第一篇:城市10kV配电系统供电可靠性分析
城市10kV配电系统供电可靠性分析
摘要:供电的可靠性是创建一流供电企业的基本保障,本研究对城市10KV配电系统供电可靠性进行了充分的分析,总结了影响供电可靠性的主要因素及其有效的改进方法,通过科学的改善措施,是我国城市的供电可靠性达到世界先进水平。关键词:10KV配电系统;供电可靠性;原因分析
配电系统可靠性就是指直接向用户供电和配电的系统对广大用户的供电能力的可靠性。供电可靠性直观的体现了供电系统的供电能力,是衡量一个供电企业技术和水平的重要标准,也是衡量一个供电企业对用户供电能力的重要经济指标,同时也反映出一个城市的总体经济发展水平。随着生活环境的不断改善,人们对供电系统提出了更高的要求,这不仅是用户的希望,同时也是供电企业所要追求的目标。近几年来的电网改造让城市供电可靠性有了很大的改观,但距离我们的要求还远远不够,本研究针对供电系统可靠性存在的问题原因进行了分析,并提出了一些可供参考的改进措施。
1.影响配电系统供电可靠性的原因分析
1.1.10KV配电系统的预停电时间过长
目前很多城市配电网架等结构薄弱,设施、电源点等都需要改造,由于这些配网基建、技改大修、业扩等工程的增多,就造就了很多的预安排停电,预停电期间,检修按时计划性很弱,对于停电后的综合管理和计划性不强,管理的力度和制度也不够,使得设备在改造或者检修期间的时间过长,或者超过了预期的计划时间,造成了大范围的停电,在预停电之前的准备工作也不够充分,施工的进度慢,施工人员准备也不够充分,这些都无形当中增加了用户停电的时间。
1.2.10KV配电系统的故障停电较多
由于施工人员的技术水平不高或者设计标准及操作技术不到位就进行施工,造成很多设备在运转初始就是存在安全隐患的。在设备运行的过程当中,设备的维护管理也不到位,这些安全隐患在运转的时期也不易被发现和消除,严重影响了供电系统的可靠性。这种故障停电成为了影响供电可靠性的其中一个最主要的原因。另外,外力破坏也是造成供电故障的主要原因之一,例如:树木破坏、气候因素、用户影响等。
1.3.配电供电系统的管理存在问题
城市是供电需求较大的地区,不仅用户需求大,还需要长期连续的供电,离开电力资源,城市就会变为半瘫痪状态,相比较之下,农村的用电相对较少,对电力的依赖性也较低,这就使得很多领导对城市的供电过于重视,而对农村的供电不够重视的现状。另一方面,由于很多电力系统的人员的个人技术能力不足,管理模式相对落后,对供电可靠性的重视程度不够,没有一个清楚的认识,也没有采取定期的培训和指导,也不愿意改变和创新,一些专职的技术人员相对欠缺,因此对供电企业供电可靠性的管理力度不够,技术跟不上,管理水平上不去,更是无法有效的指导和带领供电系统开展一些活动,因此,没有一个健全的供电可靠性的机构或者组织。
1.4.配电供电系统的供电能力有限
影响供电系统的可靠性的其中一个因素是供电系统的供电能力有限。受下达指标的限制,为了应对错峰避谷的措施,出现了电力供应缺口,为了确保电网的正常运转,就必须在电力供应缺口出现的时候采取临时的限电手段,来确保电力系统的正常运行,这也就形成了影响城市配电系统的可靠性因素之一。
2.改进配电系统供电可靠性的有效措施
2.1.加快电网的改造工程,减少预停电时间
为了减少预停电的时间,必须在停电之前对每一个环节有所计划,对每一次临时停电严格把关,充分调动各供电所、援建单位等施工成员,组织施工时可以联合起来,事先准备好方案,保证不拖延预停电的时间,及时完成任务。对于停电和恢复电的过程也可以进行优化,各供电所在计划停电之前和送电之前要及时完成相关手续的办理,以减少不必要的耽误时间。对于需要转供电操作的,需要严格执行相关规定,缩短操作时间。有一些可以带电作业的,尽量在保证安全的前提下,提倡带电作业,推广10KV带电作业,强化管理水平,尽可能的减少停电施工,有条件的尽可能进行不停电检修。也可以利用技术水平的提高来缩短检修的时间,提高工作质量和效率,加大考核力度,提高工作人员努力改进的积极性。目前,我国在很多地区开展了检修、预试、业扩增容综合停电工作,在某种程度上,可以避免部分重复停电,但也是历年不可避免的因素。
2.2.合理改善供电系统的综合检修能力,减少故障停电
对于供电系统的设施要进行抽查,监督配电系统的工作水平。根据设备缺陷管理制度要求进行管理,及时查出设备的缺陷,及时处理,确保紧急、重大缺陷消除率达到百分之百,一般的缺陷达到八成以上。及时对线路设备开展检测工作,尤其是在用电高峰期到来之前,必须开展预测量工作,并根据实际情况及时采取相应的措施。对于10KV线路的通道周围要及时清障,以免造成树木等造成的故障停电。做好线路防风加固工程,对于有安全隐患的障碍物及时清除和躲避,改造不合理的线路,以提高抗风能力,减小气候因素对故障停电的影响。完善故障查找机制,及时准确的对故障发生的地方进行定位,并第一时间找出故障的原因,及时整改,并且制订防范措施,防止故障的二次发生。对于可能产生故障的地区,要及时进行故障演练,不断的优化处理方案。加强计划管理,提高综合检修的能
力,保证设备运行的可靠性。
2.3.加强配供电系统的管理水平,提高作业人员的工作能力
配电网的运行及有效管理是供电系统可靠性的重要保障手段。对此要加强管理,对于预停电的安排要及时有效,合理快速。对于故障停电,则要有效避免,完善机制。条件成熟的时候,当尽力完成不停电的保证。优化停电作业流程,通过精细的管理,加强对停电期间的控制,以减少停电时间。强化用电监察的作用,强化设备的技术监督,避免发生故障停电。在强化供电系统管理的同时,还要提高作业人员的工作能力。要定期的对有关技术人员和管理人员进行知识和业务的培训,对于这些人员还要进行定期的指导和技术的更新,开展业务水平和知识水平的考核制度,让工作人员都能主动自觉的学习,调动他们工作和学习的积极性。通过这种理论知识的培训和学习,在实践中将不断提高供电系统的可靠性。不光是对人员的管理,对于设备也要进行管理,让技术人员运用自己的业务知识对设备进行检修和管理,进一步提高了供电系统的可靠性。
2.4.提高配供电系统的供电能力
随着科学技术的不断发展,城市的供电水平也在不断进步。我国应当及时改造落后的设备,运用先进的技术水平,提高我国供电系统的供电能力,这样就能有效的减少故障停电和预安排停电的次数,同时还能大大的缩小停电的范围。这些新技术的运行,也大大降低了线路运行的故障率。
3.结语
