离散数学函数复习题答案(共5篇)

时间:2019-05-12 20:33:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《离散数学函数复习题答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《离散数学函数复习题答案》。

第一篇:离散数学函数复习题答案

第6章 函数

一、选择题(每题3分)

1、设A{a,b,c},B{1,2,3},则下列关系中能构成A到B函数的是(C)

A、f1{a,1,a,2,a,3}B、f2{a,1,b,1,b,2}

C、f4{a,1,b,1,c,1}D、f1{a,1,a,2,b,2,c,3}

2、设R、Z、N分别为实数集、整数集,自然数集,则下列关系中能构成函数的是(B)

A、{x,y|(x,yN)(xy10)}B、{x,y|(x,yR)(yx2)}

C、{x,y|(x,yR)(y2x)}D、{x,y|(x,yZ)(xymod3)}

3、设Z为整数集,则二元关系f{a,baZbZb2a3}(B)

A、不能构成Z上的函数B、能构成Z上的函数

C、能构成Z上的单射D、能构成Z上的满射

4、设f为自然数集N上的函数,且f(x)

10若x为奇数若x为偶数,则f(D)

A、为单射而非满B、为满射而非单射C、为双射D、既非单射又非满射

5、设f为整数集Z上的函数,且f(x)为x除以5的余数,则f(D)

A、为单射而非满B、为满射而非单射C、为双射D、既非单射又非满射

6、设R、Z分别为实数集、整数集,则下列函数为满射而非单射的是(C)

A、f:RR,C、f:RZ,A、f:RR,C、f:RR,f(x)x6B、f:RR,f(x)[x]D、f:RR,2f(x)(x6)f(x)x6x 627、设R、R、Z分别为实数集、非负实数集、正整数集,下列函数为单射而非满射的是(B)f(x)x7x1 B、f:ZR,f(x)lnx; f(x)xD、f:RR,f(x)7x

18、设Z、N、E分别为整数集,自然数集,偶数集,则下列函数是双射的为(A)

A、f : ZE , f(x)2xB、f : ZE , f(x)8x

C、f: ZZ,f(x)8D、f : NNN,f(n)n,n1

9、设X3,Y4,则从X到Y可以生成不同的单射个数为(B).

A、12B、24C、64D、8110、设X3,Y2,则从X到Y可以生成不同的满射个数为(B).

A、6B、8C、9D、6411、设函数f:BC,g:AB都是单射,则fg:AC(A)

A、是单射B、是满射C、是双射D、既非单射又非满射

12、设函数f:BC,g:AB都是满射,则fg:AC(B)

A、是单射B、是满射C、是双射D、既非单射又非满射

13、设函数f:BC,g:AB都是双射,则fg:AC(C)

A、是单射B、是满射C、是双射D、既非单射又非满射

14、设函数f:BC,g:AB,若fg:AC是单射,则(B)

A、f是单射B、g是单射C、f是满射D、g是满射

15、设函数f:BC,g:AB,若fg:AC是满射,则(C)

A、f是单射B、g是单射C、f是满射D、g是满射

16、设函数f:BC,g:AB,若fg:AC是双射,则(D)

A、f,g都是单射 B、f,g都是满射 C、f是单射, g是满射 D、f是满射, g是单射

二、填充题(每题4分)

1、设Xm,Yn,则从X到Y有2mn 种不同的关系,有nm 种不同的函数.

2、设Xm,Yn,且mn,则从X到Y有Anm 种不同的单射.

3、在一个有n个元素的集合上,可以有2不同的双射.

1,若x为奇数

4、设f为自然数集N上的函数,且f(x)x

若x为偶数2,n

种不同的关系,有nn 种不同的函数,有n!种,则f(0)0,f[{0}]{0},f[{1,2,3}]{1},f[{0,2,4,6,}]N.

5、设f,g是自然数集N上的函数,xN,f(x)x1,则fg(x)2x1,gf(x)2(x1).

g(x)2x,三、问答计算题(每题10分)

1、设A{2,3,4},B{2,4,7,10,12},从A到B的关系

R{a,baA,bB,且a整除b},试给出R的关系图和关系矩阵,并说明此

关系R及其逆关系R1是否为函数?为什么?

