第一篇:二次函数习题及答案
基础达标验收卷
一、选择题:
1.(2003•大连)抛物线y=(x-2)2+3的对称轴是().A.直线x=-3
B.直线x=3
C.直线x=-2
D.直线x=2
2.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在().A.第一象限;B.第二象限;C.第三象限;
D.第四象限
3.(2004•天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有().A.b2-4ac>0
B.b2-4ac=0
C.b2-4ac<0
D.b2-4ac≤0
4.(2003•杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有().A.b=3,c=7
B.b=-9,c=-15 C.b=3,c=3
D.b=-9,c=21 5.(2004•河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为().6.(2004•昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是().A.4+m
B.m
C.2m-8
D.8-2m
二、填空题
1.(2004•河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则 y=_______.2.(2003•新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004•武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003•黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002•北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4;
乙:与x轴两个交点的横坐标都是整数;
丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:
三、解答题
1.(2003•安徽)已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;
(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.(2004•济南)已知抛物线y=-x2+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值;
(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.3.(2004•南昌)在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y•轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符号条件的抛物线还有哪几条?不求解析式,•请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出解析式及直线的解析式;如果不存在,请说明理由.能力提高练习
一、学科内综合题
1.(2003•新疆)如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题
2.(2004•河南)•某市近年来经济发展速度很快,•根据统计:•该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005•年该市国内生产总值将达到多少?
3.(2003•辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?
4.(2003•吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?
三、开放探索题 5.(2003•济南)•某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少 ,纵坐标增加 ,得到A点的坐标;若把顶点的横坐标增加 ,纵坐标增加 ,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;
(3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,•你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立,请说明理由.6.(2004•重庆)如图,在直角坐标系中,正方形ABCD的边长为a,O为原点,•点B在x轴的负半轴上,点D在y轴的正半轴上.直线OE的解析式为y=2x,直线CF过x轴上一点C(-a,0)且与OE平行.现正方形以每秒 的速度匀速沿x轴正方向平行移动,•设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.(1)当0≤t<4时,写出S与t的函数关系;(2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,•请求出最大值;若没有,请说明理由.答案: 基础达标验收卷
一、1.D 2.D 3.A 4.A 5.B 6.C
二、1.(x-1)2+2