随着我国社会经济和技术突飞猛进的发展,我国用户对于配供电系统的要求也越来越高,提高供电系统的供电可靠性是群众的呼声,也是我国供电企业的必经之路。通过对电网的改造和不断建设,供电的可靠性也在不断的提高,不断的为我国用户带来了科学、安全、可靠的电力资源。但是,提高供电可靠性不是短时间的任务,它需要不断的完善下去,是需要长期坚持的,因此,我们要与时俱进,不断的进行设备改造,加强管理,继续为用户提供完善的电力服务,为社会的发展提供电力保障。
参考文献:
[1] 郭永基.电力系统及电力设备的可靠性[J].电力系统自动,2001,9(10):53-56.[2]谷群辉,罗安.一种适用的供电可靠性预测评估算法[J].电网技术.2003,8(11):34-35.[3]马淑华.城市10kV配电系统供电可靠性分析[J].华北电力技术.2005,12(9):70-71.
第二篇:城市配电系统用户接入模式及典型应用
城市配电系统用户接入模式及典型应用
城市配电系统用户接入模式及典型应用 王惠中1,杨世亮1,卢玉飞2,房理想1(1.兰州理工大学电气工程与信息工程学院,甘肃兰州 730050;2.天津平高智能电气有限公司,河南平顶山 467001)摘 要:为了解决电力用户接入城市配电网方案制订中存在的问题,使整个配电网的改造升级更加科学合理,建立起业扩报装工作的标准流程。首先深入分析待接入地区的配电网网架结构和用户负荷特性,确定用户接入配电网的接入点和接线模式,制定出符合地区实际情况的典型接入方案,其次对各个接入方案进行综合评价并作出优选,最后结合广西南宁凤景湾住宅项目的接入方案制订,对业扩报装工作标准流程进行实例验证。结果表明,标准的工作流程思路简单、结果准确、工作速度快,可用于指导电力部门工作人员进行新用户报装和配电网的改造升级。关键词:配电系统;用户接入;负荷特性;负荷预测;典型接入;模式 0 引言 随着经济的发展,不同性质的电力用户数量越来越多,城市配电网用户的接入对系统正常运行的影响逐渐得到电力部门的重视[1]。若配电系统现有接线模式不能满足用户的正常接入需求,将导致电力网架结构产生根本性变化,进而使整个系统的更新无序发展[2]。为了克服这一现实困难,需根据电力客户负荷特性和容量对用户接入模式进行深入分析,并对配电系统用户接入方案的制订建立起统一的指导标准[3]。为了实现上述目标,对多个地区的行政办公、工商业以及居民住宅等电力用户的历史数据信息进行总结,得出各个类型城市配电网用户接入方案的差异化指导准则和方法,使用户接入方案的制订有了统一的流程和科学的依据。1 配电网用户接入步骤 配电网用户接入方案的制订是业扩报装工作流程的重要环节,建立科学明确的制度流程和工作要点对做好用户接入管理工作具有重要的指导意义[4]。配电网用户接入工作流程如图1所示。图1 配电网用户接入工作流程
Fig.1 Connect grid user access working flowchart 配电网用户接入工作的具体步骤如下:(1)分析城市配电网现状运行情况。通过对待接入地区配电网的结构、线路负载率以及装接配变容量的分析,判断当前配电网是否具备新用户接入的各个条件。(2)分析计算待接入用户的负荷特性和负荷大小。根据用户级别和用电性质研究当前配电网是否满足规定的供电可靠性,并确定该用户供电模式的选择范围。(3)分析用户接入与当地配电系统规划的衔接。根据配电网远景年的目标网架和规划方案确定新用户的接入位置以及装接配变容量。(4)根据配电网当前运行情况和新用户的特性制定出2套实际可行的用户接入方案,以供用户接入工作人员进行选择。(5)从经济性和社会性2个角度对配电网用户接入方案及其备选方案进行综合评价。根据评价结果,给出各个配电网用户接入方案的推荐优先排序。2 配电网运行现状分析 2.1 10 kV线路运行情况分析 在配电系统运行中,由于城市发展水平、负荷分布和发展阶段各不相同,10 kV线路装接配变容量上限控制标准对系统规划建设、运营管理的实际指导作用不足[5]。一方面,一些地区10 kV线路所带装接配变容量大、需用系数小,在装接配变负荷远未达到上限规定时,配电线路负荷过大,负载率超限;另一方面,由于对接入用户的负荷特性和发展成熟度考虑不足,在10 kV线路装接配变容量小、需用系数大的情况下,随着用户负荷的发展,造成10 kV线路负载率过低。2.2 10 kV专线运行情况分析 《南方电网有限责任公司110 kV及以下配电网规划技术指导原则》规定,10 kV用户专线报装容量范围为8~40 MV·A。然而,低负载率的10 kV用户专线普遍存在,造成了上级变电站间隔资源浪费,严重影响了供电企业的整体经济效益 [6]。一方面,低负载率的用户专线对间隔资源的占用使重要项目因间隔不足而无法顺利实施;另一方面,较低的负载率使整个公用配电网的坚强稳定面临严峻挑战。合理回收低负载率10 kV用户专线间隔,提高设备利用率,是配电系统优化升级的必要措施。3 配电网用户负荷特性及负荷预测分析方法 3.1 负荷特性分析方法 通过对负荷特性的深入分析,可得出负荷发展具有条件性、时间性等内在发展规律。常用的负荷特性分析方法主要包括:指标分析法、对比分析法、曲线分析法3种。指标分析法以代表负荷性质总体水平和未来发展方向的各个指标来描述负荷的性质,可定量计算负荷的变化趋势[7]。对比分析法以各个地区不同时刻的负荷性质对比结果为依据,挖掘负荷变化的内在规律,是一种有效的经验分析法[8]。曲线分析法是以指标分析法的计算结果为基础,来绘制负荷性质的复合图形曲线的方法[9]。本次研究采用曲线分析法。3.2 负荷大小预测方法研究 配电网用户的负荷大小采用 “自下而上”的预测方法。即以用户报装容量为基础,综合考虑负荷变化等发展信息,得出负荷实际大小。其计算方法为 负荷预测值=预计报装容量×需用系数(1)需用系数的确定是 “自下而上”预测方法的关键。由于性质和结构的差异,不同用户的负荷水平也必定存在差异[10]。实践经验表明,通过对用户负荷的发展信息进行深入分析,并将其与同类负荷进行对比,以一定范围内的需用系数来估算待接入用户的实际负荷大小具有较高的准确性。4 配电网用户典型接入模式分析 以待接入用户的负荷特性和负荷大小分析结果为基础,对城市配电网一次网架的典型接入模型进行深入研究,将研究结果作为接入项目的备选方案将会使电网优化升级更加科学合理[11]。4.1 三级负荷接入模式(1)三级负荷10 kV架空线路一般采用T接方式,绝大部分T接到支线上,如有需要也可T接到主干线上。接入模式如图2所示。常见的配电网架空线路接线模式为多分段两联络和多分段三联络。根据接线位置的不同,可选择前端T接、中间T接、后端T接3种。图2接线方式的优点在于投资低、施工方便,只需新建一回架空线路;缺点在于供电可靠性不足,难以集中管控。图2 三级负荷架空线路接入示意