解:R{2,2,2,4,2,10,2,12,3,12,4,4,4,12},则R的关系图为:

R的关系矩阵为MR

100

000

1

1 1

关系R不是A到B的函数,因为元素2,4的象不唯一

逆关系R1也不是B到A的函数 因为元素7的象不存在.

2、设Z为整数集,函数f:ZZZ,且f(x,y)xy,问f是单射还是满射? 为什么?并求f(x,x),f(x,x).

解:xZ, 0,xZZ,总有f(0,x)x,则f是满射;

对于1,2,2,1ZZ,,有f(1,2)3f(2,1),而1,22,1,则f非单射;

f(x,x)2x,f(x,x)0.

3、设A{1,2},A上所有函数的集合记为AA, “”是函数的复合运算,试给出AA上运算“”的运算表,并指出AA中是否有幺元,哪些元素有逆元? 解:因为A2,所以A上共有224个不同函数,令A

f

1(1)1,f(2)2;

A

{f1,f2,f3,f4},其中:

f(1)1,f(2)1;f(1)2,f(2)2;f(1)2,f4(2)1

A

f1为A中的幺元,f1和f4有逆元.

4、设R为实数集,函数f:RRRR,且f(x,y)xy,xy,问f是双射吗?为什么?并求其逆函数f

1(x,y)及ff(x,y).

解: x1,y1,x2,y2RR,若f(x1,y1)f(x2,y2),有x1y1,x1y1x2y2,x2y2,则x1,y1x2,y2,故f是单射;

2且f(x,y)xy,xyu,v,则f是满射,故为双射; xyxy, ; 22

ff(x,y)f(xy,xy)f(2x,2y). f

1

u,vRR,令x

uv,y

uv,则x,yRR,(x,y)

四、证明题(每题10分)

1、设函数f:AB,g:BC,g和f的复合函数gf:AC,试证明:如果gf是双射,那么f是单射,g是满射. 证明:x1,x2A且f(x1)f(x2)B,则gf(x1)g[f(x1)]g[f(x2)]gf(x2),因gf是单射,有x1x2,故f是单射;

cC,因gf是满射,aA,使cgfa()g[fa()],而f(a)B,故g是满射.

注:如果gf是单射,那么f是单射;如果gf是满射,那么g是满射.

2、设f是A上的满射,且fff,证明:fIA.

证明:因f是满射,则对aA,存在a1A,使得f(a1)a,则ff(a1)f[f(a1)]f(a),由 fff,知a1a,于是f(a)a,由a的任意性知fIA.

3、设函数f:AB,g:BA,证明:若f证明: 因f

11

g,fg

1,则gfIA,fgIB.

g,则yB,g(y)f

1

(y)xA,有g(y)x,f(x)y,于是,对yB,有fg(y)f[g(y)]f(x)yIB(y),知fgIB;

1

又fg1,则对xA,f(x)g(x)y,有f(x)y,g(y)x,于是,对xA,有gf(x)g[f(x)]g(y)xIA(x),知gfIA.

4、设函数f:AB,g:BA,证明:若gfIA,fgIB,则f

1g,fg

1

证明:因恒等函数IA是双射,则gf是A上的双射,有f是单射,g是满射; 同样,恒等函数IB是双射,则gf是B上的双射,有f是满射,g是单射; 所以,f和g都是双射函数,其反函数都存在,故有f注:设函数f:AB,g:BA,证明: f

1

1

g,fg

1

1

g,fg

 gfIA,fgIB.

5、设函数f:AB,g:B(A),对于bB,g(b){xxAf(x)b},(A)为A的幂集,证明:如果f是A到B的满射,则g是B到(A)的单射.

证明:x1x2B,因f是满射,y1,y2A,使f(y1)x1x2f(y2),则y1y2; 又由g的定义知,y1g(x1),y2g(x2),故有g(x1)g(x2),则g是B到(A)的单射.