2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-x2+2x+
4.如y=-x2+1 5.1
6.y= x2-x+3或y=-x2+ x-3或y=-x2-x+1或y=-x2+ x-1
三、1.解:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得b=-2.∴函数解析式为y=x2-2x-1.(2)y=x2-2x-1=(x-1)2-2.图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x≥3时,y≥2.∴当x>0时,使y≥2的x的取值范围是x≥3.2.(1)设A(x1,0)B(x2,0).∵A、B两点关于y轴对称.∴
∴
解得m=6.(2)求得y=-x2+3.顶点坐标是(0,3)
(3)方程-x2+(6-)x+m-3=0的两根互为相反数(或两根之和为零等).3.解:(1)符合条件的抛物线还有5条,分别如下:
①抛物线AEC;②抛物线CBE;③抛物线DEB;④抛物线DEC;⑤抛物线DBC.(2)在(1)中存在抛物线DBC,它与直线AE不相交.设抛物线DBC的解析式为y=ax2+bx+c.将D(-2,),B(1,0),C(4,0)三点坐标分别代入,得
解这个方程组,得a= ,b=-,c=1.∴抛物线DBC的解析式为y= x2-x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2,),得a= 也可.】
又将直线AE的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得
解这个方程组,得m=-3,n=-6.∴直线AE的解析式为y=-3x-6.能力提高练习
一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y轴的左侧, ∴-<0,∴b>0.又∵抛物线交于y轴的负半轴.∴c<0.(2)如图,连结AB、AC.∵在Rt△AOB中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0).又∵在Rt△ACO中,∠ACO=60°,∴OC=OA•cot60°= ,∴C(,0).设二次函数的解析式为
y=ax2+bx+c(a≠0).由题意
∴所求二次函数的解析式为y= x2+(-1)x-3.2.依题意,可以把三组数据看成三个点:
A(0,8.6),B(5,10.4),C(10,12.9)
设y=ax2+bx+c.把A、B、C三点坐标代入上式,得
解得a=0.014,b=0.29,c=8.6.即所求二次函数为
y=0.014x2+0.29x+8.6.令x=15,代入二次函数,得y=16.1.所以,2005年该市国内生产总值将达到16.1亿元人民币.3.解:(1)设s与t的函数关系式为s=at2+bt+c 由题意得
或
解得
∴s= t2-2t.(2)把s=30代入s= t2-2t, 得30= t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s= ×72-2×7= =10.5;
把t=8代入,得s= ×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴
解得
抛物线的解析式为y=-x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.5.略
6.解:(1)当0≤t<4时,如图1,由图可知OM= t,设经过t秒后,正方形移动到ABMN,∵当t=4时,BB1=OM= ×4= a,∴点B1在C点左侧.∴夹在两平行线间的部分是多边形COQNG,其面积为:
平行四边形COPG-△NPQ的面积.∵CO= a,OD=a,∴四边形COPQ面积= a2.又∵点P的纵坐标为a,代入y=2x得P(,a),∴DP=.∴NP=t)2-(t-a)2 = a2-[(5-t)2+(t-4)2] = a2-(2t2-18t+41)= a2-[2•(t-)2+ ].∴当t= 时,S有最大值,S最大= a-• = a2.
第二篇:二次函数练习题及答案
二次函数练习题
一、选择题:
1.下列关系式中,属于二次函数的是(x为自变量)()
A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()
A.(1,-4)
B.(-1,2)
C.(1,2)
D.(0,3)
23.抛物线y=2(x-3)的顶点在()
A.第一象限
B.第二象限
C.x轴上
D.y轴上
4.抛物线的对称轴是()
A.x=-
2B.x=2
C.x=-
4D.x=4
5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()
A.ab>0,c>0
B.ab>0,c<0
C.ab<0,c>0
D.ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点
在第___象限()
A.一
B.二
C.三
D.四
7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交 x轴于点A(m,0)和点B,且m>4,那么AB的长是()
A.4+m
B.m
C.2m-8
D.8-2m
8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()
