闭合面。3. 基尔霍夫电压定律

(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。

或者说:在一个闭合的回路中,电压的代数和为零。

或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。(2)表达式:1

或: 2 或: 3(3)基尔霍夫电压定律可以推广到一个非闭合回路

三. 电位的概念

(1)定义:某点的电位等于该点到电路参考点的电压。

(2)规定参考点的电位为零。称为接地。(3)电压用符号U表示,电位用符号V表示

(4)两点间的电压等于两点的电位的差。

(5)注意电源的简化画法。

四. 理想电压源与理想电流源 1. 理想电压源

(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。理想电压源的输出功率可达无穷大。(2)理想电压源不允许短路。2. 理想电流源

(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。理想电流源的输出功率可达无穷大。(2)理想电流源不允许开路。

3. 理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。

(2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。

4. 理想电源与电阻的串并联

(1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。(2)理想电流源与电阻串联,可将电阻去掉(短路),不影响对其它电路的分析。5. 实际的电压源可由一个理想电压源和一个内电阻的串联来表示。

实际的电流源可由一个理想电流源和一个内电阻的并联来表示。五. 支路电流法

1. 意义:用支路电流作为未知量,列方程求解的方法。

2. 列方程的方法:

(1)电路中有b条支路,共需列出b个方程。

(2)若电路中有n个结点,首先用基尔霍夫电流定律列出n-1个电流方程。

(3)然后选b-(n-1)个独立的回路,用基尔霍夫电压定律列回路的电压方程。3. 注意问题:

若电路中某条支路包含电流源,则该支路的电流为已知,可少列一个方程(少列一个回路的电压方程)。六. 叠加原理

1. 意义:在线性电路中,各处的电压和电流是由多个电源单独作用相叠加的结果。2. 求解方法:考虑某一电源单独作用时,应将其它电源去掉,把其它电压源短路、电流源断开。

3. 注意问题:最后叠加时,应考虑各电源单独作用产生的电流与总电流的方向问题。叠加原理只适合于线性电路,不适合于非线性电路;只适合于电压与电流的计算,不适合于功率的计算。七. 戴维宁定理

1. 意义:把一个复杂的含源二端网络,用一个电阻和电压源来等效。2. 等效电源电压的求法: 把负载电阻断开,求出电路的开路电压UOC。等效电源电压UeS等于二端网络的开路电压UOC。

3. 等效电源内电阻的求法:

(1)把负载电阻断开,把二端网络内的电源去掉(电压源短路,电流源断路),从负载两端看进去的电阻,即等效电源的内电阻R0。

(2)把负载电阻断开,求出电路的开路电压UOC。然后,把负载电阻短路,求出电路的短路电流ISC,则等效电源的内电阻等于UOC/ISC。八. 诺顿定理 1. 意义:

把一个复杂的含源二端网络,用一个电阻和电流源的并联电路来等效。

2. 等效电流源电流IeS的求法:

把负载电阻短路,求出电路的短路电流ISC。则等效电流源的电流IeS等于电路的短路电流ISC。

3. 等效电源内电阻的求法: 同戴维宁定理中内电阻的求法。本章介绍了电路的基本概念、基本定律和基本的分析计算方法,必须很好地理解掌握。其中,戴维宁定理是必考内容,即使在本章的题目中没有出现戴维宁定理的内容,在第2章<<电路的瞬态分析>>的题目中也会用到。

第2章 电路的瞬态分析 一. 换路定则: 1. 换路原则是:

换路时:电容两端的电压保持不变,Uc(o+)=Uc(o-)。

电感上的电流保持不变,Ic(o+)= Ic(o-)。原因是:电容的储能与电容两端的电压有关,电感的储能与通过的电流有关。2. 换路时,对电感和电容的处理

(1)换路前,电容无储能时,Uc(o+)=0。换路后,Uc(o-)=0,电容两端电压等于零,可以把电容看作短路。

(2)换路前,电容有储能时,Uc(o+)=U。换路后,Uc(o-)=U,电容两端电压不变,可以把电容看作是一个电压源。

(3)换路前,电感无储能时,IL(o-)=0。换路后,IL(o+)=0,电感上通过的电流为零,可以把电感看作开路。

(4)换路前,电感有储能时,IL(o-)=I。换路后,IL(o+)=I,电感上的电流保持不变,可以把电感看作是一个电流源。

3. 根据以上原则,可以计算出换路后,电路中各处电压和电流的初始值。二. RC电路的零输入响应 三. RC电路的零状态响应 2. 电压电流的充电过程

四. RC电路全响应

2. 电路的全响应=稳态响应+暂态响应

稳态响应 暂态响应 3. 电路的全响应=零输入响应+零状态响应

零输入响应 零状态响应 五. 一阶电路的三要素法: 1. 用公式表示为:

其中: 为待求的响应,待求响应的初始值,为待求响应的稳态值。

2. 三要素法适合于分析电路的零输入响应,零状态响应和全响应。必须掌握。3. 电感电路的过渡过程分析,同电容电路的分析。

电感电路的时间常数是: 六. 本章复习要点

1. 计算电路的初始值

先求出换路前的原始状态,利用换路定则,求出换路后电路的初始值。2. 计算电路的稳定值

计算电路稳压值时,把电感看作短路,把电容看作断路。

3. 计算电路的时间常数τ 当电路很复杂时,要把电感和电容以外的部分用戴维宁定理来等效。求出等效电路的电阻后,才能计算电路的时间常数τ。4. 用三要素法写出待求响应的表达式 不管给出什么样的电路,都可以用三要素法写出待求响应的表达式。第3章 交流电路复习指导

一. 正弦量的基本概念 1. 正弦量的三要素

(1)表示大小的量:有效值,最大值(2)表示变化快慢的量:周期T,频率f,角频率ω.(3)表示初始状态的量:相位,初相位,相位差。

2. 正弦量的表达式:

3. 了解有效值的定义:

4. 了解有效值与最大值的关系:

5. 了解周期,频率,角频率之间的关系:

二. 复数的基本知识:

1. 复数可用于表示有向线段,如图: 复数A的模是r,辐角是Ψ 2. 复数的三种表示方式:(1)代数式:(2)三角式:(3)指数式:(4)极坐标式:

3. 复数的加减法运算用代数式进行。复数的乘除法运算用指数式或极坐标式进行。

4. 复数的虚数单位j的意义:

任一向量乘以+j后,向前(逆时针方向)旋转了,乘以-j后,向后(顺时针方向)旋转了。

三. 正弦量的相量表示法:

1. 相量的意义:用复数的模表示正弦量的大小,用复数的辐角来表示正弦量初相位。相量就是用于表示正弦量的复数。为与一般的复数相区别,相量的符号上加一个小园点。

2. 最大值相量:用复数的模表示正弦量的最大值。

3. 有效值相量:用复数的模表示正弦量的有效值。

4. 例题1:把一个正弦量 用相量表示。解:最大值相量为: 有效值相量为: 5. 注意问题:

正弦量有三个要素,而复数只有两个要素,所以相量中只表示出了正弦量的大小和初相位,没有表示出交流电的周期或频率。相量不等于正弦量。

6. 用相量表示正弦量的意义:

用相量表示正弦后,正弦量的加减,乘除,积分和微分运算都可以变换为复数的代数运算。

7. 相量的加减法也可以用作图法实现,方 3 法同复数运算的平行四边形法和三角形法。四. 电阻元件的交流电路

1. 电压与电流的瞬时值之间的关系:u=Ri 式中,u与i取关联的参考方向 设:(式1)则:(式2)

从上式中看到,u与i同相位。

2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:

3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:

4. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 得: 相位 与相位 同相位。5. 瞬时功率:

6.平均功率:

五. 电感元件的交流电路

1. 电压与电流的瞬时值之间的关系: 式中,u与i取关联的参考方向 设:(式1)则:(式2)从上式中看到,u与i相位不同,u 超前i 2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:

3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:

4. 电感的感抗: 单位是:欧姆

5. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 得:

相位 比相位 的相位超前。6. 瞬时功率:

7.平均功率:

8. 无功功率:用于表示电源与电感进行能量交换的大小 Q=UI=XL

单位是乏:Var

六. 电容元件的交流电路

1. 电压与电流的瞬时值之间的关系:

式中,u与i取关联的参考方向 设:(式1)则:(式2)从上式中看到,u与i不同相位,u 落后i 2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:

3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:

4. 电容的容抗: 单位是:欧姆

5. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 : 得:

相位 比相位 的相位落后。6. 瞬时功率:

7.平均功率:

8. 无功功率:用于表示电源与电容进行能量交换的大小

为了与电感的无功功率相区别,电容的无功功率规定为负。Q=-UI=-XC 单位是乏:Var

七.R、L、C元件上电路与电流之间的相量关系、有效值关系和相位关系如下表所示: 元件

名称 相量关系 有效值 关系 相位关系 相量图 电阻R 电感L 电容C 表1 电阻、电感和电容元件在交流电路中的主要结论

八.RLC串联的交流电路 RLC串联电路的分析

RLC串联电路如图所示,各个元件上的电压相加等于总电压:

1. 相量形式的欧姆定律

上式是计算交流电路的重要公式 2. 复数阻抗:

复阻抗Z的单位是欧姆。

与表示正弦量的复数(例:相量)不同,Z仅仅是一个复数。3. 阻抗模的意义:(1)

此式也称为有效值形式的欧姆定律(2)

阻抗模与电路元件的参数之间的关系

4. 阻抗角的意义:(1)

阻抗角是由电路的参数所确定的。(2)

阻抗角等于电路中总电压与电流的相位差。

(3)当,时,为感性负载,总电压 超前电流 一个 角;

当,时,为容性负载,总电压 滞后电流 一个 角;

当 , 时,为阻性负载,总电压 和电流 同相位;这时电路发生谐振现象。

5. 电压三角形:在RLC串联电路中,电压相量 组成一个三角形如图所示。图中分别画出了、和 三种情况下,电压相量与电流相量之间的关系。

6. 阻抗三角形:

了解R、XL、与 角之间的关系及计算公式。

九.阻抗的串并联 1. 阻抗的串联 电路如图:

(1)各个阻抗上的电流相等:

(2)总电压等于各个阻抗上和电压之和:(3)总的阻抗等于各个阻抗之和:(4)分压公式: 多个阻抗串联时,具有与两个阻抗串联相似的性质。

2. 阻抗的并联 电路如图:

(1)各个阻抗上的电压相等:

(2)总电流等于各个阻抗上的电流之和:(3)总的阻抗的计算公式: 或(4)分流公式: 多个阻抗并联时,具有与两个阻抗并联相似的性质。

3. 复杂交流电路的计算

在少学时的电工学中一般不讲复杂交流电路的计算,对于复杂的交流电路,仍然可以用直流电路中学过的计算方法,如:支路电流法、结点电压法、叠加原理、戴维宁定理等。

十.交流电路的功率

1.瞬时功率:p=ui=UmIm sin(ωt+φ)sinωt=UIcosφ-UIcos(2ωt+φ)2.平均功率:P= = =UIcosφ

平均功率又称为有功功率,其中 cosφ称为功率因数。

电路中的有功功率也就是电阻上所消耗的功率:

3.无功功率:Q=ULI-UCI= I2(XL-XC)=UIsinφ

电路中的无功功率也就是电感与电容和电源之间往返交换的功率。4.视在功率: S=UI

视在功率的单位是伏安(VA),常用于表示发电机和变压器等供电设备的容量。5.功率三角形:P、Q、S组成一个三角形,如图所示。其中φ为阻抗角。它们之间的关系如下:

十一。电路的功率因数 1. 功率因数的意义

从功率三角形中可以看出,功率因数。功率因数就是电路的有功功率占总的视在功率的比例。功率因数高,则意味着电路中的 5 有功功率比例大,无功功率的比例小。2. 功率因数低的原因:

(1)生产和生活中大量使用的是电感性负载 异步电动机,洗衣机、电风扇、日光灯都为感性负载。

(2)电动机轻载或空载运行(大马拉小车)异步电动机空载时cosφ=0.2~0.3,额定负载时cosφ=0.7~0.9。3. 提高功率因数的意义:

(1)提高发电设备和变压器的利用率 发电机和变压器等供电设备都有一定的容量,称为视在功率,提高电路的功率因数,可减小无功功率输出,提高有功功率的输出,增大设备的利用率。(2)降低线路的损耗

由公式,当线路传送的功率一定,线路的传输电压一定时,提高电路的功率因数可减小线路的电流,从而可以降低线路上的功率损耗,降低线路上的电压降,提高供电质量,还可以使用较细的导线,节省建设成本。4. 并联电容的求法一,从电流相量图中导出:

在电感性负载两端并联电容可以补偿电感消耗的无功功率,提高电路的功率因数。电路如图:

计算公式如下:

5. 并联电容的求法二,从功率三角形图中导出: 如图所示,和S1是电感性负载的阻抗角和视在功率,和S是加电容后电路总的阻抗角和视在功率,QL和QC分别是电感和电容的无功功率,Q是电路总的无功功率。

计算公式如下:

十二。本章复习重点

1. 概念题:关于正弦量表达式、相量表达式式、感抗、容抗、阻抗等公式判断正误的题目,如教材各节后面的思考题。可能以填空题、判断题的形式出现。2. 用相量计算交流电路

用相量计算交流电路,是本章的核心内容,必须掌握。但由于复数的计算很费时间,所以本章不会出很复杂的电路计算题。重点应掌握简单交流电路的计算,例如:RLC串联电路、RL串联电路、RL串联后再并联电容等电路。

3. 有些电路不用相量也能计算,甚至比用相量法计算电路要简单。只用阻抗、相位角、有功功率、无功功率、视在功率等相差公式计算电路,例如作业题3.7.1、3.7.2等。第4章 供电与用电复习指导

一、概念题:

1. 星形联结法中线电压与相电压的关系,线电流与相电流的关系。三角形联结法中线电压与相电压的关系,线电流与相电流的关系。

基本要求是:已知一个线电压或相电压的表达式(三角函数式或相量表达式),能写出其它线电压和相电压的表达式。

2.三相负载故障情况(短路、断路)下,电路的分析与简单计算。

3.已知负载的额定相电压,根据三相电源的电压考虑采用何种联结方法(星形或三角形)。

二、简单计算题:

考察三相电路的基本知识,一般用于对称三相电路的计算。

例1:有一电源和负载都是星形联结的对称三相电路,已知电源线电压为 380 V,负载每相阻抗模 为10Ω,试求负载的相电流和线电流。

解:负载相电压 Up = 220 V 负载相电流 Ip =22A 负载线电流 IL = 22 A

三、用相量进行计算的题目

一般用于计算不对称的三相电路。

例3:已知R1=22Ω,R2=38Ω,UL=380V,求线电流的大小。解:用相量法求解。设U相的相电压为

四、用功率相加的方法计算电路 求总的有功功率、无功功率和视在功率的方法是: 总的有功功率等于各个元件的有功功率之和,等于各个支路的有功功率之和,也等于各个部分电路的有功功率之和。

总的无功功率等于各个元件的无功功率之和,等于各个支路的无功功率之和,也等于各个部分电路的无功功率之和。

总的视在功率按式 计算。注意:一般情况下,用此法计算电路,有时比用相量法计算电路要简单一些,此方法也可用于单相交流电路的计算。

第6章 电动机复习指导

一. 本章主要的计算公式及分类 本章公式很多,可归纳总结如下:

1.转速、转差率、极对数、频率之间的关系

2.输出功率、转矩之间的关系

3.输入功率、额定电压、额定电流、额定功率因数之间的关系

4.输入功率、输出功率、损耗和效率之间的关系

5.Y一△起动时起动电流和起动转矩的公式

6. 自耦变压器降压起动时起动电流和起动转矩的公式

7. 其它公式

二. 本章复习重点

(一).概念题:

1.关于转速、转差率、极对数、频率之间的关系的题目。例1.日本和美国的工业标准频率为 60 Hz,他们的三相电动机在 p = 1 和 p = 2 时转速如何?答:分别为3600转/分和1800转/分。

例2.50HZ 的三相异步电动机,转速是 1

440 r/min 时,转差率是多少?转子电流的频率是多少?

答:S=0.04,f2=Sf1=2HZ.2.关于电动机的联接方式(星形或三角形)及简单计算。

例1.额定电压为 380 V / 660 V,星/角联结的三相异步电动机,试问当电源电压分别为 380 V 和 660 V 时各采用什么联结方式?它们的额定电流是否相同?额定相电流是否相同?额定线电流是否相同?若不同,差多少?

答:当电源电压为 380 V 时采用三角形联结方式,当电源电压为 660 V时采用星形联结方式时它们的额定相电流相同,额定线电流不同。

例2:380 V星形联结的三相异步电动机,电源电压为何值时才能接成三角形? 380 V角形联结的三相异步电动机,电源电压为何值时才能接成星形? 答:220 V 和 660 V。

3. 关于星形一三角形起动、自耦变压器降压起动的问题。

例1:星形-三角形减压起动是降低了定子线电压还是降低了定子线电压?自偶减压起动呢?