Fig.2 Three-level load line access schematic(2)三级负荷10 kV电缆线路常直接接入或者通过电缆分支箱接入相应的开闭所间隔。接入模式如图3所示。图3 三级负荷电缆线路接入示意
Fig.3 Three-level load cable line access schematic 常见的配电网电缆线路接线模式为 “2-1”单环网、“3-1”单环网、两供一备、三供一备等。方式的优点在于施工简单、便于集中管控,可直接接入环网柜或开关柜的环网单元;缺点在于供电可靠性不足、投资大,需新建一回电缆线路。4.2 二级负荷接入模式(1)二级负荷10 kV架空线路的双接入模式,即将用户负荷接入A线和来自不同变电站或者相同变电站不同母线的架空线路或开闭所。接入模式如图4所示。图4 二级负荷架空线路接入示意
Fig.4 Secondary load overhead line access schematic(2)二级负荷10 kV电缆线路的双接入模式即将用户负荷接入A线开闭所和来自不同变电站或者相同变电站不同母线的开闭所或电缆线路。接入模式如图5所示。图5 二级负荷电缆线路接入示意
Fig.5 Secondary load cable line access schematic 二级负荷架空线路和电缆线路双接入接线模式的优点在于供电可靠性较高;缺点在于施工复杂、投资较大,需新建双回供电线路。4.3 一级负荷接入模式(1)一级负荷对供电可靠性的要求最高。在三电源10 kV架空线路或电缆线路供电时,为了保证其中一回线路出现故障,而另外两回线路能够可靠供电,需其中2个电源来自不同变电站。接入模式如图6和图7所示。图6 一级负荷三电源架空线路接入模式示意 Fig.6 The first class load three power supply overhead line access mode schematic 图7 一级负荷三电源电缆线路接入模式示意
Fig.7 Primary load three power cable line access mode schematic(2)在一级负荷双电源10 kV架空线路或电缆线路供电时,为了保证其中一回线路出现故障,而另一回线路能够可靠供电,需要2个电源来自不同变电站[12]。接线模式如图8和图9所示。图8 一级负荷双电源架空线路接入模式示意
Fig.8 The primary load dual power supply overhead line access mode schematic 图9 一级负荷双电源电缆线路接入模式示意 Fig.9 The first class load dual power cable line access mode schematic 5 用户接入模式综合评价 根据接入方案的属性建立决策矩阵,是对用户接入模式合理性进行综合评价的有效手段。在配电网运行中,全寿命周期年费用、线路损耗、末端电压水平和供电可靠性是影响系统运行安全和企业经济效益的关键因素,将其作为用户接入方案评价矩阵Ji的评价指标具有其内在的合理性。通常情况下,待接入配电网用户的决策方案集由 2个方案组成,即 J={J1,J2},则决策矩阵 A=(aij)2×4。利用决策矩阵对各接入方案进行优选的过程如下。(1)统一属性,将原始决策矩阵 A=(aij)2×4进行规格化处理,得到标准决策矩阵 B=(bij)2×4,计算方法为
(2)根据行业规范,确定设计方案各个评价指标的评测目标,在论域空间中,计算设计方案点到评测目标点的距离di为
式中:Qj为第j项指标的权重大小,计算方法采用德尔菲调查法进行计算。(3)分析距离di的大小,建立评价目标函数并确定各方案的优劣[13]。其评价目标函数为配电网用户接入典型应用 以广西南宁某地产公司凤景湾住宅项目的方案制订过程为例,对配电网用户接入方法标准流程的合理性进行验证。凤景湾住宅项目的地理位置如图10所示。广西南宁市凤景湾住宅地产项目的配电网接入工作流程如下。(1)对南宁市配电网运行情况进行结构分析。凤景湾项目处于110 kV云景站10 kV云翔913线和110 kV云景站10 kV云百938线附近,随着南宁市城市配电网改造升级工作的结束,云百938线能够接纳该住宅项目的负荷需求;另外,云翔913线的接线模式升级为 “2-1”单环网,也可以给该用户提供第2路电源。(2)对凤景湾项目的负荷性质和供电等级进行划分。该用户是居民用电,报装容量为8.10 MV·A,为普通三级负荷。根据2020年云翔913线和云百938线的目标网架规划,两回线路的装接配变容量控制值分别为30 MV·A和60 MV·A,接线模式为 “2-1”单环网和 “3-1”单环网,用电性质为商业、居民用电,凤景湾用户的接入符合当地配电网规划要求。图10 凤景湾项目地理位置示意
Fig.10 Fengjing bay project location map(3)凤景湾项目用户接入模式分析。根据南宁市配电网网架结构和凤景湾项目用户性质,该用户的接入模式可选择三级负荷电缆线路典型接入模式和可靠性更高的二级负荷电缆线路双接入模式。(4)制定凤景湾项目负荷接入的工作方案。根据南宁市配电网中期规划结果,该项目的接入方案1为直接接入云百938线,方案2为双接入云百938线和云翔913线。2种接入方案的示意图如图11~13所示。图11 2015年、2016年凤景湾项目接入方案示意
Fig.11 The 2015 and 2016 Fengjingwan project access plan(5)对凤景湾用户配电网接入方案进行综合评估。在2个备选方案决策矩阵的计算过程中,根据接入模式的不同,可得各个评价指标的计算结果如表1所示。配电网用户接入综合评估过程中,各个评价指标的权重计算方法采用德尔菲调查法进行计算,权重的计算结果如表2所示。图12 2017—2019年凤景湾项目接入方案示意
Fig.12 The 2017 and 2019 Fengjingwan project access plan 图13 2020年凤景湾项目接入方案示意
Fig.13 Plan of project access plan for Fengjingwan in 2020 表1 2种方案各评价指标计算结果