9.已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1 1C.y3 10.把抛物线物线的函数关系式是()A.C.的图象向左平移2个单位,再向上平移3个单位,所得的抛 B.D.二、填空题: 11.二次函数y=x2-2x+1的对称轴方程是______________.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15.已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点 三、解答题:,则y1的值是_________.19.若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A关于对称轴 对称的点A′的坐标; (2)求此二次函数的解析式; 20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式; (2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.3 答案与解析: 一、选择题 1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为 .解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1 .答案选C.二、填空题 11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.5 答案: 三、解答题 19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4) .(2)由题设知: ∴y=x2-3x-4为所求 (3) 20.考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根 又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9) 21.解: (1)依题意: .(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=- 1∴B(5,0) 由,得M(2,9) 作ME⊥y轴于点E,则 可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式: 总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元 2.二次函数定义__________________________________________________二次函数(1)导学案 一.教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点: 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程: 二、教学过程 (一)提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2) (二)、观察;概括 (1)函数关系式(1)和(2)的自变量各有几个? (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点? 三、课堂练习 1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1 (3)y=2x3-3x2(4)y=5x4-3x+1 2.P25练习第1,2,3题。 四、小结 1.请叙述二次函数的定义. 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。 五.堂堂清 下列函数中,哪些是二次函数? (1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1 ?二次函数?测试 一.选择题〔36分〕 1、以下各式中,y是的二次函数的是 () A. B. C. D. 2.在同一坐标系中,作+2、-1、的图象,那么它们 () A.都是关于轴对称 B.顶点都在原点 C.都是抛物线开口向上 D.以上都不对 3.假设二次函数的图象经过原点,那么的值必为 () A. 0或2 B. 0 C. D. 无法确定 4、点〔a,8〕在抛物线y=ax2上,那么a的值为〔 〕 A、±2 B、±2 C、2 D、-2 5.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是〔 〕 〔A〕y=3〔x+3〕2 〔B〕y=3〔x+2〕2+2 〔C〕y=3〔x-3〕2 〔D〕y=3〔x-3〕2+2 6.抛物线y=x2+6x+8与y轴交点坐标〔 〕 〔A〕〔0,8〕 〔B〕〔0,-8〕 〔C〕〔0,6〕 〔D〕〔-2,0〕〔-4,0〕 7、二次函数y=x2+4x+a的最大值是2,那么a的值是〔 〕 A、4 B、5 C、6 D、7 8.原点是抛物线的最高点,那么的范围是 () A. B. C. D. 9.抛物线那么图象与轴交点为 〔 〕 A. 二个交点 B. 一个交点 C. 无交点 D. 不能确定 10.不经过第三象限,那么的图象大致为 〔 〕 y y y y O x O x O x O x A B C D 11.对于的图象以下表达正确的选项是 〔 〕 A 顶点作标为(-3,2) B 对称轴为y=3 C 当时随增大而增大 D 当时随增大而减小 12、二次函数的图象如下图,那么以下结论中正确的选项是:〔 〕 A a>0 b<0 c>0 B a<0 b<0 c>0 C a<0 b>0 c<0 D a<0 b>0 c>0 二.