人教版初二数学(上)代数知识点总结(参考知识)

时间:2019-05-12 20:43:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版初二数学(上)代数知识点总结(参考知识)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版初二数学(上)代数知识点总结(参考知识)》。

第一篇:人教版初二数学(上)代数知识点总结(参考知识)

初二数学(上)应知应会的知识点

因式分解

1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“ x2+px+q是完全平方式 

分式

Apq22”.1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为B的形式,如果B

A

中含有字母,式子B 叫做分式.整式有理式分式2.有理式:整式与分式统称有理式;即.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;

(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即

分子分母

分子分母

分子分母



分子分母

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.acac,bdbd7.分式的乘除法法则:

n

n

a

b

cd

adad

bcbc

.aa

n.(n为正整数)

b

8.分式的乘方:b

.9.负整指数计算法则:

(1)公式: a0=1(a≠0),a-n=a(a≠0);(2)正整指数的运算法则都可用于负整指数计算;

a

(3)公式:b

n

n

ba

n

a

nm,b

ba

mn;

(4)公式:(-1)-2=1,(-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.a

bc

abc

ab

cd

adbd

bcbd

adbcbd

12.同分母与异分母的分式加减法法则:

c

;

.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方

1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:

(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为平方根还是0.5.三个重要非负数: a2≥0 ,|a|≥0,0.6.两个重要公式:(1)a

a

a

和

a

.注意:

a

可以看作是一个数,a

.注意:0的算术

a

≥0.注意:非负数之和为0,说明它们都是

a

;(a≥0)

(2)

(a0)a

a

a(a0)

.7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为8.立方根的性质:

(1)正数的立方根是一个正数;(2)0的立方根还是0;

a

;即把a开三次方.(3)负数的立方根是一个负数.9.立方根的特性:

aa

.10.无理数:无限不循环小数叫做无理数.注意:和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.

有理数实数

无理数12.实数的分类:(1)

正有理数

0

负有理数



有限小数与无限循环小

正无理数无限不循环小数负无理数

(2)

.13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:21.414

52.236.31.732

正实数

实数0

负实数

第二篇:初中数学代数知识点总结

初中数学代数知识点总结

一、基本知识

(一)、数与代数A、数与式:

1、实数

有理数:①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式

A、整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=ANMN

(A/B)N=AN/BN

除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式

/

完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:

①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元二次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+

√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法:

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,△=b2-4ac,这里可以分为3种情况:

I当

△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不能为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

第三篇:初二数学知识点总结

初二数学知识点总结

1全等三角形的对应边、对应角相等

2边角边公理有两边和它们的夹角对应相等的两个三角形全等3 角边角公理有两角和它们的夹边对应相等的两个三角形全等 4 推论有两角和其中一角的对边对应相等的两个三角形全等 5 边边边公理有三边对应相等的两个三角形全等斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上 9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

第四篇:初中数学数与代数知识点总结

初中数学数与代数知识点总结:

数与代数知识点是初中学习数学时期的主要知识点之一,主要包括有理数、实数、代数式、整式、分式、一元一次方程、二元一次方程(组)、一元二次方程、一元一次不等式(组)、一次函数、反比例函数、二次函数、等,以下是各具体知识点总结的理解和分析。

初中数学有理数知识点总结:

有理数是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①相反数,绝对值,倒数等相关概念 ②负数的乘方,加减及混合运算。突破方法:①牢固掌握有关有理数的概念:如相反数,倒数,绝对值等,特别是绝对值的意义,真正掌握数形结合的思想,多方面理解概念。②熟练掌握有理数的各种运算法则,特别是负数参与的运算。在混合运算中特别注意符号和运算顺序,这个要通过一定量的练习来掌握其中的运算技巧,达到一定的熟练程度。

初中数学代数式知识点总结:

代数式:中考试题中的分值约为5-6分,主要以选择,填空题为主,也常出现探寻规律的题目。难易度属于中档。近几年考察的以下两个方面:①结合生产和生活实际列代数式,求代数式的值等。②根据数表,图表,算式寻找规律建立代数式模型。突破方法:掌握好列代数式的要求,技巧,学会观察,猜想验证,用熟悉语言正确表达等解题。考前多做些寻找规律的题目,真正掌握规律探索的要点。