答:前者是降低了定子相电压,没有降低线电压,后者是降低了定子线电压,使得相电压也随之降低。4. 其它

(二)。计算题:至少会作以下2类题目。1.关于电动机的额定数据的计算。

例1:一台4个磁极的三相异步电动机,定子电压为380V,频率为 50 Hz,三角形联结。在负载转矩 TL = 133 N?m 时,定子线电流为47.5 A,总损耗为 5 kW,转速为1 440r/min。求:(1)同步转速;(2)转差率;(3)功率因数;(4)效率。解:(1)由题目知 p=2,所以

(2)(3)(4)

2.关于能否采用直接起动、星形一三角形起动、自耦变压器降压起动的题目。

例1:某三相异步电动机,PN=30 kW,UN=380 V,三角形联结,IN=63 A,nN=740 r/min,KS=1.8,KI=6,TL=0.9 TN,由 SN = 200 KV ? A 的三相变压器供电。电动机起动时,要求从变压器取用的电流不得超过变压器的额定电流。试问:(1)能否直接起动?(2)能否星-三角起动?(3)能否选用 KA=0.8 的自耦变压器起动? 答:(1)

变压器的额定电流为

虽然 但由于,故不可以直接起动。(2)

由于,故不可以采用星一三角起动。(3)

从变压器取用的电流为:

由于,故可以选用KA=0.8的自耦变压器起动。

第7章电气控制电路复习指导

一.复习内容: 1. 熟悉电气控制电路中常用控制电器的结构、工作原理。包括刀开关、空气开关、行程开关、熔断器、按钮、交流接触器、中间继电器、时间继电器等。

2. 必须理解、掌握并能默写(画)出异步电动机起停控制电路和正反转控制电路,这是本章的核心内容,也是能分析其它控制电路的基础。

3. 理解电气控制电路中的各种保护环节。包括短路保护、过载保护、失压保护、零压保护、互锁(联锁)保护等。

4. 理解电气控制电路中的其它控制功能。例:点动控制、长动控制、自锁控制、顺序控制、时间控制、行程控制等。二.考试例题:

1. 画出异步电动机直接起动的控制电路,要求具有短路保护、过载保护、失压保护、零压保护功能。

2. 画出异步电动机直接起动的控制电路,要求具有短路保护、过载保护、失压保护、零压保护功能。并能进行点动控制和长动控

制。

3. 画出异步电动机正反转控制电路,要求具有短路保护、过载保护、失压保护、零压保护、联锁保护功能。

4. 改错题。要求熟悉电气控制电路的功能和各种控制电器的符号。

5. 能分析和设计简单的顺序控制电路。如两台电动机按一定的顺序起动或停止的控制电路。

6. 能分析和设计简单的行程控制电路。如实现自动往返的控制电路。

由于本章学时很少(只有4学时),讲的内容不是很多,在整个电工学课程(共十几章,每章都有题)中所占比例不是很大,一般不会出难题和大题,前4个题应重点掌握。第8章 半导体器件复习指导

本章复习的重点是概念题、作图题和判断题。

一.概念题

1.关于半导体材料的性质

例1:半导体材料有哪些性质?答:光敏特性、热敏特性、掺杂特性。

例2:P型半导体中,()是多数载流子?()是少数载流子?答:空穴、自由电子。例3:N型半导体中,()是多数载流子?()是少数载流子?答:自由电子、空穴。2.关于关于PN结的性质 例1:PN结加正向电压时,P区接电源的()极,N区接电源的()极。答:正、负。例2:PN结加反向电压时,P区接电源的()极,N区接电源的()极。答:负、正。3.关于二极管的性质

