第一篇:二次函数练习题及答案
二次函数练习题
一、选择题:
1.下列关系式中,属于二次函数的是(x为自变量)()
A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()
A.(1,-4)
B.(-1,2)
C.(1,2)
D.(0,3)
23.抛物线y=2(x-3)的顶点在()
A.第一象限
B.第二象限
C.x轴上
D.y轴上
4.抛物线的对称轴是()
A.x=-
2B.x=2
C.x=-
4D.x=4
5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A.ab>0,c>0
B.ab>0,c<0
C.ab<0,c>0
D.ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点
在第___象限()
A.一
B.二
C.三
D.四
7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交 x轴于点A(m,0)和点B,且m>4,那么AB的长是()
A.4+m
B.m
C.2m-8
D.8-2m
8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()
9.已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1 1C.y3 10.把抛物线物线的函数关系式是()A.C.的图象向左平移2个单位,再向上平移3个单位,所得的抛 B.D.二、填空题: 11.二次函数y=x2-2x+1的对称轴方程是______________.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15.已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点 三、解答题:,则y1的值是_________.19.若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A关于对称轴 对称的点A′的坐标; (2)求此二次函数的解析式; 20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式; (2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.3 答案与解析: 一、选择题 1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为 .解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1 .答案选C.二、填空题 11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.5 答案: 三、解答题 19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4) .(2)由题设知: ∴y=x2-3x-4为所求 (3) 20.考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根 又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9) 21.解: (1)依题意: .(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=- 1∴B(5,0) 由,得M(2,9) 作ME⊥y轴于点E,则 可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式: 总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元 §3.4二次函数 复习目标 1.二次函数的定义:形如〔a≠0,a,b,c为常数〕的函数为二次函数. 2.二次函数的图象及性质: 〔1〕二次函数的图象是一条抛物线.顶点为〔-,〕,对称轴x=-;当a>0时,抛物线开口向上,图象有最低点,且x>-,y随x的增大而增大,x<-,y随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-,y随x的增大而减小,x<-,y随x的增大而增大. 〔2〕当a>0时,当x=-时,函数有最小值;当a<0时,当x =-时,函数有最大值 3.图象的平移:将二次函数y=ax2 (a≠0〕的图象进行平移,可得到y=a(x-h)2+k的图象. 将y=ax2的图象向左〔h<0〕或向右(h>0〕平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2 +k的图象,其顶点是〔h,k〕,对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同. 4.二次函数的图象与系数的关系: (1) a的符号:a的符号由抛物线的开口方向决定.抛物线开口向上,那么a>0;物线开口向下,那么a<0. 〔2〕b的符号出的符号由对称轴决定,假设对称轴是y轴,那么b=0;假设对称轴在y轴左侧,那么-<0即>0,那么a、b为同号;假设对称轴在y轴右侧,那么->0,即<0.那么a、b异号.即“左同右异〞. 〔3〕c的符号:c的符号由抛物线与y轴的交点位置确定.假设抛物线交y轴于正半轴,那么 c>0,抛物线交y轴于负半轴.那么c<0;假设抛物线过原点,那么c=0. 〔4〕△的符号:△的符号由抛物线与x轴的交点个数决定.假设抛物线与x轴只有一个交点,那么△=0;有两个交点,那么△>0;没有交点,那么△<0 . 5.二次函数表达式的求法: ⑴假设抛物线上三点坐标,可利用待定系数法求得; ⑵假设抛物线的顶点坐标或对称轴方程,那么可采用顶点式:其中顶点为(h,k)对称轴为直线x=h; ⑶假设抛物线与x轴的交点坐标,那么可采用交点式:,其中与x轴的交点坐标为〔x1,0〕,〔x2,0〕 6.二次函数与一元二次方程的关系: 〔1〕一元二次方程就是二次函数当函数y的值为0时的情况. 〔2〕二次函数的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根. 〔3〕当二次函数的图象与 x轴有两个交点时,那么一元二次方程有两个不相等的实数根;当二次函数的图象与x轴有一个交点时,那么一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,那么一元二次方程没有实数根. 典例精析 【例1】(1) 抛物线的局部图象如图,那么 再次与x轴相交时的坐标是〔 〕 A.〔5,0〕 B。〔6,0〕 C.