填空题:〔每题4分,共24分〕 13.请写出一个开口向上,且对称轴为直线x =3的二次函数解析式。 14.写出一个开口向下,顶点坐标是〔—2,3〕的函数解析式; 15、把二次函数y=-2x2+4x+3化成y=a〔x+h〕2+k的形式是________________________________.16.假设抛物线y=x2 + 4x的顶点是P,与X轴的两个交点是C、D两点,那么 △ PCD的面积是________________________.17.(-2,y1),(-1,y2),(3,y3)是二次函数y=x2-4x+m上的点,那么 y1,y2,y3从小到大用 “<〞排列是 .18.小敏在某次投篮中,球的运动路线是抛物线的一局部(如图),假设命中篮圈中心,那么他与篮底的距离是________________________.三.解答题(共60分) 19.〔6分〕假设抛物线经过点A〔,0〕和点B〔-2,〕,求点A、B的坐标。 20、(6分)二次函数的图像经过点〔0,-4〕,且当x = 2,有最大值—2。求该二次函数的关系式: 21.〔6分〕抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。 25米x22、〔6分〕农民张大伯为了致富奔小康,大力开展家庭养殖业,他准备用40米长的木栏围一个矩形的鸡圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的羊鸡圈。请你设计使矩形鸡圈的面积最大?并计算最大面积。 23、二次函数y=-〔x-4〕2 +4 〔本大题总分值8分〕 1、先确定其图象的开口方向,对称轴和顶点坐标,再画出草图。 2、观察图象确定:X取何值时,①y=0,②y﹥0,⑶y﹤0。 24.〔8分〕某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,假设每千克涨价一元,日销售量将减少20千克。 〔1〕现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元? 〔2〕假设该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。 25.〔8分〕某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流〔在各个方向上〕沿形状相同的抛物线路径落下〔如下图〕。假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米。 〔1〕求这条抛物线的解析式; 〔2〕假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。 26.〔12分〕二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,〔1〕求A、B、C三点的坐标; 〔2〕如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围; 〔3〕是否存在这样的点P,使得PO=PA,假设存在,求出点P的坐标;假设不存在,说明理由。 第六章 二次型 B1与合同.AB22 证:因为A1与B1合同,所以存在可逆矩C1,使B1C1TAC11,1.设方阵A1与B1合同,A2与B2合同,证明T 因为A2与B2合同,所以存在可逆矩C2,使B2C2A2C2.A 1令 CC1,则C可逆,于是有 C2T1C1B1C1TACA1C11 TBC2A2CAC2222A1B1即 与合同.AB22 2.设A对称,B与A合同,则B对称 证:由A对称,故AA.因B与A合同,所以存在可逆矩阵C,使BCAC,于是 TTAT1CC2CA2BT(CTAC)TCTATCCTACB 即B为对称矩阵.3.设A是n阶正定矩阵,B为n阶实对称矩阵,证明:存在n阶可逆矩阵P,使PTAP与PTBP均为对角阵.证:因为A是正定矩阵,所以存在可逆矩阵M,使 MTAME 记B1MBM,则显然B1是实对称矩阵,于是存在正交矩阵Q,使 TQTB1QDdiag(1,,n) 其中1,,n为B1MTBM的特征值.令P=MQ,则有 PTAPE,PTBPD A,B同时合同对角阵.4.设二次型f(ai1mi11令A(aij)mn,则二次型f的秩等于r(A).xainxn)2,证:方法一 将二次型f写成如下形式: f(ai1x1aijxjainxn)2 i1m设Ai=(ai1,,aij,,ain) (i1,,m) ·107· a11a1ja1nA1则 Aai1aijainAi am1amjamjAmA1mTTTT于是 AA(A1,,Ai,,Am)AiAiTAi i1Amai1mm22故 f(ai1x1aijxjainxn)=[(x1,xj,xn)aij] i1i1ainai1x1x1mmT =[(x1,xj,xn)aij(ai1,aij,ain)xj]=(x1,xj,xn)(AiAi)xj i1i1axxinnn =X(AA)X 因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTTTr(ATA)=r(A),故二次型f的秩为r(A). T方法二 设yiai1x1ainxn,i1,,n.