Table 1 The results of each evaluation were calculated方案 供电可靠率(RS-3)/%经济性/万元电压损耗/%线损/%1 99.995 1 23.85-1.75 0.66 2 99.995 8 48.49-1.63 0.63 凤景湾项目2种负荷接入方案的目标函数计算结果如表3所示。表2 各评价指标权重计算结果
Table 2 Evaluate the results of each evaluation index 分析以上2种方案的综合评价结果可得出,方案2的评价目标值较小,具有更高的供电可靠性和更好的经济效益,是凤景湾项目配电网接入工作的首选方案。表3 接入方案评价结果 Table 3 Access scheme evaluation result table评价目标值方案1 0.421 1 2 0.247 6 7 结语 本文根据城市配电网用户接入工作的一般规律,结合各个地区配电系统实际运行情况和负荷特性,提出用户接入工作的标准流程。首先对城市配电系统的结构进行详细分析,其次根据待接入用户的负荷特性确定网络接入点并制定详细接入方案,最后对各个方案的供电可靠性和经济效益进行综合评估。通过对广西南宁北投地产公司凤景湾住宅项目的负荷接入工作进行实例分析,验证了在配电网接入方案制订过程中,该标准工作流程的有效性,不难看出该方法思路清晰,结构简单,具有很好地实用性。参考文献: [1]黄志华.城市中压配电网供电模式综合评价方法[D].天津:天津大学,2013.[2]张玲玲,杨明玉,梁武.微网用户短期负荷预测相似日选择算法[J].中国电力,2015,48(4):156-160.ZHANG Lingling,YANG Mingyu,LIANG Wu.Methodfor selecting similar days in short-term load forecasting of microgrid[J].Electric Power,2015,48(4):156-160.[3]SAMUELSSON O,PERO S,JESSLER R,etal.Active distribution network-demonstration projection ADINE[C]//Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe,2010:1-8.[4]史永,郝志刚.城市中压配电网高可靠性供电模式与应用[J].电力设备,2008,9(4):83-88.SHIYong,HAO Zhigang.Powersupplymodewith high reliability for MV urban distribution network and its application[J].Electric Power Equipment,2008,9(4):83-88.[5]雷绍兰,古亮,杨佳,等.重庆地区电力负荷特性及其影响因素分析[J].中国电力,2014,47(12):61-65.LEI Shaolan,GU Liang,YANG Jia,et al.Analysis of electric power load characteristics and its influencing factors in chongqing region[J].Electric Power,2014,47(12):61-65.[6]于波.长春城市配电网网架模型研究与应用[D].长春:吉林大学,2014.[7]谢莹华,王成山,葛少云,等.城市配电网接线模式经济性和可靠性分析[J].电力自动化设备,2005,25(7):12-17.XIE Yinghua,WANG Chengshan,GE Shaoyun,et al.Economy and reliability analysis of connection modes in urban distribution networks[J].Electric Power Automation Equipment,2005,25(7):12-17.[8]樊昊,谢国辉.京津唐电网负荷特性分析及预测[J].中国电力,2014,47(11):70-74.FAN Hao,XIE Guohui.Load characteristicsanalysisand forecast of Beijing-Tianjin-Tangshan power grid [J].Electric Power,2014,47(11):70-74.[9]BOCZAR T,CICHON A,BORUCKI S.Diagnostic expert system of transformer insulation systems using the acoustic emission method [J].IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(2):854-865.[10]叶季蕾,薛金花,王伟,等.储能技术在电力系统中的应用现状与前景[J].中国电力,2014,47(3):1-5.YE Jilei,XUE Jinhua,WANG Wei,et al.Application of energy storage technology and its prospect in power system [J].Electric Power,2014,47(3):1-5.[11]CORZINE K A.Energy packets enabling the energy internet[C]//2014 Clemson University Power Systems Conference,2014:1-5.[12]YAO W,ZHAO J,WEN F,et al.A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems [J].IEEE Trans on Power Systems,2014,29(4):1811-1821.[13]王峥,梁伟,陈思佳.分布式电源接入城市配电网规则分析[J].