高中数学公式定理记忆口诀汇总

时间:2019-05-12 20:33:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学公式定理记忆口诀汇总》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学公式定理记忆口诀汇总》。

第一篇:高中数学公式定理记忆口诀汇总

高中数学公式定理记忆口诀汇总

高中数学公式定理记忆口诀之集合与函数 《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。高中数学公式定理记忆口诀之三角函数 《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;高中数学公式定理记忆口诀之不等式 《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。高中数学公式定理记忆口诀之数列

《数列》

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

高中数学公式定理记忆口诀之复数

《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。高中数学公式定理记忆口诀之排列组合 《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。高中数学公式定理记忆口诀之立体几何

《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。高中数学公式定理记忆口诀之平面解析几何 《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

第二篇:高中数学公式和定理

高中数学公式和定理

数学公式和定理揭示了数学知识的基本规律,具有一定的形式符号化的抽象性和概括性的特征,是学生数学认知水平发展的重要学习载体.要学好数学,必须对公式和定理有十分正确透彻的理解,也就是说,牢固掌握并能灵活运用数学公式和定理是提高数学能力的重要前提.在教学过程中我积累了一些经验,下面我就数学公式和定理的教学谈谈我的一些体会.

在数学公式和定理的学习中,需要学生具备多方面的能力,如对新旧知识联系的理解能力,对数学规律的归纳与探究能力,对公式与定理的推理与演绎能力,对知识的存储、记忆与应用能力等.

数学公式和定理教学容易产生“一背二套”、“公式加例题”的形式,这种形式的教学往往使学生头脑里只留下公式、定理的外壳,忽视它们的来龙去脉,不明确它们运用的条件和范围.事实上在公式与定理的教学中一般应有如下五个环节:引入,推导,条件和特例,应用,最后把它们纳入学生的知识体系.因此,教师在教学中注意创设情景、激发兴趣,充分发挥学生在学习中的主体作用,就能避免学生的死记硬背,生搬硬套,做到“活学活用”.

一、知识引入多样化,激发学生求知欲

公式、定理的引入是发展学生思维、培养探索能力的首要环节.一开始的引入如能把学生吸引住,将大大激发学生的求知欲,使他们的思维处于最亢奋的状态.在平时的教学中,我发现,“开门见山”式的引入虽然省时省力,但学生学习缺乏兴趣,只等着老师讲.而针对不同的公式与定理,采用多样化的引入,能很好地吸引学生,激发他们的探究欲望.在教学实践中,我常常采用以下几种引入的方法:

1、实践引入:

教师要善于搜集与公式和定理相关的、有趣味的模型,使学生在接触课题时,就产生强烈的探求欲望.例如在引入线面垂直的判定定理时,先让学生自己动手做一个实验:如图,拿一张矩形纸片,对折后略为展开,使矩形被折的一边紧贴在桌面上,教师告诉学生,折痕和桌面是垂直的,这是为什么呢?学生一下子被吸引住了,急切地想知道这是为什么.

2、类比引入:

数学具有系统性,因此新公式、新定理可以由旧公式、旧定理通过类比迁移而来. 例如在引入余

选校网专业大全 历年分数线 上万张大学图片 大学视频 院校库

弦定理时,先给出三角形的三边a、b、c,其中c为最大边.讨论c2与a2b2的关系.同学们已经学过勾股定理,C900时有c2a2b2.教师向学生提出这样的问题,在斜三角形中a2b2与c2有什么关系?学生通过探究发现,当C900时有c2a2b2;当C900时有c2a2b2.通过对三种三角形的类比,学生会有很大的兴趣去讨论它们之间存在怎样的一种关系式.此时教师引导学生归纳出在△ABC中,三边a、b、c有这样一种关系:c2a2b2m.进而得出m的符号与C的关系.这种引入方法,使学生对新公式、新定理不感到突然,而是旧公式、旧定理的延伸与扩展.

