光电子技术科学专业

时间:2019-05-12 15:24:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《光电子技术科学专业》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《光电子技术科学专业》。

第一篇:光电子技术科学专业

光电子技术科学专业

专业简介

学科:理学

门类:电子信息科学类

专业名称:光电子技术科学专业

专业信息

培养目标:培养在光电子技术科学领域具有宽厚的理论基础、扎实的专业知识和熟练的实验技能,德、智、体、美全面发展的高级光电子技术科学人才,使学生具有在光学、光电子学、激光科学、光通信技术、光波导与光电集成技术、光信息处理技术、计算机应用技术等领域开展创新性基础理论研究以及从事设计、开发应用和管理等工作应具备的理论和技术基础。

主要课程:光电子技术、光电子器件及系统、信号与系统、通信原理与技术、高等光学、应用光学、计算机及网络技术、电子电路与技术、电动力学、量子力学、半导体物理等。

修业年限:4年。

授予学位:理学学士学位。

专业就业状况

该专业毕业生的主要去向是信息产业部门、中科院及有关研究所、电信部门、高等院校、企事业单位等。

院校分布(部分)

南开大学。

第二篇:池州学院物理光电子技术科学班心理活动方案

池州学院物理光电子技术科学班

2011~2012学第一学期学生健康教育活动方案

活动的名称:以“如何建立良好的人际关系”为主题的演讲比赛

活动开展的目的和意义:

1.有利于同学树立正确的心理健康观念。

2.有利于同学身体、情绪、智力的协调。

3.有利于同学适应环境,人际关系中彼此能谦让;有幸福感。

4.有利于同学在工作和职业中,能发挥自己的能力,过有效率的生活。

5.采取演讲的活动方式也有利于全班同学更深层次的了解心理健康,也更加重视心理健康

活动初步的拟定的时间,地点:

于2011年11月15日在博学北304

活动内容:

1.请每位同学回去搜集关于心理健康的资料。可以从书刊,报纸,网络上查找资料,以及相关信息。

2.以寝室为单位,将搜集的资料汇总并写出演讲稿,每个寝室派出一位代表上台演讲。演讲时间为5分钟。演讲主题为“如何建立良好的人际关系”

3.请物理系每班的心理委员作为评委,本着公平,公正,公开的原则对每位演讲者进行评分,最后评出优胜者。评分标准为

内容25分,普通话25分,台风25分,感情25分,4.活动结束时授予优胜者心理健康模范的称号。

物理系光电子班心理委员:夏秋

2011年11月10日

第三篇:光电子技术与科学专业介绍

光电子技术科学专业

目录

光电子技术科学专业介绍

研究领域

详细介绍

前景

展开

光电子技术科学专业介绍

研究领域

详细介绍

前景

展开

编辑本段

光电子技术科学专业介绍

专业概述

光电子技术科学 :属于理学大类,电子信息科学类。

光电子技术科学是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科,其技术广泛应用于光电探测、光通信、光存储、光显示、光处理等高新技术光电信息产业。而光电子技术科学专业正是由光学、激光、电子学和计算机技术学科互相渗透而组成的。

培养目标及要求

光电子技术科学专业培养在光电子技术科学领域具有宽厚的理论基础、扎实的专业知识和熟练的实验技能,德、智、体、美、劳全面发展的高级光电子技术科学人才,使学生具有在光学、光电子学、激光科学、光通信技术、光波导与光电集成技术、光信息处理技术、计算机应用技术等领域开展创新性基础理论研究以及从事设计、开发应用和管理等工作应具备的理论和技术基础。

本专业学生主要学习数学、物理、计算机语言及应用基础,四大力学、固体物理、半导体物理、红外物理、红外探测器、红外电子学、红外系统原理与设计、红外安防技术等基础理论和基本知识,具有利用现代的光学、电子、计算机等先进技术,对红外系统乃至其它光电子系统仪器整机的设计、应用的基本能力。

通过学习,将具备了以下几方面的能力:

1.坚实的数理基础、较好的人文社会科学基础、并熟练掌握一门外国语;

2.系统地掌握本专业领域必需的较宽的技术基础理论知识;

3.具备较强的近代物理实验、光电子技术和红外技术实验能力、计算机应用能力和初步的专业实践经验,具备科技创新和工程应用的基本能力;

4.了解本专业领域的最新理论前沿和发展动态;

5.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。相近专业

科技防卫(071204W)、电子信息科学与技术(071201)、微电子学(071202)、光信息科学与技术(071203*)信息安全(071205W)、信息科学技术(071206W)、光电子技术科学(071207W)。

课程设置

光电子技术、光电子器件及系统、信号与系统、通信原理与技术、高等光学、应用光学、光电子学、计算机及网络技术、电子电路与技术、电动力学、量子力学、半导体物理等,模拟电路,数字电路,大学物理,电路分析,C语言,高等数学,线性代数,概率论数理统计,电子设计自动化,工程制图。