〔7,0〕 D。〔8,0〕 〔2〕二次函数的图象如下图,那么a、b、c满足〔 〕 A.a<0,b<0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a>0,b<0,c>0 【分析】〔1〕由,可知其对称轴为x=4,而图象与x轴已交于(1,0),那么与x轴的另一交点为(7,0)。 〔2〕由抛物线开口向下可知a<0;与y轴交于正半轴可知c>0;抛物线的对称轴在y轴左侧,可知- <0.那么b<0.应选A. 【解答】〔1〕C 〔2〕A 【例2】〔2006宁波〕如图,抛物线与x轴相交于B〔1,0〕、C〔-3,0〕,且过点A〔3,6〕。 (1) 求a,b,c的值。 (2) 设抛物线的顶点为P,对称轴与线段AC相交于点Q,连结CP、PB、BQ。试求四边形PBQC的面积。 【分析】此题第〔1〕小题考察用待定系数法求抛物线的解析式,结合条件可以考虑用交点式。第〔2〕小题关键是求出Q点的坐标,因为它是对称轴与线段AC的交点,所以要先求出直线AC的解析式。 【解答】〔1〕由题意可设:,把点A〔3,6〕坐标代入可得 所以,即 所以 (2) 顶点P的坐标为〔-1,-2〕,对称轴是直线 而直线AC的解析式为 所以对称轴与线段AC的交点Q的坐标为〔-1,2〕 设对称轴与x轴相交于点D,那么可得:DP=DB=DQ=DC=2 所以四边形PBQC的面积为8。 【例3】,≠0,把抛物线向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是〔-2,0〕,求原抛物线的解析式。 【分析】①由可知:原抛物线的图像经过点〔1,0〕;②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。 【解答】可设新抛物线的解析式为,那么原抛物线的解析式为,又易知原抛物线过点〔1,0〕 ∴,解得 ∴原抛物线的解析式为: 【例4】如图是抛物线型的拱桥,水位在AB位置时,水面宽米,水位上升3米就到达警戒水位线CD,这时水面宽米,假设洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶? 【分析】此题关键是建立适宜的直角坐标系。 【解答】以AB所在直线为轴,AB的中点为原点,建立直角坐标系,那么抛物线的顶点M在轴上,且A〔,0〕,B〔,0〕,C〔,3〕,D〔,3〕,设抛物线的解析式为,代入D点得,顶点M〔0,6〕,所以〔小时〕 【例5】已抛物线〔为实数〕。 〔1〕为何值时,抛物线与轴有两个交点? 〔2〕如果抛物线与轴相交于A、B两点,与轴交于点C,且△ABC的面积为2,求该抛物线的解析式。 【分析】抛物线与轴有两个交点,那么对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根应满足的条件。 【解答】〔1〕由有,解得且 〔2〕由得C〔0,-1〕 又∵ ∴ ∴或 ∴或 课内稳固 1.〔2006临安〕抛物线y=3(x-1)+1的顶点坐标是〔 〕 A.〔1,1〕 B.〔-1,1〕 C.〔-1,-1〕 D.〔1,-1〕 2.直线y=x与二次函数y=ax2 -2x-1的图象的一个交点 M的横标为1,那么a的值为〔 〕 A、2 B、1 C、3 D、4 3.二次函数的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为,那么与分别等于〔 〕 A、6、4 B、-8、14 C、4、6 D、-8、-14 4.〔2006湖州〕二次函数y=x2-bx+1〔-1≤b≤1〕,当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。以下关于抛物线的移动方向的描述中,正确的选项是〔 〕 A、先往左上方移动,再往左下方移动; B、先往左下方移动,再往左上方移动; C、先往右上方移动,再往右下方移动; D、先往右下方移动,再往右上方移动 5.〔2006诸暨〕抛物线y=ax2+2ax+a2+2的一局部如下图,那么该抛 物线在y轴右侧与x轴交点的坐标是 () A.〔,0〕; B.〔1,0〕; C.〔2,0〕; D.〔3,0〕 6.函数的图象如下图,给出以下关于系数a、b、c的不等式:①a<0,②b<0,③c>0,④2a+b <0,⑤a+b+c>0.其中正确的不等式的序号为___________。 7.二次函数的图象如下图: 〔1〕这个二次函数的解析式是y=__________. 〔2〕当x=_______时,y=3; 〔3〕根据图象答复:当x______时,y>0. 8.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程。下面的二次函数图象〔局部〕刻画了该公司年初以来累积利润S〔万元〕与销售时间〔月〕之间的关系〔即前个月的利润总和S与之间的关系〕。根据图象提供的信息,解答以下问题: 〔1〕由图象上的三点坐标,求累积利润S〔万元〕与时间〔月〕之间的函数关系式; 〔2〕求截止到几月末公司累积利润可到达30万元; 〔3〕求第8个月公司所获利润是多少万元? 9.四边形DEFH为△ABC的内接矩形,AM为BC边上的高且长为8厘米,BC长为12厘米,DE长为x,矩形的面积为y,请写出y与x之间的函数关系式,并判断它是不是关于x的二次函数.课外拓展 A组 1.〔2006舟山〕二次函数y=x2+10x-5的最小值为〔 〕. A.-35 B.-30 C.-5 D.20 2.〔2006绍兴〕小敏在某次投篮中,球的运动路线是抛物线y=的一局部(如图),假设命中篮圈中心,那么他与篮底的距离是() A.3.5m B.4m C.4.5m D.4.6m 3.函数y= x2-4的图象与y 轴的交点坐标是〔 〕 A.〔2,0〕 B.〔-2,0〕 C.〔0,4〕D.〔0,-4〕 4.〔2006苏州〕抛物线y=2x2+4x+5的对称轴是x=_________ . 5.〔2006浙江〕如图,二次函数的图象开口向上,图像经过点〔-1,2〕和〔1,0〕且与y轴交于负半轴. 〔1〕给出四个结论:①>0;②>0;③>0; ④a+b+c=0 其中正确的结论的序号是 . 〔2〕给出四个结论:①abc<0;②2a+>0;③a+c=1; ④a>1.其中正确的结论的序号是。 6.二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数解析式:_______________.7.假设抛物线的最低点在轴上,那么的值为。 8.抛物线过三点〔-1,-1〕、〔0,-2〕、〔1,l〕. 〔1〕求这条抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标; 〔3〕这个函数有最大值还是最小值? 这个值是多少? 9.