3、发现法引入:

由于公式是对客观实践的抽象,为了完成这一过程,我带领学生重涉前人探索之路去发现公式.这种发现式的引入,对培养学生观察与探究能力有重要作用.在应用这种引入方法时,关键是创设使学生感兴趣的情景.例如在学习等差数列求和公式时,我给同学们讲了他们都知道的高斯小时候求12100的故事,并加上了故事的尾巴:“在高斯说出了他的方法后,老师又提出了新的问题,请学生计算14798”,大家想一想,该如何计算?更一般的等差数列前n项a1a2an的计算公式我们能推导出来吗?同学们兴致盎然,通过独立探究与合作讨论,很快就得出了等差数列前n项和的公式.

二、重视推导和证明,弄清来龙去脉

公式的推导和定理的证明是教学的核心.由于第一环节恰当地引入,学生的心理状态是“兴趣被激发,对证明、推导有迫切感”,因此我抓住机会给予证明.如果在教学中不重视推导,学生对它们的来龙去脉就会很模糊.在推导过程的教学中,我尽量发挥学生的主体作用,能让学生推导的就让学生推导,并注意指出学生推导中的错误.有些推导过程繁琐的公式与定理,教师注重分析,讲清为什么用这样的方法.如果公式和定理有几种推导方法,教学中不是面面俱到,而是让学生课后思考不同的推导方法,在下一节课上进行交流.

三、强调条件和特例

公式成立是要有一定条件的.学生学习公式的最大弱点是把公式作为“万能公式”乱用乱套.因此教学中要强调公式成立的条件.如含有正切的三角公式的角的范围是有限制的.在公式推导完成后,我常常让学生做一个小练习,从中发现他们忽略条件而产生的错误,让学生讨论公式应用中要注意公式成立的条件.

另外,公式虽具有一定的普遍意义,但对一些具有特殊条件的情形要给予注意,这就是公式的特例.如三角诱导公式及倍角公式是两角和与差公式的特例.而一般结论往往是特例的发展与完善.如正弦定理是三角形面积公式的发展与推广.

四、注重灵活应用,提高学生学习能力数学教学的目的在于应用,因此,在公式和定理的教学中,必须使学生灵活巧妙地应用公式和定理,提高、培养学生实际运用的能力.在此教学环节中要注意引导学生灵活应用公式.

每个公式本身均可作各种变化,为了在更广阔的背景中运用公式,就需要对公式本身进各种变形.这一层次的思维量大,可很好地培养学生思维的灵活性.例如:ai(i1,2,,n)为正数,求证

222a12a2a2ana122(a1a2an),可把基本不等式a2b22ab变形为

a2b2ab

2来用.再如求tg200tg400tg200tg400的值,是将tg()的公式变形使用.

五、把公式和定理纳入学生的知识体系

数学知识系统性强.学生学习数学知识后,可以形成相应的认知结构.认知结构的发展,是“同化”与“顺应”调节的辨证统一.“同化”指的是新知识与旧知识相一致时,新知识被纳入原有认知结构中;“顺应”指的是新知识与旧知识不一致时,对原有的认知结构进行调节,以适应新的知识结构.如在复数的教学中,判别式小于零的实系数一元两次方程的根与系数的关系可同化到学生已有的知识结构中;而|z|2zz,就要学生将旧知识“顺应”到新的知识机构中去.因此,在教学中我们要注意把新知识纳入学生的认知结构中.为此,我在教学中充分注意以下几点:

1、注意公式推导过程中包含的数学思想方法.

在公式与定理的推导过程中,常常要用到数形结合,从特殊到一般,分类讨论等数学思想方法.在推导过程中,教师常从特殊的情景出发进行分析.例如,在推导sinxa(|a|1)解集时,从a的特殊值开始进行分析.在推导等比数列前n项和公式时,要分q1与q1两种情况讨论.在教学中要充分挖掘公式与定理推导中的数学思想方法,可以有效地培养学生的思维的严密性与灵活性.

2、公式和定理的推广及引申

由于学生学习的阶段性和教材要求等原因,中学数学有许多公式和定理是可以推广的,教会学生推广,让学生看清知识的内部联系,是把知识纳入学生认知结构的有效途径.例如三角形面积公式S11absinC中bsinC就是a边上的高,它其实就是初中所学的公式Sah的另一种新的形式.再如学2

2习了祖暅原理后,让学生把它引申到平面几何的相应命题.