光电子技术科学专业的主要实践性教学环节包括专业实验(普通物理实验、近代物理实验、电工技术实验、电子技术实验、光电子专业实验)、程序设计上机、微机上机、工程训练、认识实习、专业调研、专业实习、毕业实习、毕业论文设计等。

毕业去向

继续攻读硕士、博士学位;或到信息产业部门、中科院及有关研究所、电信部门、高等院校、企事业单位及有关公司,主要从事光学、光电子学、光电子技术科学、光电信息工程与技术、光通信工程与技术、光电信号检测处理与控制技术等领域的研究、设计、开发、应用和管理等工作。

开设院校

南开大学、燕山大学,天津大学、长春理工大学、池州学院、华南理工大学、华南师范大学、东南大学、湖北工业大学、东华大学、长春理工大学光电信息学院、大连民族学院、华中科技大学、四川大学、西北工业大学等。新增此专业的院校有:深圳大学、湖南理工大学、黑龙江大学、湖州师范学院 浙江师范大学、河北师范大学

编辑本段

研究领域

研究领域是信息光学与光电子技术相结合的应用基础学科,包括:现代光学与光电子学、光通信、光信息处理、声光信息处理与光通信技术和激光技术等。主要有三个研究方向,即光信息存储与处理、光通信技术与器件、以及激光超短脉冲与变频技术,均处于国内先进或领先的水平;代表性成果有新型超高密度体全息存储、声电光器件、可调谐激光器。目前承担了1项“973”国家重点基础研究项目、4项国家自然科学基金项目、1项国家部委项目和5项北京市科委教委项目,研究经费充足,同时与国际学术界有较为广泛的学术交流。本学科所依托的光学学科于1986年获得国务院授权的博士学位授予权,光学工程学科于2000年获得博士学位授予权。学科部可同时招收理学(光学)和工学(光学工程)的博士、硕士研究生。在211工程“九五”期间的重点学科建设中,作为“激光应用技术”重点学科的一部分,学科的学术水平有了很大的提升,并且实验室建设成效显著,并且于2001年与激光工程研究院整合,进入了“光学”国家重点学科行列。

编辑本段

详细介绍

在光盘技术的促进下,近年来可见光半导体激光二极管和发光二级管得到了较快的发展。蓝绿光可见光半导体激光二级管(LD)和蓝绿光半导体发光二极管、黄橙红光可见光激光二极管和高亮度黄橙红绿光发光二极管都已商品化。今后的发展需要继续解决提高亮度,降低价格,提高使用寿命等问题。

近红外半导体激光和发光二极管的发射波长为0.8~1.0μm。近红外半导体激光二极管主要用于光纤通信和作为固体激光器的泵浦源(替代闪光灯泵浦源)。在1.3μm和1.55μm近红外半导体激光二极管商品化之后,其发展势头受到很大影响,甚至出现了停止发展的迹象。随着短距离局域网和二极管泵浦固体激光器的迅猛发展,又出现了新的发展。目前研究开发主要集中在单频工作、模式稳定以及提高输出功率等方面。近红外发光二极管主要有超发光二

极管和谐振腔发光二极管。超发光二极管是光纤陀螺仪的最佳自选光源,与一般的发光二极管相比,可提供较高的输出功率和相对窄的发射谱。目前,在50mA工作电流下,单管超辐射输出功率的研究水平最高达到50MW,最窄谱宽为15nm。谐振腔发光二极管是一种有前途的发光二极管,其实验和理论效率比传统发光二极管高5~10倍。

1.3μm和1.55μm近红外半导体激光和发光二极管是现行通信系统、高速光纤通信系统的重要光器件,已成为广为研究开发的光源。日本NEC已开发出在单晶片上制造不同发射波长的近红外激光二极管,采用它可大大降低多波长长途通信设备的价格。近年来,国外又相继开发出半导体孤子激光器、量子阱线或点激光器和垂直腔表面发射激光器等新型半导体激光二极管。

激光技术是一项前沿科学技术发展不可缺少的支柱。作为光电子主导产品的激光器的发展,经历了原理上的四次变革,体积日益变小,功率不断增大,可靠性和功率得到了很大的提高。半导体二级管激光器和固体激光器技术和发展十分迅速,其中最为突出的进展是固态化。现今,固体激光器的平均输出功率已从百瓦级提高到了千瓦级。半导体激光器的功率也有很大提高,其结构和其他性能也正在经历重大变化。与此同时,还开发出了实用价值高的新波长和宽带可调谐激光器,包括对人眼无伤害的1.54μm和2μm的激光器、蓝光激光器和X光激光器。