(2006盐城):抛物线y=-x2+4x-3与x轴相交于A、B两点(A点在B点的左侧),顶点为P. (1)求A、B、P三点坐标; (2) 在如图的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零; (3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.10.〔2005枣庄〕抛物线的图象的一局部如下图,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围; (2)假设OA=2OB,求抛物线的解析式. B组 11.〔2005常州〕抛物线的局部图象如图,那么抛物线的对称轴为直线x=,满足y<0时的x的取值范围是,将抛物线 向 平移 个单位,那么得到抛物线.12.〔2006大连〕如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围______________。 13.阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化. 例如:由抛物线①,有y=②,所以抛物线的顶点坐标为〔m,2m-1〕,即当m的值变化时,x、y的值随之变化,因而y值也随x值的变化而变化,将③代人④,得y=2x—1⑤.可见,不管m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1。答复以下问题:〔1〕在上述过程中,由①到②所用的数学方法是________,其中运用了_________公式,由③④得到⑤所用的数学方法是______;〔2〕根据阅读材料提供的方法,确定抛物线顶点的纵坐标与横坐标x之间的关系式_________.14.〔2006台州〕如图,抛物线y=ax2+4ax+t〔a>0〕交x轴于A、B两点,交y轴于点C,点B的坐标为〔-1,0〕.〔1〕求此抛物线的对称轴及点A的坐标; 〔2〕过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形吗?请证明你的结论; x y 〔3〕连结AC,BP,假设AC⊥BP,试求此抛物线的解析式.15.〔2006大连〕如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点。 〔1〕求F的解析式; 〔2〕在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形。假设存在,求点N的坐标;假设不存在,请说明理由; 〔3〕假设将抛物线E的解析式改为y=ax2+bx+c,试探索问题〔2〕。 16.〔2006嘉兴〕某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚〔点C〕的水平线为x轴、过山顶〔点A〕的铅垂线为y轴建立平面直角坐标系如图〔单位:百米〕.AB所在抛物线的解析式为y=-x2+8,BC所在抛物线的解析式为y=(x-8)2,且B〔m,4〕. 〔1〕设P〔x,y〕是山坡线AB上任意一点,用y表示x,并求点B的坐标; 〔2〕从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上〔见图〕. ①分别求出前三级台阶的长度〔精确到厘米〕; ②这种台阶不能一起铺到山脚,为什么? 〔3〕在山坡上的700米高度〔点D〕处恰好有一小块平地,可以用来建造索道站.索道站的起点选择在山脚水平线上的点E处,OE=1600〔米〕.假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=(x-16)2.试求索道的最大悬空高度. 反思纠错 1.如图,有长为24米的篱笆,一面利用墙〔墙的最大可利用长度a为10米〕围成中间隔一道篱笆的长方形花圃。设花圃的宽AB为米,面积为平方米。 (1) 求与的函数关系式; (2) 如果要围成面积为45平方米的花圃,AB的长是多少米? (3) 能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。 解:〔1〕花圃宽米,长为米,那么它的面积与的函数关系式为。 〔2〕 当时,所以,当AB长为3米或5米时花圃的面积为45平方米。 〔3〕 所以,能围成面积比45平方米更大的花圃,它的最大面积为48平方米。 上述解法正确吗?为什么? 基础达标验收卷 一、选择题: 1.(2003•大连)抛物线y=(x-2)2+3的对称轴是().A.直线x=-3 B.直线x=3 C.直线x=-2 D.直线x=2 2.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在().A.第一象限; B.第二象限; C.第三象限; D.第四象限 3.(2004•天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有().A.b2-4ac>0 B.b2-4ac=0 C.b2-4ac<0 D.b2-4ac≤0 4.(2003•杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有().A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=21 5.(2004•河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为().6.(2004•昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是().A.4+m B.m C.2m-8 D.8-2m 二、填空题 1.(2004•河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则 y=_______.2.(2003•新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004•武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003•黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002•北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式: 三、解答题 1.(2003•安徽)已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x>0时,求使y≥2的x取值范围.2.(2004•济南)已知抛物线y=- x2+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值; (2)写出抛物线解析式及顶点坐标; (3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.3.