3、比较与鉴别

比较与鉴别是把公式和定理纳入学生认知结构的必由之路.在教学的后阶段,一般是应用所学新知识来解题.如果仅仅盯住新公式,学生就失去一次独立选择公式的机会,这无助于学生认知结构的发展.特别是公式较多时,学生一旦面临复杂的问题,他们会无所适从.因此在教学中用注意公式的比较

与鉴别,选择合适的公式解题,使学生的解题能力得到发展.例如有这样一道题:在△ABC中,已知a3,b1,B300 ,求c边的长.如果用正弦定理来解,要分两步而且面临∠A是一解还是两解的选择,而直接用余弦定理就可一步到位.在数学公式和定理的教学中,教师必须使学生到达以下目标:一是要用准确的数学语言表述公式与定理的内容;二是要学会分析其条件与结论间的内在关系;三是要正确地掌握其证明及推导方法;四是要明确其使用的条件和适用的范围及应用的规律;五是要考虑对一些重要的公式和定理能否作适当的引申与推广.我们在教学中,必须以适当的方式将公式和定理的发生发展过程展示给学生,让学生通过自主学习获取知识,并领悟公式和定理所包含的教学思想方法,灵活地掌握知识,应用知识,达到提高分析问题,解决问题的能力.

参考资料:

李果民《中学数学教学建模》 广西教育出版社2003年

选校网高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库(按ctrl 点击打开)

选校网()是为高三同学和家长提 供高考选校信息的一个网站。国内目前有2000多所高校,高考过后留给考生和家长选校的时间紧、高校多、专业数量更是庞大,高考选校信息纷繁、复杂,高三 同学在面对高考选校时会不知所措。选校网就是为考生整理高考信息,这里有1517专业介绍,近2000所高校简介、图片、视频信息。选校网,力致成为您最 强有力的选校工具!

产品介绍:

1.大学搜索:介绍近2000所高校最详细的大学信息,包括招生简章,以及考生最需要的学校招生办公室联系方式及学校地址等.2.高校专业搜索:这里包含了中国1517个专业介绍,考生查询专业一目了然,同时包含了专业就业信息,给考生报考以就业参考。

3.图片搜索:这里有11万张全国高校清晰图片,考生查询学校环境、校园风景可以一览无余。4视频搜索:视频搜索包含了6162个视频信息,大学视频、城市视频、访谈视频都会在考生选校时给考生很大帮助。

5.问答:对于高考选校信息或者院校还有其他疑问将自己的问题写在这里,你会得到详尽解答。6新闻:高考新闻、大学新闻、报考信息等栏目都是为考生和家长量身定做,和同类新闻网站相比更有针对性。

7.千校榜:把高校分成各类,让考生选校时根据类别加以区分,根据排名选择自己喜欢的高校。8选校课堂:这里全部的信息都是以考生选校、选校技巧、经验为核心,让专家为您解答高考选校的经验和技巧。

9.阳光大厅:考生经过一年紧张的学习生活心理压力有待缓解和释放,阳光大厅给家长以心灵启示,给考生心里以阳光。

10.港澳直通:很多考生都梦想去香港澳门读大学,港澳直通,给考生的梦想一个放飞的地方,港澳直通囊括了港澳大学的所有信息,将一切更直观的呈现给考生。

11.选校社区:注册您真是的信息,在这里可以和大家分享您所在城市的到校信息,读到好的选校文章也可以拿到这里,让大家共同品尝,您还可以加入到不同的大学、专业、城市群组,和大家一起讨论这些话题分享信息。

选校网,为你整合众多高考选校信息,只为考生、家长能够从中受益。让我们共同为考生的未来,努力!我们在不断完善,以更加符合家长和同学们的需求。

陆续我们将推出城市印象频道,让大家了解学校所在城市的详细情况;预报名系统(yubaoming.com),为您更加准确地根据高考分数填报志愿提供利器.......一切,贵在真实。