光纤是随着光通信的发展而不断发展的,各种结构和类型的光纤支持着光通信产业的发展。目前,单根光纤传输的信息量已达到万亿位。光纤作为光通信信息传输的介质,它的色散和损耗将直接影响到通信系统的传输容量和中继距离,而常规的单模光纤已不能满足新一代通信技术的要求,因此光纤技术又有了新的发展。迄今,光纤已经经历了由短波长(0.85μm)到长波长(1.3~1.55μm),由多模到单模光纤以及特种光纤的发展过程,并开发出了色散移位光纤、非零色散光纤和色散补偿光纤。

平板显示(FPD)技术包括液晶显示(LCD)、等离子体显示(PDP)、电致发光显示(EL)、真空荧光显示(VFD)和发光二极管显示(LED)等,除在民用领域的广泛应用外,已在虚拟显示、高清晰度显示、语言和图形识别等军用领域应用。近年来,液晶显示以及其他平板显示器件和技术正在大力地改进,如为解决等离子体显示发光效率、亮度、寿命、光串扰和对比度等问题,正在进行诸如大面积精细图形制作和保护层等工艺方面的改进,并取得了较快进展。从整体来说,平板显示技术将继续向着彩色化、高分辨率、高亮度、高可靠、高成品率和廉价方向发展。

随着半导体技术的迅速发展,各种类型的光电探测器,如电荷耦合器件、光位置敏感器件、光敏阵列探测器等应运而生,取得了重大进展。进入90年代,光电探测器的发展方向除了开发高速响应光电 探测器外,其重点是开发焦平面阵列为代表的光电成像器件。红外焦平面阵列制作技术的日臻完善,使红外探测技术进入了第二代。当前,降低成本是红外探测器在民用领域得到广泛应用的关键。21世纪,红外焦平面阵列开发方向,一是在现有基础上提高分辨率,二是开发多功能和智能化焦平面阵列。

随着光通信、光信息处理、光计算等技术的发展,加之材料科学和制造技术的进展,使得在单一结构或单片衬底上集成光学、光电和电子元器件成为可能,形成具有单一功能或多功能的光电子集成回路(OEIC)和集成光路(IOC)。目前,商品化的集成光路产品有调制器、开关和分路器以及采用集成光路相干通信系统、光纤陀螺、激光光纤多普勒干涉仪等系统,以及用于光纤传输试验的单片集成光电子集成回路。预计到2020年,光电子集成回路和集成光路的发展速度将相当于20世纪70年代的微电子技术,多功能集成光学器件和光电子集成器件将系列化,集成光学信号处理速度将达到1GHz。

我国光电子行业在科研上起步较早,也有一批水平较高的应用成果,其中光纤通信的发展尤快。在国防上的应用也开展较早,如靶场用的激光、红外、电视等光测设备,以及红外导引

装置、红外热像仪、激光测距仪、微光夜视仪等。但民用市场开发较晚,真正能形成较大生产规模的产品不多。我国在“八五”计划期间对一些光电器件企业进行了技术改造,已在“九五”计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设。

鉴于上述情况,中国光电子技术发展战略总的指导思想是:有限目标、突出重点、科技领先、形成规模、开拓市场,在“八五”、“九五”计划基础上,使有基础的企业和研究所分别形成规模生产和研究开发中心,使我国光电子元器件初步形成基本配套的产业,满足市场的需要。编辑本段

前景

在微电子技术蓬勃发展的同时,人们发现可以利用光电各自的优势来为我们服务。比如激光器,光电探测器,太阳电池如等方面都需要光电结合。这就是早期的光电子学。随着光电子学的发展,人们研究完全利用光来处理信息,于是诞生了光子学。所以可以说,先有了光电子学,又有了光子学。而最终的发展会是光电的再次统一,即更高一个层次上的光电子学。现在正在发展单电子技术和单光子技术,那时信息的载体不再是束流,而是单个的粒子。光子和电子都是利用量子力学的概念,区别只是波长不同而已。我想我们在二十一世纪肯定会走到这一步。那时既不能叫光子信息技术,也不能叫电子信息技术,应该叫量子信息技术。由于光子具有电子所不具备的许多特性所以光子学有它独特的优势。尤其在信息领域。比如通信,我们现在大部分主干网用的都是光纤,信息的载体都是光。由于密集波分复用技术的发展,一根头发丝粗细的光纤就可以传输一亿门电话线路。这是电缆无法比拟的。再如信息存储技术,光盘由VCD发展到DVD,容量增大了好几倍,未来如果研制出能够商用的蓝光激光器,采用蓝光波段的光来作为信息的载体,就又可以使同样大小的光盘的容量增大近十倍。而且光具有相干性,可以实现全息存储,在不到一个平方厘米的芯片上,我们可以把北京图书馆的所有的书都存进去。在计算机方面,未来的发展趋势是光要进入计算机中,发挥光子的优势实现开关的互联,利用光来消除电子传输带来的瓶颈效应。[1]