例1:硅二极管的导通电压是()伏,锗二极管的导通电压是()伏?答:0.7V、0.3V。

例2:硅二极管的死区电压是()伏,锗二极管的死区电压是()伏?答:0.5V、0.2V。

例3:二极管的最高反向工作电压是否等于反向击穿电压?答:不相等,约为1/2到2/3。

4.关于晶闸管的性质

例1:晶闸管的导通条件是什么?答:阳极 8 和控制极都加正向电压。二.作图题和判断题

1.关于二极管的题目,一般要用理想二极管来判断。

例1:输入电压是交流电压,画出输出电压和波形。

例2:上题中,输入电压改为直流电压,求输出电压的大小。改变二极管和电阻的位置、改变二极管的方向、改变电源电压的大小,上题可变成多个题目。

例3:A、B端的电位不同,求F 电位。2.关于稳压二极管的题目 要了解稳压管的几种工作状态

稳压管加反向电压,且反向电压大于稳压值,稳压管的电压等于稳压值。

稳压管加反向电压,且反向电压小于稳压值,稳压管不导通。

稳压管加正向电压,稳压管导通,导通电压很小,约0.6-0.7V。

3.关于三极管的三种工作状态。

放大状态:发射结正向偏置、集电结反向偏置。公式 成立。

饱和状态:发射结正向偏置、集电结正向偏置。

UCE约为0.2一0.3V 集电极电流等于集电极饱和电流ICS,截止状态:发射结反向偏置、集电结反向偏置。

UCE等于电源电压 ;集电极电流为零IC=0。

第11章 直流稳压电源复习指导

一. 理解并记住整流电路的16个基本公式 1. 单相半波整流电路

(1)输出电压的大小用平均值来表示

(2)输出电流的平均值

(3)通过二极管的电流平均值

(4)二极管承受反向电压的最大值

2. 单相桥式整流电路

(1)输出电压的大小用平均值来表示

(2)输出电流的平均值

(3)通过二极管的电流平均值

(4)二极管承受反向电压的最大值

3. 单相半波可控整流电路

(1)输出电压的大小用平均值来表示

(2)输出电流的平均值

(3)通过晶闸管的电流平均值

(4)晶闸管承受正反向电压的最大值

4. 单相桥式半控整流电路

(1)输出电压的大小用平均值来表示

(2)输出电流的平均值

(3)通过晶闸管和二极管的电流平均值

(4)晶闸管承受正反向电压的最大值

二. 整流电路加电容滤波后的计算公式 1. 滤波电容的选择公式 单相半波整流电路 单相桥式整流电路 2. 输出电压U0的值

三. 单相桥式整流电路中二极管和电容的故障分析

1. 某二极管断路:电路变为单相半波整流电路。

2. 某二极管短路:造成电源短路。3. 某二极管接反:造成电源短路。4. 滤波电容开路: 5. 负载开路:

四. 整流电路的例题 五.其它概念 1.可控整流电路中控制角和导通角的关系:α+θ=180°。

2.滤波电容的极性。

下载《电路原理》课程简单介绍word格式文档
下载《电路原理》课程简单介绍.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电路实验原理心得

    电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大二上学期将要结束之际,我们进行了一......

    电路课程总结

    “电路分析基础”是高等学校电子与电气信息类专业重要的基础课程。该课程理论严密、逻辑性强,具有广阔的工程背景。通过本课程的学习,对树立学生严肃认真的科学作风和理论联系......

    电路课程改革方案

    《电路》课程教学改革方案 课程是学校进行教学活动的依据,是办学主体与受教育者联系与活动的载体。教学改革是教学过程中的关键和核心,教学改革的科学性与措施的有效性,直接关......

    各种原理介绍

    X-Y理论 美国管理学家麦格雷戈(Douglas MC Gregor)于1957年提出了X-Y理论。麦格雷戈把传统管理学成为“X理论”,他自己的管理学说称为“Y理论”。 X理论认为:多数人天生懒惰,尽一......

    电路原理专业课复习建议

    电路原理专业课复习建议.txt再过几十年,我们来相会,送到火葬场,全部烧成灰,你一堆,我一堆,谁也不认识谁,全部送到农村做化肥。结合自己的去年的体会,给一位现在备考清华的兄弟写了一......

    CPU供电电路原理及检修

    CPU供电电路原理及检修2009-08-14 信息来源:PC急救网视力保护色:【大 中 小】【打印本页】【关闭窗口】显示器点不亮,检修重点在CPU主供电电路,CPU主供电电路是在维修中最易损坏......

    差动放大电路工作原理

    2.3 差分放大器 差动放大电路工作原理1.基本差动放大电路:下图为差动放大器的典型电路。 信号的输入和输出均有双端和单端两种方式。因此,差动放大电路有双端输入双端输出、单......

    《电路基础》课程定位

    《电路基础》课程定位 一、本专业的人才培养目标 本专业培养适应社会主义市场经济需要,德智体美全面发展,面向企业生产、管理和服务第一线的,主要从事电子设备及电子仪器的生产......