第三篇:高中数学公式口诀

高中数学公式口诀

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

第四篇:高中数学公式及定理总结

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2)•

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根 

b^2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA 

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^

2半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2-

2+4+6+8+10+12+14+…+(2n)=n(n+1)

51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/

41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/

3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径

余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 

斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

定理

平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

判定定理3 三边对应成比例,两三角形相似(SSS)

定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

性质定理2 相似三角形周长的比等于相似比

性质定理3 相似三角形面积的比等于相似比的平方

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

101圆是定点的距离等于定长的点的**

102圆的内部可以看作是圆心的距离小于半径的点的**

103圆的外部可以看作是圆心的距离大于半径的点的**

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

第五篇:高中数学公式口诀

高中数学公式口诀大全

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1

减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

四、《数列》

等差等比两数列,通项公式运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位

0比大小,作商N项和。两个有限求极限,四则相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从

K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

七、《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

八、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

1.诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π2-a)=cos(a)

cos(π2-a)=sin(a)

sin(π2+a)=cos(a)

cos(π2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

2.两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)

tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)

3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)

sin(a)?sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2)

cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.二倍角公式

sin(2a)=2sin(a)cos(b)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

6.万能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的)

a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中 tan(c)=ba a?sin(a)+b?cos(a)=a2+b2cos(a-c)其中 tan(c)=ab

1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2公式分类公式表达式乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|

-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a

-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/a

X1*X2=c/a注:韦达定理判别式

b2-4a=0

注:方程有相等的两实根b2-4ac>0

注:方程有一个实根b2-4ac<0

注:方程有共轭复数根三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理

a/sinA=b/sinB=c/sinC=2R注:

其中 R

表示三角形的外接圆半径余弦定理

b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程

(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程

x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程

y2=2px

y2=-2px

x2=2py

x2=-2py直棱柱侧面积

S=c*h斜棱柱侧面积

S=c'*h

正棱锥侧面积

S=1/2c*h'正棱台侧面积

S=1/2(c+c')h'

圆台侧面积

S=1/2(c+c')l=pi(R+r)l球的表面积

S=4pi*r2

圆柱侧面积

S=c*h=2pi*h圆锥侧面积

S=1/2*c*l=pi*r*l 弧长公式

l=a*r

a是圆心角的弧度数r >0扇形面积公式

s=1/2*l*r锥体体积公式

V=1/3*S*H圆锥体体积公式

V=1/3*pi*r2h

斜棱柱体积

V=S'L

注:其中,S'是直截面面积,L是侧棱长柱体体积公式

V=s*h圆柱

下载高中数学公式定理记忆口诀汇总word格式文档
下载高中数学公式定理记忆口诀汇总.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学公式口诀(二)

    高中数学公式口诀(二) 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长......

    高中的数学公式定理大集中[五篇范文]

    高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cs......

    高中的数学公式定理大集中总结(精选)

    高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα......

    高一数学公式定理

    一、公式S 圆柱表面积2r2rl2r(rl) (rrrlrl)222 S圆台表面积 S圆锥表面积r(rl)S圆柱侧=2πrl S圆台侧=πl(r+r ) S圆锥侧=πrl S球=4πr²S直棱柱侧=ch (c为底面周长,h为高) S正......

    高中数学公式大全[本站推荐]

    高中数学 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X......

    人教版五年级数学公式定理

    数学图形计算公式 1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a 2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6S=a×a×6 体积=棱长×棱长×棱长V=a......

    高中英语单词50个记忆口诀[推荐]

    高中英语单词50个记忆口诀,有趣又有效。联系上下文背单词最高效,特别是有趣的小故事。 1.马戏团的鹦鹉 它一岁的age(年纪) 会说人的language(语言) 头脑很懂manage(经营) 要求......

    高中文科数学公式汇总

    高中数学公式汇总(文科)一、复数1、复数的除法运算abi(abi)(cdi)(acbd)(bcad)i. 22cdi(cdi)(cdi)cd2、复数zabi的模|z|=|abi|3、zabi的共轭复数Z=a-bi二、三角函数、三角变换......