第四篇:光电子总结

周口师范学院2013~2014学第二学期期末考试

《光电子学基础 》试卷

物理与机电工程学院 光电子技术科学专业 李洁 201105100039

激光器的种类和应用

激光器的种类

按功率分:超大功率、大功率、中功率、小功率激光器.按输出激光连续性状况分:连续激光器、脉冲激光器;按泵浦方法分:光泵浦激光器、电泵浦激光器等。一般按激光工作物质的类型来划分:气体.液体.固体.半导体激光器

气体激光器

以气体为工作物质的激光器。

目前应用最广泛的一类激光器:小功率He-Ne激光器,大功率二氧化碳激光器等。大多数能连续工作,激励过程中涉及能级较固定,采用气体放电中的电子碰撞激发。根据能级跃迁类型,又分为原子、离子、分子、准分子型气体激光器。

1.原子气体激光器

工作物质:中性气体原子。

典型代表:He-Ne激光器。其激活介质按He:Ne=1:10填充,氖提供激光跃迁能级

2.离子气体激光器

工作物质:离子气体。

输出波长:大多在紫外和可见光区域,输出功率比原子气体激光器高。

3.分子气体激光器

工作物质:中性气体分子的激光器。

代表: CO2激光器,其能级与分子的振动和转动有关。充气:

又可分为直流放电型、横向放电大气压(TEA)型和波导型

4.准分子激光器

工作物质:稀有气体或稀有气体与卤素气体的混合气体,液体激光器

激光工作物质:液体。

可分为无机液体激光器和有机液体激光器。染料激光器最有代表性,典型例子:若丹明6G染料激光器。

固体激光器

激光工作物质:生长期间人为掺入杂质原子的晶体。

特点:体积小,结构稳,易维护,输出功率大且适于调Q产生高功率脉冲、锁模产生超短脉冲

典型例子:红宝石激光器、Nd:YAG(掺钕的钇铝石榴石激光器)、钛蓝宝石激光器等。半导体激光器

工作物质:半导体材料(主要是化合物半导体)

泵浦:电流注入

激光器的应用

继固体激光器后, 气体激光器、化学激光器、染料激光器、原子激光器、离子激光器、半导体激光器、X 射线激光器和光纤激光器相继问世, 运用范畴也扩展到比如电子、轻工、包装、礼物、小五金工业、医疗器械、汽车、机械制作、钢铁、冶金、石油等, 为传统工业的技能改造和制作业的现代化供给领先的技能装备。

激光与通常光对比有4个特性即: 单色性(单一波长)、相干性、方向性和高光强。激光束易于传输, 其时刻特性和空间特功用够别离操控, 经集合后可得到极小的光斑, 具有极高功率密度的激光光束能够熔化、气化任何资料, 也可对资料的有些区域进行精细疾速加工。加工过程中输入工件的热量小,热影响区和热变形小;加工功率高;易于完成自动化。激光技能是一门归纳性高新技能, 触及光学、机械学、电子学等学科。一样, 激光加工设备也触及到很多学科, 因此决议了它的高科技性和高收益率。纵观世界和国内激光运用状况经过多年的研讨开发和完善, 今世的激光器和激光加工技能与设备已适当老练, 形成了系列激光加工技能。

我们来介绍激光加工技能在金属切开、焊接方面的运用状况。激光切开的特色及运用

激光切开是当时各国运用最多的激光加工技能, 在国外许多范畴, 例如, 汽车制作业和机床制作业都选用激光切开进行钣金零部件的加工。跟着大功率激光器光束质量的不断提高, 激光切开的加工目标规划将愈加广泛, 简直包含了一切的金属和非金属资料。例如能够运用激光对高硬度、高脆性、高熔点的资料进行形状杂乱的三维立体零件切开, 这也正是激光切开的优势地点。

激光切开的几项关键技能是光、机、电一体化的归纳技能。激光光束的参数、机器与数控体系的功用和精度都直接影响激光切开的功率和质量。激光切开的精准度、功率和质量因不一样的参数而改动, 如切开功率、速度、频率、资料厚度及原料等, 故操作人员的丰厚经历特别重要。

激光切开的首要长处

(1)切开质量好: 切断宽度窄,精度高、切断外表粗糙度好, 切缝通常不需求二次加工即可焊接。

(2)切开速度快, 例如选用2kW激光功率, 厚度8mm的碳钢切开速度为1.6m/min;厚度2mm的不锈钢切开速度为3.5m/min, 热影响区小, 变形极小。