(2004•南昌)在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符号条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出解析式及直线的解析式;如果不存在,请说明理由.能力提高练习 一、学科内综合题 1.(2003•新疆)如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由; (2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.二、实际应用题 2.(2004•河南)某市近年来经济发展速度很快,根据统计:该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005年该市国内生产总值将达到多少? 3.(2003•辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元? 4.(2003•吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 三、开放探索题 5.(2003•济南)某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少,纵坐标增加,得到A点的坐标;若把顶点的横坐标增加,纵坐标增加,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由; (3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立,请说明理由.6.(2004•重庆)如图,在直角坐标系中,正方形ABCD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上.直线OE的解析式为y=2x,直线CF过x轴上一点C(- a,0)且与OE平行.现正方形以每秒的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.(1)当0≤t<4时,写出S与t的函数关系; (2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,请求出最大值;若没有,请说明理由.答案: 基础达标验收卷 一、1.D 2.D 3.A 4.A 5.B 6.C 二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值) 3.y=- x2+2x+ 4.如y=-x2+1 5.1 6.y= x2- x+3或y=- x2+ x-3或y=- x2- x+1或y=- x2+ x-1 三、1.解:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得b=-2.∴函数解析式为y=x2-2x-1.(2)y=x2-2x-1=(x-1)2-2.图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x≥3时,y≥2.∴当x>0时,使y≥2的x的取值范围是x≥3.2.(1)设A(x1,0) B(x2,0).∵A、B两点关于y轴对称.∴ ∴ 解得m=6.(2)求得y=- x2+3.顶点坐标是(0,3) (3)方程- x2+(6-)x+m-3=0的两根互为相反数(或两根之和为零等).3.解:(1)符合条件的抛物线还有5条,分别如下: ①抛物线AEC; ②抛物线CBE; ③抛物线DEB; ④抛物线DEC; ⑤抛物线DBC.(2)在(1)中存在抛物线DBC,它与直线AE不相交.设抛物线DBC的解析式为y=ax2+bx+c.将D(-2,),B(1,0),C(4,0)三点坐标分别代入,得 解这个方程组,得a=,b=-,c=1.∴抛物线DBC的解析式为y= x2- x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2,),得a= 也可.】 又将直线AE的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得 解这个方程组,得m=-3,n=-6.∴直线AE的解析式为y=-3x-6.能力提高练习 一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y轴的左侧,∴- <0,∴b>0.又∵抛物线交于y轴的负半轴.∴c<0.(2)如图,连结AB、AC.∵在Rt△AOB中,∠ABO=45°,∴∠OAB=45°.∴OB=OA.∴B(-3,0).又∵在Rt△ACO中,∠ACO=60°,∴OC=OA•cot60°=,∴C(,0).设二次函数的解析式为 y=ax2+bx+c(a≠0).由题意 ∴所求二次函数的解析式为y= x2+ (-1)x-3.2.依题意,可以把三组数据看成三个点: A(0,8.6),B(5,10.4),C(10,12.9) 设y=ax2+bx+c.把A、B、C三点坐标代入上式,得 解得a=0.014,b=0.29,c=8.6.即所求二次函数为 y=0.014x2+0.29x+8.6.令x=15,代入二次函数,得y=16.1.所以,2005年该市国内生产总值将达到16.1亿元人民币.3.解:(1)设s与t的函数关系式为s=at2+bt+c 由题意得 或 解得 ∴s= t2-2t.(2)把s=30代入s= t2-2t,得30= t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s= ×72-2×7= =10.5; 把t=8代入,得s= ×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴ 解得 抛物线的解析式为y=- x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.5.略 6.解:(1)当0≤t<4时,如图1,由图可知OM= t,设经过t秒后,正方形移动到ABMN,∵当t=4时,BB1=OM= ×4= a,∴点B1在C点左侧.∴夹在两平行线间的部分是多边形COQNG,其面积为: 平行四边形COPG-△NPQ的面积.∵CO= a,OD=a,∴四边形COPQ面积= a2.又∵点P的纵坐标为a,代入y=2x得P(,a),∴DP= .∴NP= t.由y=2x知,NQ=2NP,∴△NPQ面积= ∴S= a2-(t)2= a2- (5-t)2= [60-(5-t)2].(2)当4≤t≤5时,如图,这时正方形移动到ABMN,∵当4≤t≤5时,a≤BB1≤,当B在C、O点之间.