第二篇:离散数学复习题

离散数学复习题

• 设命题p,r的真值为1,命题q,s的真值为0,则(p→q)(﹁r→s)的真值

为。

• 只要4不是素数,3就是素数,用谓语表达式符号化为。

• D={},则幂集ρ(D)=

• A={a,{b}},B={},则A×B=

• 若集合A,B的元素个数分别为|A|=m,|B|=n,则A到B有种不同二元关系。• 设A={1,2,3,4},B={4,5,6,7},R={<1,4>,<1,6><2,4>,<3,5>,<3,6>}是由A

到B的二元关系,则domR=,ranR=

• I A是集合A上的恒等关系,A上的关系R具有性当且仅当IAR。• 二元关系R是等价关系,当且仅当的R是。

9.设K4是有4个点的无向完全图,则K4有条边。

10.无向图G是欧拉图当且仅当。

11.在任何无向图这,所有顶点的度数之和等于边数的倍。

12.设K5是有5个点的无向完全图,则K5有条边。

13.无向图G是欧拉图当且仅当。

计算题

• 求公式(PQ)→(QR)的主析取范式

• 集合A={a,b,c},R={,,,}是集合A上的二元关系,求R的自反

闭包r(R),对称闭包s(R)和传递闭包t(R)(用矩阵运算),并画出各闭包的关系图。• 设图G

• 写出G的邻接矩阵

• 求各结点的初度,入度

• 求V3到V2长度是3的路的数目

• 设集合A={1,2,3,4,6,8,12},R是A上的整除关系,• 画出偏序图的哈斯图;

证明题

• 在自然推理系统p中构造下面推理的证明

前提:﹁r,﹁pr,(q)→p

结论:q→﹁

• 在自然系统p中构造下面推理的证明

前提:pq,p→r,q→s

结论:sr

第三篇:离散数学复习题

离散数学复习题

一、填空

1、命题中的否定联接词;蕴含联接词

2、一个命题公式,若在所有赋值下取值为真,则称此公式为式;若……假,则……..为 永假 式;若至少存在一组赋值,其命题为真,则…….为可满足式。

3、有限布尔代数只能有n4、R是定义在集合上的二元关系,若R满足性、性,则称R是A上的等价关系。

5、全序集(A,≤)必是,且是

6、n阶m条边无向图G是树,当且仅当G是连通点,且m=

7、若有向树G中,有一个顶点的入度为,则称G为根树。

8、有序对具有以下性质

(1)当x不等于y时,

(2)=的充要条件是x=u且y=r。

9、关系的性质五。

10、图中顶点作为边的端点的称为此顶点的度数。

11、设X是格,并对交运算时可分配的,则且 格中的交运算对并运算是可分配的。

12、有向图按连通图分为三类连通图、连通图、连通图。

13、T 为一颗根树,若T的每个分支点则称T为r元正则树。

14、设A、B是集合,求A与B之间关系(属于、不属于、包含…)如果A={1},B={1,{1,2}},则A不属于B、A不包含B15、若R是定义在集合A上的一个二元关系,若R满足、性、可传递性则称R是偏序关系。

16、设集合A={1,2,3,4},A上二元关系R={<1,1><1,3><2,1><3,3><3,4><4,3>},则逆序关系R−1。

17、在有补分配格中,每个元素(的补元)都是的。

18、在无向图中,度数为奇数的顶点个数必为数。

19、若图中通路P中所有边互不相同,则称P为通路,若通路中所有顶点互不相同,则称P为 基本 通路。

二、简述题

1、偏序关系与格

2、设R是A爱上的二元关系,如果R是自反的,反对称的,传递的二元关系,则称R是A上的偏序关系或者半序关系;

2、等价关系与集合的划分

3、握手定理

4、对偶式与对偶原理

5、正规子群

6、什么是域,有限整环是不是域,为什么?

7、集合的基本运算公式(集代数公式)有哪些?