(3)清洗、安全、无污染, 大大改进了操作人员的作业环境。

激光切开归于非触摸光学热加工, 被誉为“永不磨损的全能东西”。工件能够进行恣意方法的严密排料或套裁, 使原资料得到充分运用。因为对错触摸加工, 加工后的零件的歪曲表象降至最低并减少了磨损量。

其实激光切开亦有其不足之处, 就精度和切断外表粗度而言, 激光切开未能超越电加工, 就切开厚度而言难以达到火焰和等离子切开的水准。别的它亦不能像转塔冲床一样进行成型、攻牙及折边等。

激光切开的典型运用汽车范畴的运用

领先的三维激光设备, 不光能够完成车体零件的切开, 还可完成整个轿车车身全体的切开、焊接、热处理、熔覆、乃至三维丈量, 然后完成惯例加工无法完成的技能需求。德国通快公司的三维激光设备在奔、通用公司、福特公司、雷诺公司、SKODA公司、欧宝公司、SAAB公司、VOLVO公司和戴姆勒一克莱斯勒公司成功地运用多年。航空范畴的广泛运用

世界上很多的航空发动机公司选用三维激光设备进行燃烧器段的高温合金资料的切开和打孔使命, 在军用和民用航空器的铝合金资料或特别资料的激光切开都获得了成功。

2.激光焊接的特色及运用

激光焊接是一种高速度、非触摸、变形极小的焊接方法, 十分合适很多而接连的在线加工。跟着激光设备和加工技能的开展, 激光焊接才能也在不断增强。当前, 运用4kW的C02激光器焊接1mm的板材, 焊接速度高达20m/min, 例如, 汽车职业的轿车箱底的大板拼接焊接作业等。激光焊接的方法首要有传导焊和穿透焊2 种。当前全球的激光运用首要以穿透焊为主。近些年来, 高功率万瓦级激光器在机械、汽车、钢铁等工业部门获得了日益广泛的运用。

激光焊接机与其他焊接技能对比, 首要长处是:

(1)激光焊接速度快, 焊缝深宽比很大(可达5~10), 变形小。

(2)合适于精细件、箱体件和有密封需求焊接件的加工。激光束经集合后可获得很小的光斑, 能精细定位, 可运用于大批量自动化出产, 不只出产功率大大提高, 且热影响区小, 焊点无污染, 大大提高了焊接的质量。

(3)激光焊缝机械功用好, 通常焊缝的机械功用均强于母材。

激光焊接的典型运用激光焊接汽车用大板拼接的运用

为了满意汽车职业对宽幅钢板和特别功用钢板的需求, 经过激光焊接进行大板拼接, 满意汽车厂大型三维功用冲压件的需求。全球汽车制作商都已完成此类部件的激光焊接运用。例如, 奔驰、宝马、通用、丰田、欧宝SAAB、戴姆勒一克莱斯勒等很多公司都早已运用。能够把1m宽的冷轧钢板, 经过激光焊接, 拼成2m 宽的钢板。激光焊接在齿轮加工方面的运用

激光焊接齿轮的技能从根本上改动了传统的描绘和制作理念, 为齿轮箱体类部件的加工供给了非常好的经济性和更为紧凑的布局。运用激光焊接齿轮技能, 需求先加工整个环状长齿圈, 然后截成若干个齿圈, 再别离依据齿轮箱的需求焊在传动轴上

激光加工技能已在很多范畴得到广泛运用, 跟着激光加工技能、设备、技能研讨的不断深入, 将具有更宽广的运用远景。

第五篇:光电子技术

光电子技术

1.世界上第一台激光器,由修斯研究室的梅曼研制,并最终在1960年成功运转。(红宝石激光器)

2.黑体:能够完全吸收任何波长的电磁辐射。

3.跃迁:原子中的电子在特定的轨道上运动,并具有能量,各能量级能量不连续,当原子从某一能级吸收或释放了能量,转移到另一能级时,就称为跃迁。4.自发辐射:处于高能级E2上的原子自发的向低能级E1跃迁,并发射一个频率v=(E2-E1)/h的光子的过程称为自发辐射跃迁。5.受激辐射:处于高能级E2上的原子在频率为v=(E2-E1)/h的辐射场激励作用下或在频率为v=(E2-E1)/h的光子诱发下,向低能级E1跃迁并辐射出一个与激励辐射场光子或诱发光子的状态(包括频率、运动方向、相位等)完全相同的光子的过程称为受激辐射跃迁。

6.受激吸收:受激辐射的反过程为受激吸收过程,一般也称作吸收。

7.激光产生的基本原理:在受激辐射跃迁的过程中,一个诱发光子可以使处在上能级上的发光粒子产生一个与该光子状态完全相同的光子,这两个光子又可以去诱发其他发光粒子,从而产生更多状态相同的光子。必要条件:使激光工作物质处于粒子束反转状态。粒子束反转:采用诸如光照、放电等方法从外界不断地向发光物质输入能量,把处于下能级的发光粒子激发到上能级去,便可使上能级E2的粒子数密度超过下能级E1的粒子数密度的状态。此时,受激辐射大于受激吸收。