中国电力,2013,46(7):43-46.WANG Zheng,LIANG Wei,CHEN Sijia.Rules of distributed generator integration to urban distribution network[J].Electric Power,2013,46(7):43-46.Urban Distribution System User Access Pattern Research and Application WANG Huizhong1,YANG Shiliang1,LU Yufei2,FANG Lixiang1(1.Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.Tianjin Ping Gao Intelligent Electric Co., Ltd., Pingdingshan 467001, China)Abstract:In order to solve the power user access to the problems existing in the urban distribution network plan formulation,make the whole distribution network upgrade more scientific and reasonable,establish industry standard process reporting for work.First in-depth analysis for access to the region of space truss structure and user load characteristics,distribution network to determine user access to distribution network access points and connection mode,to develop a typical access solutions,accord with the actual situation of regional comprehensive evaluation on the plan of next to each access and make a choice,the access of guangxi nanning phoenix exclusive residential projects plan formulation,standard process for industry expansion reporting for work for example.The results showed that the standard working process calculation is simple,accurate and fast,can be used to guide the electric power department staff for reporting for new users and upgrade of the distribution network.This work is supported by the Natural Science Foundation of Gansu Province(No.1308RJZA117).Keywords:distribution system;user access;load characteristic;load forecasting;a typical access;model 中图分类号:TM715 文献标志码:A DOI:10.11930/j.issn.1004-9649.201606207 收稿日期:2016-11-17 基金项目:甘肃省自然科学基金资助项目(1308RJZA117)作者简介:王惠中(1962—),男,河南洛阳人,教授,从事配电网自动化研究。E-mail:ysl05001@163.com(责任编辑 张重实)
第三篇:GB_T 9225-1999_核电厂安全系统可靠性分析一般原则
GB/T 9225-1999 核电厂安全系统可靠性分析一般原则
基本信息
【英文名称】General principles of reliability analysis for nuclear power plant safety systems 【标准状态】现行 【全文语种】中文版 【发布日期】1988/6/6 【实施日期】1999/12/1 【修订日期】1999/4/26 【中国标准分类号】F83 【国际标准分类号】27.120.20
关联标准
【代替标准】GB 9225-1988 【被代替标准】暂无
【引用标准】GB 13284-1998,GB/T 7163-1999
适用范围&文摘
暂无
第四篇:城市电网10kV配电系统继电保护的分析探讨论文
【摘要】文章介绍了城市电网10kV配电系统在电力系统中的重要位置及城市电网10kV配电系统继电保护的基本类型,着重介绍了几种目前国内常用的电流保护:反时限过电流保护、定时限过电流保护、电流速断保护,并分析了各类保护装置的基本构成、保护范围、动作原理、配合方法、优缺点,给出了详细的整定计算过程。
【关键词】配电系统;继电保护;整定计算
城市电网10kV配电系统是电力系统发电、变电、输电、配电和用电等五个环节的一个重要组成部分。它能否安全、稳定、可靠地运行,不但直接关系到党政机关、工矿企业、居民生活用电的畅通,而且涉及到电力系统能否正常的运行。
一、城市电网10kV配电系统在电力系统中的重要位置
城市电网10kV配电系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。例如,当系统中的某工矿企业的设备发生短路事故时,由于短路电流的热效应和电动力效应,往往造成电气设备或电气线路的致命损坏还有可能严重到使系统的稳定运行遭到破坏。为了确保城市电网10kV配电系统的正常运行,必须正确地设置继电保护装置。
二、城市电网10kV配电系统继电保护的基本类型
城市电网10kV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。
可以想象,在10kV系统中利用熔断器去完成上述任务是不能满足要求的。因为熔断器的安秒特性不甚完善,熄灭高压电路中强烈电弧的能力不足,甚至有使故障进一步扩大的可能;同时还延长了停电的历时。只有采用继电保护装置才是最完美的措施。因此,在10kV系统中的继电保护装置就成了供电系统能否安全可靠运行的不可缺少的重要组成部分。