∴夹在两平行线间的部分是B1OQNGR,即平行四边形COPG被切掉了两个小三角形△NPQ和△CB1R,其面积为:平行四边形COPG-△NPQ的面积-△CB1R的面积.与(1)同理,OM= t,NP= t,S△NPQ=(t)2,∵CO= a,CM= a+ t,BiM=a,∴CB1=CM-B1M= a+ t-a= t- a.∴S△CB1R= CB1•B1R=(CB1)2=(t- a)2.∴S= a2-(- t)2 -(t- a)2 = a2- [(5-t)2+(t-4)2] = a2- (2t2-18t+41) = a2- [2•(t-)2+ ].∴当t= 时,S有最大值,S最大= a- = a2. 基础达标验收卷 一、选择题: 1.(2003•大连)抛物线y=(x-2)2+3的对称轴是().A.直线x=-3 B.直线x=3 C.直线x=-2 D.直线x=2 2.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在().A.第一象限;B.第二象限;C.第三象限; D.第四象限 3.(2004•天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有().A.b2-4ac>0 B.b2-4ac=0 C.b2-4ac<0 D.b2-4ac≤0 4.(2003•杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有().A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=21 5.(2004•河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为().6.(2004•昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是().A.4+m B.m C.2m-8 D.8-2m 二、填空题 1.(2004•河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则 y=_______.2.(2003•新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004•武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003•黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002•北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式: 三、解答题 1.(2003•安徽)已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式; (2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.(2004•济南)已知抛物线y=-x2+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值; (2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.3.(2004•南昌)在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y•轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符号条件的抛物线还有哪几条?不求解析式,•请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出解析式及直线的解析式;如果不存在,请说明理由.能力提高练习 一、学科内综合题 1.(2003•新疆)如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题 2.(2004•河南)•某市近年来经济发展速度很快,•根据统计:•该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005•年该市国内生产总值将达到多少? 3.(2003•辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元? 4.(2003•吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米? 三、开放探索题 5.(2003•济南)•某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少 ,纵坐标增加 ,得到A点的坐标;若把顶点的横坐标增加 ,纵坐标增加 ,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式; (2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由; (3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,•你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立,请说明理由.6.(2004•重庆)如图,在直角坐标系中,正方形ABCD的边长为a,O为原点,•点B在x轴的负半轴上,点D在y轴的正半轴上.直线OE的解析式为y=2x,直线CF过x轴上一点C(-a,0)且与OE平行.现正方形以每秒 的速度匀速沿x轴正方向平行移动,•设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.(1)当0≤t<4时,写出S与t的函数关系;(2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,•请求出最大值;若没有,请说明理由.答案: 基础达标验收卷 一、1.D 2.D 3.A 4.A 5.B 6.C 二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-x2+2x+ 4.如y=-x2+1 5.1 6.y= x2-x+3或y=-x2+ x-3或y=-x2-x+1或y=-x2+ x-1 三、1.解:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得b=-2.∴函数解析式为y=x2-2x-1.(2)y=x2-2x-1=(x-1)2-2.图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x≥3时,y≥2.