8.激光器构造:由三部分构成,包括激光工作物质(基质与激活粒子)、泵浦源(对激光工作物质进行激励)和光学谐振腔(得到稳定、持续、有一定功率的高质量激光输出)。9.激光粒子的能级系统:1三能级系统2四能级系统(P9页)

10.光学谐振腔:是常用激光器的三个主要组成部分之一。它是在激活物质两端适当位置放置两个反射镜组成。主要作用:1.提供光学正反馈作用。2.产生对振荡光束的控制作用。11.谐振腔的Q值:品质因数Q=ωW/ρ,式中ω为角频率,W为存储在谐振腔内的能量,ρ为每秒损失的能量。(P21页)12.横模:激光光束横截面上稳定的光场分布称之为横模。

13.激光纵模:激光器谐振腔内获得振荡的几种波形(波长稍微不同)沿光轴方向的分布。14.纵模的选择:1短腔法:两个相邻纵模间的频率差Δνq=νq-νq-1=c/2L’

(L’=(L-l)+nL表示谐振腔的光学长度;n晶体折射率,L物理长度,l晶体长度,c表示真空中的光速)例:在氦氖激光器中,其荧光谱线ΔνF约为1500MHZ。若激光器腔长为10cm,则纵模间隔Δνq为Δνq= c/2L’=3*108m/s /2*1*10*10-2m=1500MHZ 15.稳频技术:通常讲的频率的稳定性包括两方面:一是“稳定度”,指的是激光器在连续工作期间内它的频率该变量Δν’在振荡频率ν中所占的比例,即

Δν’/ν。二是“复现度”,指的是同样设计、同样方法制成的激光器在同样条件下使用时相互之间的频率偏差,或是在完全不同设计、和不同条件下,用相同的能级跃迁所制成的激光器,其振荡频率与与原子跃迁中心频率的偏差,如果这方面的偏差用Δν表示,则其在ν中所占比例Δν’’/ν称为复现度。

16.固体激光器:一般采用光激励(泵浦灯),其能量转换环节多,所以效率低。(光的激励能量大部分转换为热能)。气体激光器:一般采用电激励,其效率高、寿命长,长采用连续方式。

17.掺钕钇铝石榴激光器(YAG):典型的四能级系统,激光波长为1.0641μm,优点是阈值功率低,可以做成连续激光器,输出功率已达千瓦量级。激光输出为多纵模。每次脉冲

’’输出功率在几千瓦以上。

18.红宝石激光器:属于三能级激光器,是最早的一种激光器。它的效率比较低,但由于它发射694.3nm的红光且能得到相干性好的单模输出,当研究顺便过程的全息照相时,作为可见光脉冲光源是比较合适的。

19.尖峰振荡效应:不加任何特殊装置的固体脉冲激光器,在一次输出中,激光脉冲的宽度大约是ms数量级。经过仔细的观察和分析会发现,这个脉冲并不是平滑的,而是包含着很多宽度更窄的短脉冲序列。而且随着激励的增强,短脉冲的时间间隔会更小。这种现象被称做弛豫振荡效应或尖峰振荡效应。其定性解释:一个短脉冲形成和消失,可以由激光系统反转粒子数密度的增减变化来解释。造成系统反转粒子数密度增加的因素是光泵浦,其增加速率在一个短脉冲序列的消长过程中可以看成是不变的。是反转粒子数密度减少的因素是受激辐射,其减少速率则是因腔内光子数密度的多少而变化。20.调Q技术原理:初期它处于关闭状态(Q值很低),抑制受激辐射的作用,在泵浦抽运工作一段时间后,突然将Q值提高(Q开关导通),上能级粒子瞬间释放,获得高功率巨脉冲。(腔内储存的能量通过受激辐射一下释放出来,瞬间达到获得高功率巨脉冲的目的)。

21.电光调Q激光器 :(电光效应:对于某些晶体经过特殊方向的切割后,如果在某个特定的方向上外加电压,就可以通过它的线偏振光改变振动方向。)原理流程图如下(P60页)

22.声光Q开关原理:声光介质在超声波的作用下,介质的折射率会发生周期性的变化,使介质变成为正弦相位光栅,当光通过此介质时,由于衍射会造成光的偏折。如果这个装置放在激光器腔内,就会增加损耗改变腔的Q值。

其流程如下:(P61页)

23.三基色:本质是三基色具有独立性,三基色中任何一色都不能用其余两种色彩合成。三基色具有最大的混合色域,其他色彩可由三基色按一定的比例混合出来,并且混合后得到颜色数目最多。红、绿、蓝为色光三基色。为了统一认识,1931年国际照明委员会规定了三基色的波长:红光为700.0nm,绿光546.1nm,蓝光为435.8nm。