在电力系统中利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置。如在城市电网10kV配电系统中应用最为广泛的是反映电流变化的电流保护:有定时限过电流保护、反时限过电流保护、电流速断保护、过负荷保护和零序电流保护等,还有既反映电流的变化又反映电压与电流之间相位角变化的方向过电流保护;利用故障接地线路的电容电流大于非故障接地线路的电容电流来选择接地线路,一般均作用于发信号,在部分发达城市因电容电流较大10kV配网系统采用中性点直接接地的运行方式,此时零序电流保护直接作用于跳闸。
三、几种常用电流保护的分析
(一)反时限过电流保护
继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护虽外部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。这种保护方式目前主要应用于一般用户端的进线开关处保护,不推荐使用在变电站10kV出线开关处。
(二)定时限过电流保护
1.定时限过电流保护。继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。
2.继电器的构成。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。定时限过电流保护简单可靠、完全依靠选择动作时间来获得选择性,上、下级的选择性配合比较容易、时限由时间继电器根据计算后获取的参数来整定,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比较准确和方便。这种保护方式一般应用在电力系统中变配电所,作为10kV出线开关的电流保护。
3.定时限过电流保护的基本原理。在10kV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。
4.动作电流的整定计算。过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。为此必须满足以下两个条件:
(1)在正常情况下,出现最大负荷电流时(即电动机的启动和自启动电流,以及用户负荷的突增和线路中出现的尖峰电流等)不应动作。即:
Idz>Ifh.max
式中Idz:过电流保护继电器的一次动作电流;Ifh.max:最大负荷电流
(2)保护装置在外部故障切除后应能可靠地返回。因为短路电流消失后,保护装置有可能出现最大负荷电流,为保证选择性,已动作的电流继电器在这时应当返回。因此保护装置的一次返回电流If应大于最大负荷电流Ifh.max。即:
If>Ifh.max
因此,定时限过电流装置电流继电器的动作电流Idz.j为:
Idz.j=(Kk.Kjx/Kf.Nlh).Ifh.max
式中Kk:可靠系数,考虑到继电器动作电流的误差和计算误差而设。一般取为1.15~1.25
Kjx——由于继电器接入电流互感器二次侧的方式不同而引入的一个系数。电流互感器为三相完全星形接线和不完全星形接线时Kjx=1;如为三角形接线和两相电流差接线时Kjx=√3
Kf:返回系数,一般小于1;
Nlh:电流互感器的变比。
(三)动作时限的整定原则
为使过电流保护具有一定的选择性,各相临元件的过电流保护应具有不同的动作时间。各级保护装置的动作时限是由末端向电源端逐级增大的。可是,越靠近电源端线路的阻抗越小,短路电流将越大,而保护的动作时间越长。也就是说过电流保护存在着缺陷。这种缺陷就必须由电流速断保护来弥补不可。
(四)过电流保护的保护范围
过流保护可以保护设备的全部,也可以保护线路的全长,还可以作为相临下一级线路穿越性故障的后备保护。
四、电流速断保护
(一)电流速断保护
电流速断保护是一种无时限或略带时限动作的一种电流保护。它能在最短的时间内迅速切除短路故障,减小故障持续时间,防止事故扩大。电流速断保护又分为瞬时电流速断保护和略带时限的电流速断保护两种。
(二)电流速断保护的构成电流速断保护是由电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般不需要时间继电器。它是按一定地点的短路电流来获得选择性动作,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比较准确和方便。
(三)瞬时电流速断保护的整定原则和保护范围
瞬时电流速断保护与过电流保护的区别,在于它的动作电流值不是躲过最大负荷电流,而是必须大于保护范围外部短路时的最大短路电流。当在被保护线路外部发生短路时,它不会动作。
(四)瞬时电流速断保护的基本原理
瞬时电流速断保护的原理与定时限过电流保护基本相同。只是由一只电磁式中间继电器替代了时间继电器。
(五)略带时限的电流速断保护
瞬时电流速断保护最大的优点是动作迅速,但只能保护线路的首端。而定时限过电流保护虽能保护线路的全长,但动作时限太长。因此,它的保护范围就必然会延伸到下一段线路的始端去。这样,当下一段线路始端发
生短路时,保护也会起动。为了保证选择性的要求,须使其动作时限比下一段线路的瞬时电流速断保护大一个时限级差,其动作电流也要比下一段线路瞬时电流速断保护的动作电流大一些。略带时限的电流速断保护可作为被保护线路的主保护。
五、三(两)段式过电流保护装置
由于瞬时电流速断保护只能保护线路的一部分,所以不能作为线路的主保护,而只能作为加速切除线路首端故障的辅助保护;略带时限的电流速断保护能保护线路的全长,可作为本线路的主保护,但不能作为下一段线路的后备保护;定时限过电流保护既可作为本级线路的后备保护(当动作时限短时,也可作为主保护,而不再装设略带时限的电流速断保护),还可以作为相临下一级线路的后备保护,但切除故障的时限较长。
目前在实际应用中,为简化保护配置及整定计算,同时对线路进行可靠而有效的保护,常把瞬时电流速断保护和定时限过电流保护相配合构成两段式电流保护。
六、结语
在城市电网10kV配电系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。随着电网规模的发展,为了确保10KV供电系统的正常运行,必须正确地设置继电保护装置并准确整定各项相关定值。
【参考文献】
[1]崔家佩,孟庆,陈永芳,熊炳辉.电力系统继电保护与安全自动装置整定计算[M].水利电力出版社,1993.