∴当x>0时,使y≥2的x的取值范围是x≥3.2.(1)设A(x1,0)B(x2,0).∵A、B两点关于y轴对称.∴ ∴ 解得m=6.(2)求得y=-x2+3.顶点坐标是(0,3) (3)方程-x2+(6-)x+m-3=0的两根互为相反数(或两根之和为零等).3.解:(1)符合条件的抛物线还有5条,分别如下: ①抛物线AEC;②抛物线CBE;③抛物线DEB;④抛物线DEC;⑤抛物线DBC.(2)在(1)中存在抛物线DBC,它与直线AE不相交.设抛物线DBC的解析式为y=ax2+bx+c.将D(-2,),B(1,0),C(4,0)三点坐标分别代入,得 解这个方程组,得a= ,b=-,c=1.∴抛物线DBC的解析式为y= x2-x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2,),得a= 也可.】 又将直线AE的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得 解这个方程组,得m=-3,n=-6.∴直线AE的解析式为y=-3x-6.能力提高练习 一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y轴的左侧, ∴-<0,∴b>0.又∵抛物线交于y轴的负半轴.∴c<0.(2)如图,连结AB、AC.∵在Rt△AOB中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0).又∵在Rt△ACO中,∠ACO=60°,∴OC=OA•cot60°= ,∴C(,0).设二次函数的解析式为 y=ax2+bx+c(a≠0).由题意 ∴所求二次函数的解析式为y= x2+(-1)x-3.2.依题意,可以把三组数据看成三个点: A(0,8.6),B(5,10.4),C(10,12.9) 设y=ax2+bx+c.把A、B、C三点坐标代入上式,得 解得a=0.014,b=0.29,c=8.6.即所求二次函数为 y=0.014x2+0.29x+8.6.令x=15,代入二次函数,得y=16.1.所以,2005年该市国内生产总值将达到16.1亿元人民币.3.解:(1)设s与t的函数关系式为s=at2+bt+c 由题意得 或 解得 ∴s= t2-2t.(2)把s=30代入s= t2-2t, 得30= t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s= ×72-2×7= =10.5; 把t=8代入,得s= ×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴ 解得 抛物线的解析式为y=-x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.5.略 6.解:(1)当0≤t<4时,如图1,由图可知OM= t,设经过t秒后,正方形移动到ABMN,∵当t=4时,BB1=OM= ×4= a,∴点B1在C点左侧.∴夹在两平行线间的部分是多边形COQNG,其面积为: 平行四边形COPG-△NPQ的面积.∵CO= a,OD=a,∴四边形COPQ面积= a2.又∵点P的纵坐标为a,代入y=2x得P(,a),∴DP=.∴NP=t)2-(t-a)2 = a2-[(5-t)2+(t-4)2] = a2-(2t2-18t+41)= a2-[2•(t-)2+ ].∴当t= 时,S有最大值,S最大= a-• = a2. 二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)()A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是() A.(1,-4) B.(-1,2) C.(1,2) D.(0,3)3.抛物线y=2(x-3)2的顶点在() A.第一象限 B.第二象限 C.x轴上 D.y轴上 4.抛物线的对称轴是() A.x=- 2B.x=2 C.x=- 4D.x=4 5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0D.ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点 在第___象限() A.一B.二C.三D.四 7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是() A.4+m B.m C.2m-8 D.8-2m 8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是() 9.已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1 2D.y2 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是() A.C.B.D.二、填空题(每题4分,共32分) 11.二次函数y=x2-2x+1的对称轴方程是______________.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15.已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19.若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴数的解析式; 对称的点A′的坐标(2)求此二次函 20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为 .解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方 在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1 .的图象向,再向上平移3个单位得到 5 (2)由题设知: ∴y=x2-3x-4为所求 (3) 20.考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根 又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9) 21.解: (1)依题意: .(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1 ∴B(5,0) 由 作ME⊥y轴于点E,得M(2,9) 则 可得S△MCB=15.第二篇:二次函数练习题
第三篇:中考数学复习二次函数练习题及答案
第四篇:二次函数习题及答案
第五篇:九年级二次函数综合测试题及答案