24.相加混色原理 :由两种或两种以上的色光相混合时,会同时或者在极短时间内连续刺激人的视觉器官,使人产生一种新的色彩感觉。称这种色光混合为加色混合。这种由两种以上色光相混合,呈现一种色光的方法称为色光加色法。

25.激光显示技术:分三种类型;第一种是激光阴极射线管LCRT(laser cathode tube),其基本原理是用半导体激光器代替阴极射线显像管荧光屏的一种新型显示器件;第二种是激光光阀显示,基本原理是激光束仅用来改变某些材料(如液晶等)的光学参数(如折射率或透过率)而再用另外的光源使这种光学参数变化而形成的像投射到屏幕上,从而实现图像显示;第三种是直观式(点扫描)电视激光显示,它是将经过信号调制过的RGB三色激光束直接通过机械扫描方法偏转扫描到显示屏上。

26.德国 Jenoptik 公司RGB全固态激光器光路图:Oscillator振荡器;Amplifier放大器;SHG倍频,频率增加一倍,波长减少一半;SFM和频;OPO(Optical Parametric Oscillation)光学参量振荡器;AOM(Acoustic Optical Modulator)声光调制器;KTA crystal(KTA晶体,砷酸钛氧钾);LBO晶体(三硼酸锂);流程图如下:(p113页)

27.光电探测器的物理效应:通常分为两大类:光子效应和光热效应。光子效应:指单个光子的性质对产生的光电子起直接作用的一类光电效应,对光波频率表现出选择性,在光子直接与电子相互作用的情况下,其影响速度一般比较快。(光电效应:在光的照射下,某些物质内部的电子会被光子激发出来而形成电流。)光热效应:指材料收到光照射后,光子能量与晶格相互作用,振动加剧,温度升高,由于温度的变化而造成物质的电学特性变化。

28.光电发射效应:在光照下,物体向表面以外的空间发射电子(即光电子)的现象,称为光电发射效应。爱因斯坦方程:Ek=hυ—Eψ,Ek=mv/2是电子离开发射体表面时的动能;m是电子质量;v是电子离开时的速度;hυ是光子能量,Eψ是光电发射体的功率函数。光电发射效应发生的条件:υ≥Eψ/h≡υc(入射光波的截止频率),或用波长表示时:λ≤hc/ Eψ≡λc(截止波长)。

29.光电导效应:在光线作用下,对于半导体材料电导率吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子空穴对,使载流子浓度增加,半导体的导电性增加,阻值降低,这种现象称为光电导效应。(P148页)30.光伏效应:如果光导现象是半导体的材料的体效应,那么光伏现象则是半导体材料的“结”

效应。当照射光激发出电子-空穴对时,电势垒的内建电场将把电子-空穴对分开,从而在势垒两侧形成电荷堆积,形成光生伏特效应。(光照零偏PN结产生开路电压的效应,又称光伏效应。)31.温差电效应:当两种不同的配偶材料(可以是金属或半导体)两端并联熔接时,如果两个接头的温度不同,并联回路中就产生电动势,称为温差电动势,回路中就有电流流通。如果把冷端分开并与一个电流表连接,那么当光照熔接端时,熔接端吸收光能使其温度升高,电流表就有相应的电流读数,电流的数值间接反映了光照能量的大小。——用热电偶来探测光能的原理。

232.热释电效应:当强度变化的光打到晶体上,引起材料温度变化——电极化强度发生变化——面电荷发生变化——产生热释电电流。压电晶体:发生压电效应的晶体。压电效应:某些晶体在特定的方向上施加外力,那么就会在某两个表面产生面电荷,当外力消失,晶体回到不带电。

33.量子效率η:灵敏度R从宏观描述了光电探测器的光电、光谱以及频率特性,量子效率则是对同一问题的微观-宏观描述。

η=hυRi/e(Ri电流的灵敏度),光谱量子效率

:ηλ =hcRiλ/eλ

(c是材料的光速)34.归一化探测度D*:

D*大的探测器其探测能力一定好。

35.光电导探测器——光敏电阻:利用光电导效应而工作的探测器。光电导效应是半导体材料的一种体效应,无需形成PN结,故又常称为无结光电探测器。这种元件在光照下会改变自身的电阻率,光照愈强,元件自身的电阻率愈小,因此常常又称光敏电阻或光导管。本征型光敏电阻一般在室温下工作,适用于可见光和近红外辐射探测;非本征型光敏电阻通常必须在低温条件下工作,常用于中、远外辐射探测。由于光敏电阻没有极性,只要把它当做电阻值随光照强度而变化的可变电阻器对待即可,因此在电子电路、仪器仪表、光电控制、计量分析、光电制导、激光外差探测等领域获得了十分广泛的应用。常见的光敏电阻有CdS、CdSe、PbS以及TeCdHg等。其中CdS是工业上应用最多的,而PbS主要用于军事装备。