初中数学整式知识点总结:

整式:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。近几年主要考察①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公司的几何意义③利用提公因式发和公式法分解因式。突破方法:①要准确理解和辨认单项式的次数,系数,同类项。② 在运用公式或法则进行运算式,首先要判断式子的结构特征,确定解题思路,以便使解题更加方便,快捷。

初中数学分式知识点总结:

分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。近几年主要考察①分式的概念,性质,意义②分式的运算,化简求值。③列分式方程解决实际问题、突破方法:①掌握并灵活应用分式的基本性质,②在通分和约分时,都要注意分解因式知识的应用。③化简求值时,注意整体思想和技巧的应用。④留意生活中是实际问题

初中数学一元一次方程知识点总结:

一元一次方程:中考分值约为1-3分,题型主要以选择,填空为主,极少出现简答,难易度为易。考察内容:①方程及方程解的概念,②根据题意列一元一次方程,③解一元一次方程。突破方法: ①掌握一元一次方程的概念和解法,熟练解方程。②掌握列一元一次方程解应用题的一般步骤。通过大量练习达到熟练。初中数学二元一次方程(组)知识点总结:

二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题,突破方法: ①首先掌握二元一次方程组的代人消元和加减消元法。会根据系数的特点选择适当的方法。熟练解方程组。②多关注生活中如环保,利润,市场经济等问题,培养自己收集与处理信息的能力。③处分关注转化,消元,降次,整体等整体思想。初中数学一元一次不等式(组)知识点总结:

一元一次不等式(组):中考试题中分值约为3-8分,选择,填空,解答题为主。主要考察内容: ① 一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。② 列不等式(组)解决经济问题,调配问题等,主要以解答题为主。③留意不等式(组)和函数图像的结合问题。突破方法:①熟练掌握,一元一次不等式(组)的解法和解集在数轴上的表示,会朱雀求解不等式(组)②能根据实际问题列出不等式(组),通过求解不等式(组)而解决问题。③运用类比,数形结合等方法解答综合题。

初中数学一元二次方程知识点总结:

一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。考察内容:①方程及方程解的概念,②根据题意列一元一次方程,③解一元一次方程。突破方法: ①掌握一元一次方程的概念和解法,熟练解方程。②掌握列一元一次方程解应用题的一般步骤。通过大量练习达到熟练。初中数学一次函数知识点总结:

一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一ic函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。

初中数学反比例函数知识点总结:

反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。考察内容:①会画反比例函数的图像,掌握基本性质。②能根据条件确定反比例函数的表达式。③能用反比例函数解决实际问题。突破方法:①正确理解掌握反比例函数的概念②掌握反比例函数的图像和性质。③运用数形结合的思想形象地解答与反比例函数图像的有关问题。④通过大量练习,从中体会考察点。

初中数学二次函数知识点总结:

二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。考察内容:①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。③综合运用方程,几何图形,函数等知识点解决问题。突破方法:①正确理解和掌握二次函数的概念,图像和性质。多读,多背,图形结合。②利用数形结合的思想,借助函数的图像和性质,形象直观地解决由关不等式最大(小)值,方程的解以及图形的位

置关系等问题。③利用转化的思想,通过一元二次方程的根的判别式及根与系数的关系解决抛物线与X轴的交点问题。

初中数学空间与图形知识点总结:

空间与图形知识点是初中学习数学时期的主要知识点之一,主要包括图形的认识、相交线与平行线、三角形、四边形、圆、尺规作图、视图与投影、图形轴对称、图形的平移与旋转、图形的相似、锐角三角函数、图形与坐标、图形与证明、等,以下是各具体知识点总结的理解和分析。

初中数学图形的认识知识点总结:

图形的认识:中考试题中分值3-5分

初中数学相交线与平行线知识点总结:

相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择形式出现。分值为3-4分,难易度为易。考察内容:①平行线的性质(公理)②平行线的判别方法③构造平行线,利用平行线的性质解决问题。突破方法: ①平行线的性质和判别恨容易混淆了。学习时要在”准”上下功夫。②熟练判断“三线八角”,弄清它们之间的联系与区别。防止作出错误推断。③对于典型的“平行线间的折线问题”要攻破!