8、群论中的拉格朗日定理

9、主析取范式与主合取范式

10、鸽巢原理与计数原理

三、判断题

1、设A,B是集合,则A⨁=

2、偶数阶循环群有且只有一个2阶元素

3、设(G,∗)是n阶群,且有k阶子群,则k丨n4、有限格必是有界格

5、偶数阶群中比存在非幺元a,使得a∗a=e6、不存在含有奇数个面且每个面上有奇数条棱的多面体

7、设(A,∗)是独异点,B是A的子集,且(B,∗)是独异点,则(B,∗)一定是(A,∗)的子独异点8、3阶群同构意义下唯一

9、(N=(0),⊗)是一个群

10、素数阶群一定没有非平凡子群

四、计算题

1、求命题公式P∧(Q→R)主析取范式。

2、写出3次对称群(S3,∗)的运算表及所有正规子群。

3、在1,2,3…….100这100个自然数中,可以被2或3整除但不能被5整除的数有多少个?

4、设, A =3,P B=64,P A⋃B=256,求 B , A⋂B , A−B , A⊕B。

5、设A={a,b,c,d},R={(a,c),(c,b),(b,a),(a,d)},求R,r R ,s R ,t(R)的关系矩阵或关系图

6、命题公式 P∧Q ∨ −P ∧(−Q)的真值表

7、写出群(N13− 0,⨂13)各元素之阶数

8、集合A={1,2,3,6,8,12},求A 上的整除关系R并画出Hasse图

9、写出((a−4b)c−(7b+d))+(c+8a)的前缀式和后缀式

10、求(N6,⨂6)群的自同态

五、证明题

1、证明(N13− 0,⨂13)是循环群

2、证明不存在含有奇数个面且每个面上有奇数个棱的多面体

3、设(A,∗)是代数系统,R是(A,∗)上的同余关系,(A R,∗)是其商代数,设f是A到A/R的函数,对于A中任意元素a,都有f a = a R

证明:f是(A,∗)到(A R,∗)的同态映射

4、设T是完全k元树,若分枝点为i,树叶数为t,证明:i=(t−1)/(k−1)

5、证明偶数阶群必有二阶子群,且必有奇数个二阶子群

6、R是集合A上的等价关系,证明:对任意x,y属于A在此处键入公式。

(1)若xRy,则 x R= y R

(2)若(x,y)∉R,则 x R∩ x R=∅

7、证明下列说法是等价的(1)A≤B(2)A−B=∅(3)A∩B=A(4)A∪B=B8、证明逻辑等价式P↔Q⟺ P⋀Q ⋁(−P⋀−Q)

9、证明10阶群必有5阶子群

第四篇:离散数学复习题1

逻辑

1、给出的真值表

2、证明为永真式 谓词量词和推理

1、使用量词和谓词表达不存在这一事实

2、证明前提“在这个班上的某个学生没有读过书”和班上的每个学生都通过了第一门考试蕴含结论“通过考试的某个人没有读过书” 集合、函数、数列与求和

1、全集为,求集合A=的位串?它的补集的位串是什么?写出集合A=的所有子集,写出集合

2、从集合到集合能定义多少个函数?下面给出的函数其定义为:该函数是双射吗?是满射吗?该函数是否存在逆函数?如果存在请给出其逆函数。计数

1、计算机系统的美国用户有一个6~8个字符构成的密码,其中每个字符是一个大写字母或数字,且每个密码必须至少包含一个数字,问总共有多少个合适的密码?

2、在30天的一个月里,某棒球队一天至少打一场比赛,但最多打45场。证明一定有连续的若干天内这个球队恰好打了14场比赛

3、证明n个元素的集合中允许重复的r组合数等于

4、按照字典顺序生成整数1,2,3的所有排列(不允许重复),在362541后面按照字典顺序的下一个最大排列是什么?找出在1000100111后面的下一个最大的二进制串。关系

1、求下面给出关系R的自反闭包、对称闭包和传递闭包的0-1关系矩阵,其中

2、S是所有比特串的集合,关系定义为当s=t或者s和t的长度至少是3,且前3个比特相同时具有关系,例如0101,0011100101,但01010,0101101110。证明是S上的等价关系,由产生的S的等价类是那些集合?