36.光频外差探测技术:原理:基于两束相干光在探测器光敏面上的相干效应。故也常称为光波的相干探测。相干光:振动方向相同,振动频率相同,相位相同或相位差保持恒定。37.曼莱-罗威关系:公式(P307页)

相互作用中三个光电场光子数的变化关系:ω1和ω3的光子数之和及ω2和ω3的光子数之和在非线性过程中始终保持不变。ω1与ω2光子数之差保持不变。如果频率为ω1与ω2的两个光子同时湮灭,可以产生频率为ω3的一个光子,这就是和频与倍频的情况。反过来ω3光子湮灭,同时产生两个频率为ω1与ω2的光子,这就是参量产生的过程。

38.相位匹配技术:为有效的进行非线性光学频率变换,必须使参与互作用的光波在介质中传播时具有相同的相速度。实现有效频率变换的方法之一是相位匹配技术,利用非线性晶体的双折射与色散特性达到相位匹配。39.单轴晶体的相位匹配条件及匹配角:(折射率)负单轴晶体——n0>ne。正单轴晶体——ne>n0.40.二次谐波的产生:能量守恒和动量守恒(P314页)

41.参量振荡器:光学参量振荡器(OPO)是利用非线性晶体的混频特性来实现频率变换的器件,其中有一个或两个光波具有振荡特性,具有谐振腔。具有调谐范围宽、结构简单及工作可靠等特性。光学参量放大的原理:实质上是一个差频产生的三波混频过程。由曼莱-罗威关系可知,在差频过程中,每湮灭一个最高频率的光子,同时要产生两个低频光子,在此过程中这两个低频获得增益,因此光学参量放大器可作为他们的放大器。如果将非线性晶体置于谐振腔中,并用强的泵浦光照射,当增益超过损耗时,在腔内可以从噪声中建立起相当强的信号光及空闲光。在光学参量振荡器中建立起来的两种频率的光波,任何一个光波都可以称为信号光或者空闲光。

42.参量振荡器的阈值:判断阈值与什么参量有关系?(P331页公式)

式中,k=

;gs为模耦合系数;l为有效参量增益长度;τ为1/e处脉冲半宽度;L=L’+(n-1)l;L’为OPO腔长;l为非线性晶体长度;n为信号输出 100μJ时(定义为阈值临界状态)腔内振荡次数;Pn为阈值处信号波能量;P0为参量量子噪声能量;a为参量光在介质中的场吸收系数;R为腔内各种损耗的总和。

43.光的干涉:用波的叠加而引起强度从新分配的现象。三个必要条件:频率相等,两束光存在相互平行的振动分量,位相差δ(P)恒定。

下载光电子技术科学专业word格式文档
下载光电子技术科学专业.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    现代教育技术科学规划课题

    现代教育技术科学规划课题“大课间体育活动的实验研究” 2010—2011学年度 下学期 一、课题研究的指导思想、理论基础 在全国教育工作会议,做出了《中共中央国务院关于深化教......

    信息技术科学习心得体会

    信息技术业务学习心得体会 本次参加教师远程培训项目——“国培计划”光盘信息技术培训学习。我们从“观看视频、阅读资料——做作业”这三个环节来细化学习任务,感觉有点像......

    光电子与通信工程系2009年专业简介

    光电子与通信工程系2009年专业简介 2009-5-14 9:22:43来源:网友点击量: 2387 次 一、光机电应用技术 培养目标:本专业培养掌握光电器件、光电仪器、激光等行业生产、管理、服......

    光电子技术(论文)

    光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,从70年代后期起,随着半......

    光电子材料与器件

    光电子材料与器件 绪论 1 例举信息技术与光电子技术所涵盖的几大方面: 信息技术主要包括信息的产生、传输、获取、存储、显示、处理等六大方面;与之相对应的光电子技术主要包......

    光电子器件习题

    题型:填空20,选择20,判断对错10,计算题20,简答题301. 衡量光电子器件探测能力的参数有哪些?其中光谱响应度和响应度,最小可探测功率 和探测率之间具有怎样的关系?光电器件的性能参数......

    常用光电子器件介绍

    主要光电子器件介绍【内容摘要】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。 【关键词】 光纤......

    光电子课程设计作业

    光电子课程设计作业: 1. 光敏电阻检测光照亮度 2. 基于PSD 的位置测量系统 3.基于PSD位置传感器的杨氏模量测量 4. 基于单片机的条纹计数器  要求:  在A4的纸上画满黑白相间的......