[2]方大千.实用继电保护技术[M].人民邮民出版社,2003.
[3]吴潮辉.城市配电网规划探讨[N].华南理工大学学报.
第五篇:大容量电动机配电系统介绍
大容量电动机配电系统介绍
一、前言
大容量电动机通常是指电功率在几百甚至上千千瓦的电动机。其配电装置采用3kV∽10kV电压等级,在电网容量,电动机和生产工艺许可的情况下,尽量采用全电压直接起动的方式,同时还要有相应的继电保护装置确保其正常运行。大型电动机的运行将会给电网和其它拖动设备的安全运行带来很大影响,因此需要进行认真的比较和分析计算,以确定经济合理,运行可靠,技术先进的配电方案。以下就岭澳核电站空压机配电的工程实例谈谈大容量电动机的配电特点,起动条件及相应的计算验证。
二、工程实例
(一)实例介绍
岭澳核电站空气压缩系统由三台空压机组成,主要向核岛和常规岛输送压缩空气。空压机由英国ATLAS公司进口,其电动机功率分别为250kW/50Hz/3phase,电压等级为6.6kV.电源引自电站东北侧辅助变压器平台全厂共用的6.6kV配电盘,选用3x3(ZR-YJV-10-1x400)中压铠装电缆约9x550米至核岛电气厂房6.6kV配电盘后,再分别选用ZR-YJV22-3x35中压铠装电缆约350米给各空压机供电。该电动机和工艺设备无特殊的动热稳定要求,但根据规程,电动机起动时母线电压不应低于额定电压的85%.根据以上技术条件,为确定电动机起动时的电压电流是否满足起动要求需进行起动计算,然后校验电动机的继电保护要求。计算条件应设供电系统是无限大容量电源,采用标幺值,计算容量Sj=100MVA。
(二)在计算之前需考虑以下因素:
1、大容量电动机起动时,需要满足起动母线电压波动、电动机起动转矩要求和电动机及工艺设备的动热稳定要求。电动机和工艺设备应能承受全压起动时的冲击,即能满足电动机和工艺设备的动稳定要求。对于某些电动机在全压起动时还需满足制造厂规定的热稳定要求。
2、大型电动机起动时,其端电压应能保证被拖动机械要求的起动转矩,且在配电系统中引起的电压下降不应妨碍其它用电设备的工作。按照国家标准《电能质量。电压允许拨动和闪变》(GB12326-93)的要求,一般情况下,电动机起动时配电母线上的电压不应低于额定电压的85%,对于经常起动的电动机,不应低于额定电压的90%。
3、起动计算
(1)阻抗计算:设供电系统是无限大容量电源,采用标幺值计算,用系统阻抗(X*xt)计算起动压降时,应按引起压降最大的情况,即系统容量最小,短路容量最大的情况。
b.线路阻抗(X*l1):X*l1=X×Sj/Uj2式中:X——每相线路电抗(Ω);Uj——线路基准电压(kV);
c.母线上其它负荷电抗(X*fh);X*fh=Sj/Sfh式中:Sj——基准容量,取100MVA;Sfh——母线上其它容量计算值(MVA);
d.线路阻抗(X*l2)
X*l2=X×Sj/Uj2式中:X——每相线路电抗(Ω);Uj——线路基准电压(kV);e.电动机起动阻抗(X*d)
X*d=1/Kq×Sj/Sed式中:Kq——电动机全压起动电流倍数;Sed—电动机额定容量。
(2)起动参数计算:由图1可知,电动机回路阻抗X*q=X*l2+X*d
母线总的阻抗X*=X*q//X*fh
供电系统的总阻抗∑X*=X*+X*l1+X*xt
系统提供的总起动电流I*q=1/∑X*
电动机回路起动电流,由电动机回路阻抗和负荷阻抗分流计算,即I*d=I*q×X*fh/(X*fh+X*q)。
母线电压标幺值U*m=I*q×X*
电动机端电压相对值(起动时电动机端电压/电动机额定电压)U*d=I*d×X*d4、继电保护根据国家标准《电力装置的继电保护和自动装置设计规范》(GB50062-92),关于3kV及以上电动机的保护,要求设置电流速断保护、差动保护、过负荷保护、失压保护、不平衡缺相保护、接地故障保护及起动次数保护。本例主要考虑差动保护、电流速断保护、过负荷保护、低电压保护、接地保护。
1.差动保护按躲过电动机的最大不平衡电流计算保护装置的动作电流Idzj=(1.5∽2)Irm/n1A;按最小运行方式下,电动机接线端两相短路时,流过保护装置的短路电流校验保护装置的灵敏系数Km=Ik2.min/Idz≥2。2.电流速断保护按躲过电动机的起动电流,计算异步电动机保护装置的动作电流:Idzj=KkKjxKq
Irm/n1A;按最小运行方式下,电动机接线两相短路时,流过保护安装处的短路电
流校验保护装置的灵敏系数:Km=Ik2.min/Idz≥2。3.过负荷保护按躲过电动机的额定电流计算保护装置的动作电流:Idzj=KkKjxIrm/Khn1A。4.低电压保护当母线电压下降至额定电压的60%时,低电压作用于跳闸。5.接地保护按被保护元件发生单相接地故障时最小灵敏系数1.25整定保护装置的一次动作电流:Idz≤(Ic∑-Icm)/1.25A。