3、偏序集({2,4,5,10,12,20,25},|)的那些元素是极大的,那些元素是极小的? 图与树

1、在下图所示的图中,从a 到d的长度为4的通路有几条?该图是否是Euler图,是否是Hamilton图,该图的度序列是什么?该图是否可平面,如果是请给出平面画图,该图的点色数和边色数等于多少?给出该图的一个生成树,2、求下面赋权图从a到z的最短距离是多少?最短路径是什么?(画图给出标号过程)

3、用哈夫曼编码方法来编码下列符号,这些符号具有下列频率:A:0.08,B:0.10,C:0.12,D:0.15,E:0.20,F:0.35,该编码方法编码一个字符的平均位数是多少?

4、下面树的高度是多少?那些节点是内部节点,那些节点是叶子节点,该树是否是3元正则树?分别给出该树节点的前序、中序、后序遍历的节点访问次序

第五篇:本科离散数学复习题

离散数学复习题

一、填空题

1.集合A={,1},B={1,2},则2A2B=_________,2A2B=_________.A与B的笛卡尔积AB=_________.2.1000以内的所有正整数中,能被4和5同时整除的共有_____个,不能被6整除的共有_____个

3.设集合A={1,2,3},B={a,b,c},则AB共有_____个元素。A到B 的关系

(包括空关系)共有_____个,其中又有_____个是AB的函数, 有_____ 个是A B的内射, 有_____ 个是A B的双射。

4.设A={1,2,3,4,5,6,7,8}.则由B15 表示的A的子集是____________.A的一个子集{2,3,5,7}可表示为____________ 5.集合A={1,2,3,4},上的两个关系 1={(1,2),(1,3),(2,1)(2,2),(4,1)},2={(1,3),(3,1)},则12=____________.12=____________.=_________.6=_________ 12=____________.21=____________.116.集合 A={1,2,3} 上的关系 ={(1,1),(1,2),(1,3),(3,3)} 具有的性质是 _____.7.集合 A={1,2,3,4} 上具有自反性的关系有_____个,具有对称性的关系有_____个,8.设集合A={a,b,c,d},则A共有_____中不同的分划,A上共有_____个不同的等价关系。若其中的一个分划则与之对应的等价关系是________________.A={{a},{b,c},{d}},若A上的等价关系:{(a,a),(b,b),(c,c),(d,d),(a,c),(c,a),(b,d),(d,b}.则由导出的A的分划是____________.9.设是集合A={1,2,3,4,5,6,7,8,9,10}上的关于模3同余关系,则[2]=______________________.10.A={1,2,3,4,5,6,7,8,9,10,11,12,24}, 是集合A上的整除关系, BA且 B={2,4,6},则B的最大元是______.最小元是______.上界是______.下界是 ______.最小上界是______.最大下界是______.A的最大元是______.最小元是 ______.A11.在格2,中,集合 A={1,2,3,4,5,6},2A的两元素{1,2}{2,3,5}______.{1,2}与{2,3,5}上界有 ______个.{1,2}{2,3,5}是______.{2,3,4}与{2,4,5}共有______个不同的下界.{1,2,4,6}的补元是________.13.设为任意的格,a,b,c,dL, 若ab且bc,则ac=______________.bc=______________.ac=______________.ab=______________.14.自然数集上的整除关系是一个格, 则在格 N,.中

812=______________812=______________.911=______________911=______________.15.Z是整数集,函数 ƒ定义为:ZZ,且 ƒ(X)=|X|-2X,则函数ƒ的类型是_____(内射,满射,双射).16.设A={1,2,3,4,5},函数ƒ: AA, ƒ(x)=6-x, 则函数ƒ是一个_________射, 17.设函数ƒ: RR,则