初中数学三角形知识点总结:

三角形,三角形是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。考查内容:①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。②三角形全等融入平行四边形的证明,③三角形运动,折叠,旋转,拼接形成的新数学问题,④等腰三角形的性质与判定,面积,周长等,⑤直角三角形的性质,勾股定理是重点。⑥三角形与圆的相关位置关系⑦三角形中位线的性质应用。突破方法:①准确掌握三角形和三角形的相关概念,性质,判定与解题方法,加强对基本概念,解题思想认识。②掌握构造全等三角形法,倍长中线法,截长补短发,分割图形法等常见方法的应用技巧,不断地总结,逐步培养数学能力。③加强对的呢个一三角形和指教三角形的概念性质的理解记忆,注意性的区别与联系,进行知识归纳。④掌握特俗三角形证明题的解题思路和方法,加强对探索题目,创新题目的训练与研究,培养数学能力。

初中数学四边形知识点总结:

四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。

初中数学圆知识点总结:

圆,圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中,考察

内容:①圆的有关性质的应用。垂径定理是重点。② 直线和圆,圆和圆的位置关系的判定及应用。③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。突破方法:①熟练掌握圆的有关行政,掌握求线段,角的方法,理解概念之间的相互联系和知识之间的相互转化。②理解直线和原的三种位置关系,掌握切线的性质和判定的歌,会根据条件解决圆中的动态问题。③掌握有两圆半径的和或差与圆心距的大小关系来盘底的那个两个圆的位置关系,对中考试题中常出现的阅读理解题,探索题,要灵活运用圆的有关性质,进行合理推理与计算。④掌握弧长,扇形面积计算公式。⑤理解圆柱,圆锥的侧面展开图⑥对组合图形 的计算要灵活运用计算方法解题。初中数学尺规作图知识点总结:

尺规作图:近几年直接考察尺规作图的题目很少出现。即使出现也是结合其他问题,分值一般2-3分,难易度为易。考察内容:①拼图:即图形的组合,例如用等腰梯形拼菱形②位似图形的画法。③常见图形的基本做法,例如角的平分线,突破方法:①熟练掌握基本的几何做法,②从画图本质上理解作图的原理③根据给定的条件,结合图形特点作图,注意保留作图痕迹。

初中数学视图与投影知识点总结:

视图和投影,是近几年新课标的考试内容,也是近几年中考的热点。分值一般为3-6分,试题以填空,选择,解答的形式出现。考察内容:①常见几何体的三视图②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。③利用相似结合平行投影和中心投影解决实际问题。突破方法:①要养成善于观察,勤于思考的良好习惯,书本是平面的,生活是立体的。生活中的许多实物是由基本的几何体组合而成的,因此必须认识基本几何体的特征。②以动手操作如展开与折叠,截一个几何体为常用方法。发展空间想象能力。③加强实物与几何图形转化方面的训练,以提高解答有关空间图形方面问题的速度。

初中数学图形轴对称知识点总结:

图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。考察内容:①轴对称和轴对称图形的性质判别。②注意镜面对称与实际问题的解决。突破方法: ①熟练掌握图形的对称基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法。

初中数学图形的平移与旋转知识点总结:

图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。考察内容:①中心对称和中心对称图形的性质和别。②旋转,平移的性质 突破方法: ①熟练掌握图形的对称,图形的平移,图形的旋转的基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作平移,旋转,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法。

初中数学图形的相似知识点总结:

图形相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。考察内容是:①相似三角形的性质和判别方法,是重点。②相似多边形的认识,黄金分割的应用。③相似形与三角形,平行四边形的综合性题目是难点。突破方法:①运用相似的知识解决一些实际问题,要能够在 理解题意的基础上,把它转化为纯数学知识的问题,要注意培养数学建模思想。②在综合题中,注意相似知识的领会运用,binary熟练掌握等线段代换,等比代换,等两代换技巧的应用,培养综合运用知识的能力。③判定相似三角形的几条思路:1°条件中若有平行线,可采用相似三角形的基本定理;2°条件中若有一对的等角,可再找一对等角,利用判定1或再找家变成比例用判定2 ;3°条件中若有一对直角,可考虑再找一对等角或证明斜边,直角边对应成比例;④条件中若有的等腰关系,可找顶角相等,可找一对底角相等,也可以找底和腰对应成比例。初中数学锐角三角函数知识点总结:

解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。考察内容:①常见锐角的三角函数值的计算,②根据图形计算距离,高度,角度的应用题,③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。突破方法:掌握三角函数的概念,会熟练运用特殊三角函数值,②了解某些问题中的仰角,俯角,坡度等概念,③将实际问题转换为数学问题,建立数学模型④涉及解斜三角形的问题时,会通过作适当的辅助线构造直角三角形,使之转化为直角三角形的计算问题而达到解决实际问题。⑤解应用题的关键是根据实际问题画出是示意图,弄清图中各个量的具体意义及各已知量和未知量的关系。通过大量练习,熟练建模。

初中数学图形与坐标知识点总结:

空间与坐标:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。近几年考察主要内容:①考察平面直角坐标系内点的坐标特征。②函数自变量的取值范围和球函数的值。③考察结合图像对简单实际问题中的函数关系进行分析。突破方法:①援用数形结合的思想来理解,体会函数的基础知识。②理解平面直角坐标系内点的坐标特征。③联系生活实际,理解函数图像刻画实际生活问题,探索规律,解决问题。

初中数学图形与证明知识点总结:

空间与坐标:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。近几年考察主要内容:①考察平面直角坐标系内点的坐标特征。②函数自变量的取值范围和球函数的值。③考察结合图像对简单实际问题中的函数关系进行分析。突破方法:①援用数形结合的思想来理解,体会函数的基础知识。②理解平面直角坐标系内点的坐标特征。③联系生活实际,理解函数图像刻画实际生活问题,探索规律,解决问题。

初中数学数据与图表知识点总结:

数据图表:分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。考察内容:①常见统计图和平均数,众数,中位数的计算分析。②方差,极差的应用分析③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。突破方法:①牢固掌握概念,并能掌握概念减的区别和联系。以及在实际问题的应用。②统计是与数据打交道,解题时计算比较繁琐,所以要

用意识培养认真,耐心,细致的学习态度和学习习惯。③要关注统计知识与方程,不等式相结合的综合性题目,会读频数分别直方图,会分析图表,注重能力的培养,加大训练力度。

初中数学统计与概率知识点总结:

统计与概率知识点是初中学习数学时期的主要知识点之一,主要包括数据与图表、概率初步、等,以下是各具体知识点总结的理解和分析。

初中数学概率初步知识点总结:

概率:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。考察内容:①简答事件的概率求解,图表法和数形图法 ②利用概率解决实际,公平性问题等 ③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。突破方法:①牢固掌握概率的求解思想和方法。注意面积比 ②注重概率在实际问题中的应用③要关注概率与方程相结合的综合性试题,加大训练力度,形成能力。初中数学综合题知识点总结:

综合题知识点是初中学习数学时期的主要知识点之一,主要包括综合题、等,以下是各具体知识点总结的理解和分析。

第五篇:初二数学知识点

初二知识点总结 ★平行四边形性质:

1.平行四边形的对边平行且相等 2.平行四边形的对角相等

3.平行四边形的两条对角线互相平分 4.平行四边形的对角相等,两邻角互补 5.平行四边形是中心对称图形,对称中心是两对角线的交点

7.过平行四边形对角线交点的直线将平行四边形分成全等的两部分图形

8.由定义:平行四边行的两组对边分别平行 ★平行四边形判定:

1两组对边分别相等的四边形是平行四边形 2.对角线互相平分的四边形是平行四边形 3.一组对边平行且相等的四边形是平行四边形

4.两组对角分别相等的四边形是平行四边形

★矩形性质:

1.矩形的四个角都是直角 2.矩形的对角线相等且互相平分 3.对边相等且平行

4.矩形所在平面内任一点到其两对角线端点的距离的平方和相等

5.矩形是轴对称图形,对称轴是任何一组对边中点的连线 ★矩形判定:

1.有一个角是直角的平行四边形是矩形 2.对角线相等的平行四边形是矩形 3.有三个角是直角的四边形是矩形 4.四个内角都相等的四边形为矩形 5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形

6.【注】依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形。★菱形性质

1.对角线互相垂直且平分;2.四条边都相等; 3.对角相等,邻角互补; 4.每条对角线平分一组对角.

5.菱形是轴对称图形,对称轴是两条对角线 ★菱形判定

1.一组邻边相等的平行四边形是菱形 2.对角线互相垂直平分的四边形是菱形 3.四边相等的四边形是菱形

4.关于两条对角线都成轴对称的四边形是菱形

5.【注】依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四形的形状始终是平行四边形。菱形的中点四边形是矩形。★正方形性质:

边:两组对边分别平行;四条边都相等;相邻边互相垂直

内角:四个角都是90°;

对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。★正方形判定:

1:对角线相等的菱形是正方形

2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形

3:四边相等,有三个角是直角的四边形是正方形

4:一组邻边相等的矩形是正方形 5:一组邻边相等且有一个角是直角的平行四边形是正方形

6:四边均相等,对角线互相垂直平分且相等的平面四边形

依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。正方形的中点四边形是正方形。★等腰三角形性质等腰三角形的两底角相等

等腰三角形顶角的平分线平分底边并且垂直于底边

等边三角形的各角都相等,并且每一个角等于60°

★等腰梯形性质定理

1:等腰梯形在同一底上的两个角相等 2:等腰梯形的两条对角线相等

★三角形全等【SSS.SAS.ASA.AAS.HL】

下载人教版初二数学(上)代数知识点总结(参考知识)word格式文档
下载人教版初二数学(上)代数知识点总结(参考知识).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初二数学下册知识点总结

    初二数学下册知识点总结(非常有用)二次根式1.二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;≥0.2.重要公式:(1),(2);注意使用.3.积的算......

    初二上学期历史知识点总结(沪教版)

    初二上学期历史知识点总结(沪教版) 第一课练习题 1.目前世界上发现远古人类遗址最多的国家是(中国)。 2.四大文明古国有(中国)、(古埃及)、(古印度)、(古巴比伦)。 3.位于黄河流域的远古......

    初二上学期知识总结

    初二党期末物理不用担心,基础知识整理好了! 第一章 机械运动 一、长度和时间的测量 1.长度的单位: 在国际单位制中,长度的基本单位是米(m), 其他单位有:千米(km)、分米(dm)、厘米(......

    初二上学期物理知识点总结

    八年级上册物理复习提纲 第一章机械运动 一、长度和时间的测量1、测量某个物理量时用来进行比较的标准量叫做单位。为方便交流,国际计量组织制定了一套国际统一的单位,叫国际......

    初二数学上册知识点总结汇总+初二数学分式知识点总结汇总

    初二数学上册知识点总结汇总初二数学上册知识点总结:1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它......

    初二数学上册知识点总结[合集五篇]

    初二数学上册知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外......

    初二数学下册知识点归纳[范文大全]

    初二数学下册知识点总结 初二数学下册数学知识点总结 第一章一元一次不等式和一元一次不等式组 一. 不等关系 ※1. 一般地,用符号“”(或“≥”)连接的式子叫做不等式. ¤2.......

    数学代数教学总结

    在学习vb过程中,很多同学简单地认为布尔值true就是-1或非0值,false就是0,这种看法是错误,下面将布尔值、逻辑运算和关系运算总结如下: 在vb中,布尔(boolean)值有两个:true(真)和false(......