(三)本例计算结果如下:
1、元件阻抗标幺值
(1)系统阻抗:由电站提供,6.6kV出线最小短路容量为150MVA,最大短路容量为330MVA.基准容量Sj=100MVA,X*tmin=Sj/Smin=100/150=0.667
X*tmax=Sj/Smax=100/330=0.303。
(2)变压器阻抗(X*b):由制造厂给出,为X*b=0.09。
(3)线路阻抗(X*l1):本例中线路采用九根1x400mm2铜芯交联聚乙烯绝缘电缆,电缆长度为0.55kM,线路每公里电抗为0.150Ω,可得X*l1=X×Sj/Uj2=0.150x0.55x100/6.62/9=0.0210由于线路阻抗相对于电动机阻抗较小,可在以下计算中忽略。
(4)电站:该6.6kV母线上其它负荷为Sfh=10.5MVA,因此X*fh=Sj/Sfh=100/10.5=9.523。
(5)线路阻抗(X*l2):本例中线路采用三根3x35mm2铜芯交联聚乙烯绝缘电缆,电缆长度为0.35km,线路每公里电抗为0.123Ω,可得X*l2=X×Sj/Uj2=0.123x0.35x100/6.62/3=0.0329。
(6)电动机起动阻抗本例中电动机额定容量为3x250/0.85=882.35KVA=
0.882MVA,额定电压为6.6kV,额定电流为31A,起动电流倍数为10倍,可X*d=1/Kq×Sj/Sed=(1/10x100)/0.882=11.34。
2、起动计算过程及分析
电动机回路阻抗X*q=X*l2+X*d=0.0329+11.34=11.37
母线总阻抗X*=X*q//X*fh=11.37x9.523/(11.37+9.523)=5.182
供电系统总阻抗:∑X*=X*+X*l1+X*xtmin+X*b=5.182+0.0210+0.667+0.09=5.96
总起动电流I*q=1/∑X*=1/5.96=0.168
母线电压U*m=I*qX*=0.168x5.182=0.871
电动机回路起动电流:I*d=I*qxX*fh/(X*fh+X*q)=0.168x9.523/(11.37+
9.523)=0.077
端电压U*d=I*dX*d=0.077x11.34=0.873
由计算可知,电动机起动时能满足要求,即母线及电动机端电压均超过85%,因此可采取直接启动的方式。
3、继电保护计算
(1)电动机侧短路时,当系统取最小短路容量为150MVA时,d1点的短路电流计算其中,Xjs1=X*xtmin+X*l1+X*l2+X*b=0.667+0.021+0.0329+0.09=0.811短路电流Idlmin=Ij/Xjs1=Sj/(UjXjs1)=100/(x6.6x0.811)=10.786kA两相短路电流I“dlk2=0.866Id1min=0.866x10.786=9.341kA当系统取最大短路容量为330MVA时,d1点的短路电流计算其中,Xjs2=X*xtmax+X*l1+X*l2+X*b=0.30+0.021+0.0329+0.09=0.444短路电流Idlmax=Ij/Xjs2=Sj/(UjXjs2)=100/(x6.6x0.444)=19.703kA。
(2)差动保护配电装置电流互感器的变比为50/5,电流互感器的接线系数Kjx为1,因此可得保护装置的动作电流Idzj=(1.5∽2)Irm/n1=(1.5∽2)31/10=(4.65∽6.2)A当Idzj取6.0A时,Idz=Idzj×n1/Kjx=6.0x10/1=0.06kA保护装置的灵敏系数Km=I”d1k2min/Idz=9.341/0.06=156>2。
(3)电流速断保护保护装置的动作电流为Idzj=KkKjxKqIrm/n1=1.6x1x31/10=4.96AIdz=Idzjn1/Kjx=5x10/1=0.05kA保护装置的灵敏系数为Km=I"dlk2min/Idz=9.341/0.05=187>2。
(4)过负荷保护保护装置的动作电流为Idzj=KkKjxIrm/Khn1=1.6x1x31/(0.85x10)=5.84A,按照此电流值对过负荷电流值进行整定。
(5)接地保护电网的总单相接地电容电流IcΣ=0.1Url=0.1x6.6(9x0.55+3x0.35)=3.96A可得保护装置的一次动作电流为Idz=(Ic∑-Icm)/1.25=
3.96/1.25=3.168A保护装置的动作电流3.168A满足零序电流互感器和接地继电器的灵敏系数要求。
三、结束语
综上所述,大型空压电机的配电考虑因素较多,应着重考虑电机的工艺要求,起动条件和继电保护要求。在电网容量,电动机和生产工艺许可的情况下,尽量采用全电压直接起动的方式,同时还要有相应的继电保护装置确保其正常运行,而继电保护却只要满足运行条件,规范要求,就能达到保护空压机的要求。