f(x)x22,函数g: RR, g(x)x4

fg____,gf____.f1(x)_________.18.设集合A={1,2,3,4,5,6,7,8,9,10},B={2,4,6,8,10,12,14,16,18,20},函数f:AB,f(i)182i,iA,设H1,2,5,6,A,则f(H)______,设G4,8,10,16B,则f1(G)_____.19.含10条边的图的总度数是____________.20.含有8个顶点的完全图共有______条边.21.含6个结点,9条边的无向连通图,要得到此图的一棵生成树,必须删去__条边.22.不同构且有6个结点的树共有______个.23.简单图G=共有10个结点,其中6个结点的度数为3,其余4个结点的 度数都为2, 则该图共有____条边.该图的补图共有____条边.24.简单图G共有9个结点,且图G与它的补图同构,则该图共有____条边.25.一棵树有2个2度分支点, 1个3度分支点, 3个4度分支点, 则此树共有____片树叶.26.若完全图Kn既是欧拉图又是哈密尔顿,则n满足的条件是__________ 2 27.命题P:“小王学过高等数学”.Q:“小王学过离散数学”.则符合命题“小王学过 高等数学但没有学过离散数学”可表示为___________.命题(PQ)表示的 复合命题含义是:__________________________________________________.28.公式((PQ)(QP))P可化简为___________________________.29.将公式P(QP)化成与之等价的且只含和的公式,则此公式为: __________________.30.令P,Q的赋值分别为1,0.则公式

((PQ)(QP))(PQ的真值为__________________.31.公式A含两个命题变元P,Q,其主析取范式为:

(PQ)(QP)),则它的主合取范式是______________.二、选择题

1.设集合A={a,{a}},则下列错误的是().A){a}2A;B){a}2A;C){{a}}2A; D){{a}}2A;

2.集合A={1,2,3,4,5,6,7,8,9,10}, A上的关系={(x,y)|x+y=10,x,yA},则关 系 具有的性质是().A)自反的;B)对称的;C)传递的,对称的;D)反自反的,对称的;

3.设集合X={-1,1,2,3}与Y={1,2,3,4,5,9}, ƒ(x)=x2,是XY的一个函数,则下列 正确的是().A)ƒ是内射但不是满射;

B)ƒ是满射但不是内射;C)ƒ是双射;

D)ƒ既不是入射也不是满射;

4.设I为整数集合.A={x | x2<30,xI}, B={x | x为质数,x<20}, C={1,3,5}, 则(C-A)(B-A)=().A){1,2,3,5};B);

C){1,3,5,7};

D){1,2,3,5,7};5.在下面的三个命题公式

1)(PQ)(PQ);2)(PQ)(PQ);3)(PQ)(QP);中是永真式的公式有()个.A)0;B)1;C)2;D)3;

6.下面论断正确的是().A)有补格一定是分配格;B)有补格一定是有界格;C)任何一个格必有最大元;D)偏序集就是格;

7.下列命题中错误的是().A)若L为有限集,则格必定是有限格;

B)在格中,a,bL,必有a(ab)=a;C)格是有补格当且仅当有元素存在补元;

D)在有补分配格中,a,bL, 必有ab=ab;

8.一个含n个结点,连通且有圈的简单图,至少有()条边.A)

n;B)n+1;C)n+2;D)2n-1;

三、判断题

1.设A={}, B=22, 则: {}B且{}B.A

()

()2.集合A={a,b,c}上的关系={(a,b),(a,c)}是不可传递的.3.平面上直线间的“平行关系”是等价关系.()4.人群中的“朋友关系”是偏序

()5.若ƒg是满射,则ƒ必是满射.()6.若ƒ, g都是入射,则gƒ也是入射.()7.在有限分配格中,一个元素若有补元,则补元一定是唯一的.()8.K4有10个生成子图.()9.三个(4,2)无向简单图中,至少有两个同构.()10.凡陈述句都是命题.()11.命题公式(P(PQ))Q是矛盾式.()12.命题“如果1+2=3,那么雪是黑的”是真命题.。

13.判定偏序集是否为格.(教材P150页图7-

3、P174页图7-12)

四、解答题

1.设集合A={1,2,4,5},B={1,2,3,5,16,25},A到B的关系={(x,y)|xA,yB且y=x2}, 1)写出的所有元素;

2)求出关系的定义域及值域;3)写出关系的关系矩阵M;4)判断关系是否为AB的一个函数? 2.设集合A={1,2,3,4},是A上的一个关系,的关系矩阵如下:

求:的自反闭包r(),对称闭包s(),传

递闭包t().4.设集合A={1,2,3,6,12,24,36,72},A上的整除关系={(a,b)|a,bA且a|b}.1)画出偏序集的次序图;2)A的子集B={6,24,36},求集合{x|xA,且x能整除B中的每一个整数},并求集合{x|xA,且x能被B中的每一个整数整除}.3)判定偏序集是否为格?说明理由.5.偏序集的次序图 如下:

1)求B1={b,c,e}的最小元,最大元.2)求B2={b,c,d,e}的上界,最小上界,下界,最大下界.3)求A的最小元,最大元.4)偏序集是否为格?为什么?

6.格的次序图如下:

1)求出A中所有元素的补元.2)判定格是否为有补格?为什么? 3)判定格是否为分配格?为什么?

7.无向简单图G的邻接矩阵如下:

011000 110000100010110010010100000100

求图G的所有割点、割边.8.有向图G=如下:

1)

2)3)4)5)

求G的邻接矩阵;求deg(V1);

从结点V2到V4长度为3的路有几条? 图中长度为2的回路有几条? 求d(V1 , V4)

9.求下面有权图的一棵最小生成树.并求出最小权数.10.求公式(P(QR))(R(QP))的主析取范式和主合取范式.11.掌握欧拉图、哈密顿图的判定.(教材P227页第16、17、18题)

五、证明题

1.证明: P(QR)Q(PR)2.证明:(Q(PP)(R(PP))R 3.用推理规则证明: 1)(PQ)R, SU, RS, UW, WPQ.2)证明:QS是前提,PQR, Q(RS), P的有效结论.4.试给出以下推理证明: 若这里举行足球赛,则交通就会很拥堵.若他们按时到了球场,则说明交通是畅通的.他们按时到达了.所以这里没有举行足球赛.5.设是一个格,a,b,c,dL, 若ab且cd.求证:acbd.6.设是一个格,a,b,c, L.证明:(ab)(bc)(ac)(ab)(bc)(ac).7.设N是自然数集,定义N上的二元关系={(x,y)|xN,yN,x+y是偶数} 证明是一个等价关系.8.证明:自然数集N上的“整除关系”是一个偏序

9.证明:在(n,m)的树中,m = n-1 6

下载离散数学函数复习题答案(共5篇)word格式文档
下载离散数学函数复习题答案(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    离散数学复习题(期末测试卷)

    复习题一、填空题(请将每空的正确答案写在答题纸相应位置处,答在试卷上不得分。每小题2分,共16分。)1.谓词公式xy(P(x,y)Q(y,z))xR(x,y)中x的辖域是。2.命题公式 ( pq)的成真赋......

    离散数学练习题及答案(共五篇)

    离散数学试题一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设P:天下大雨,Q:他在室内运动,命......

    离散数学习题及答案

    离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?若A去,则C和D中要去1个人;B和C不能都去;若C去,则D留......

    离散数学课后习题答案

    第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。(1)p∨(q∧r) 0∨(0∧1) 0 (2)(p↔r)∧(﹁q∨s) (0↔1)∧(1∨1) 0∧10. (3)(p∧q∧r)↔(p∧q∧﹁r)......

    离散数学 期末考试试卷答案

    离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)......

    离散数学(共5篇)

    离散数学 离散数学(Discrete mathematics)是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了......

    2012复习题答案

    简述蒋经国对台湾发展的重要贡献。 1969年,60岁的蒋经国接任"行政院"副院长,开始接手管理整个政府。1973年,在台湾社会处于强烈的外交挫折感之际,他宣布提出一项大规模的经济发......

    离散数学课后习题答案第三章

    第六章部分课后习题参考答案 5.确定下列命题是否为真: (1) 真(2)假 (3){} 真 (4){} 真 (5){a,b}{a,b,c,{a,b,c}} 真 (6){a,b}{a,b,c,{a,b}} 真 (7){a,b}{a,b,{{a,b}}} 真 (8){a,b}{a,b,{{a,b}}} 假 6.设a,b,c各不相同,判断......