记Y(y1,,ym),于是 YAX,其中X(x1,,xn)T,则 2fyi2y12ymYTYXT(ATA)X.i1m 因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTr(ATA)=r(A),故二次型f的秩为r(A). T 5.设A为实对称可逆阵,fxAx为实二次型,则A为正交阵可用正交变换将f化成规范形.证:设i是A的任意的特征值,因为A是实对称可逆矩阵,所以i是实数,且i0,i1,,n.因为A是实对称矩阵,故存在正交矩阵P,在正交变换XPY下,f化为标准形,· ·108即 fXTAXYT(PTAP)YYTDYYTdiag(1,,i,,n)Y 21y1 (*)iyi2nyn 因为A是正交矩阵,显然DPTAPdiag(1,,i,,n)也是正交矩阵,由D为对角实矩阵,故i21即知i只能是1或1,这表明(*)恰为规范形.因为A为实对称可逆矩阵,故二次型f的秩为n.设在正交变换XQY下二次型f化成规范形,于是 22YDY fXTAXY(QTAQ)Yy1yr2yr21ynT其中r为f的正惯性指数,Ddiag(1,,1,1,,1).TT 显然D是正交矩阵,由DQAQ,故AQDQ,且有AAAAE,故ATT是正交矩阵.6.设A为实对称阵,|A|0,则存在非零列向量ξ,使ξTAξ0.证:方法一 因为A为实对称阵,所以可逆矩阵P,使 PTAPDdiag(1,,i,,n) 其中i(i1,,n)是A的特征值,由|A|0,故至少存在一个特征值k,使k0,0取ξP1,则有 0100TT1k0 ,1,0,0)k ξAξ(0,,1,,0)PAP1(00n0 方法二(反证法) T 若X0,都有XAX0,由A为实对称阵,则A为半正定矩阵,故|A|0与|A|0矛盾.222 7.设n元实二次型fXAX,证明f在条件x1x2xn1下的最大值恰T为方阵A的最大特征值. 解:设1,2,,n是f的特征值,则存在正交变换XPY,使 fXTAXYT(PTAP)Y1y122y2nyn设k是1,2,,n中最大者,当XXx1x2xn1时,有 ·109· T22222XTXYTPTPYYTYy12y2yn1 因此 2222f1y122y2nyn k(y12y2yn)k 222这说明在x1=1的条件下f的最大值不超过k. x2xn 设 Y0(y1,,yk,,yn)T(0,,0,1,0,.0)T 则 Y0TY01 222f1y122y2kyknynk 令X0PY0,则 TX0X0Y0TY1 并且 Tf(X0)X0AX0Y0T(PTAP)Y0k 222这说明f在X0达到k,即f在x1x2xn1条件下的最大值恰为方阵A的最大特征值. 8.设A正定,P可逆,则PAP正定.证:因为A正定,所以存在可逆矩阵Q,使AQTQ,于是 PAPPQQP(QP)QP,显然QP为可逆矩阵,且 TTTTT(PTAP)T(QP)TQPPTAP,即PTAP是实对称阵,故PTAP正定.9.设A为实对称矩阵,则A可逆的充分必要条件为存在实矩阵B,使AB+BA正定. 证:先证必要性 取BA,因为A为实对称矩阵,则 1TABBTAE(A1)TA2E 当然ABBA是正定矩阵. 再证充分性,用反证法. 若A不是可逆阵,则r(A) 因为A是实对称矩阵,B是实矩阵,于是有 TTTX0(ABBTA)X0(AX0)TBX0X0B(AX0)0 这与ABABBA是正定矩阵矛盾. 10.设A为正定阵,则AA3A仍为正定阵.证:因为A是正定阵,故A为实对称阵,且A的特征值全大于零,易见A,A,A2*1AA3A全是实对称矩阵,且它们的特征值全大于零,故A,A,A全是正定矩阵,2*T2*12*11为实对称阵.对X0,有 XT(A2A*3A1)XXTA2XXTA*XXTA1X0 · ·110 即 AA3A的正定矩阵.11.设A正定,B为半正定,则AB正定.T 证:显然A,B为实对称阵,故AB为实对称阵.对X0,XAX0,2*1XTBX0,因XT(AB)X0,故AB为正定矩阵.12.设n阶实对称阵A,B的特征值全大于0,A的特征向量都是B的特征向量,则AB正定.证:设A,B的特征值分别为i,i(i1,,n).由题设知i0,i0,i1,,n.PTAPdiag(1,,i,,n) 为PiA的特征向量,i1,,n.因为A是实对称矩阵,所以存在正交矩阵P(P1,,Pi,,Pn),使 即 AP,iiiP 由已知条件Pi也是B的特征向量,故 BPiiPii1,i,,n 因此 ABPiAiPi(ii)Pi,这说明ii是AB的特征值,且ii0,i1,,n.又因为 ABPPdiag(11,,ii,,nn),PTP1.故 ABPdiag(11,,ii,,nn)P,显然AB为实对称阵,因此AB为正定矩阵.13.设A(aij)nn为正定矩阵,b1,b2,,bn为非零实数,记 B(aijbbij)nn 则方阵B为正定矩阵. 证:方法一 因为A是正定矩阵,故A为对称矩阵,即aijaji,所以aijbibjajibjbi,这说明B是对称矩阵,显然 a11b21abb1anbb1221n1b10a11a1nb102abbababb2121222n2n2 B= 0baa0bnn1nnnabbabbabbnnnnn1n1n2n1 对任给的n维向量X(x1,,xn)0,因b1,b2,,bn为非零实数,所以 T(b1x1,,bnxn)T0,又因为A是正定矩阵,因此有 b10a11a1nb10TT XBXXX 0baa0bnn1nnna11a1nb1x1 =(b1x1,,bnxn)0 aabxnnnnn1即B是正定矩阵. ·111· 方法二 记 a11b12a12b1b2a1nb1bnabbab2abb2n2n B2121222abbabbabbnnnnn1n1n2n1则因为A是实对称矩阵,显然B是实对称矩阵,b10 B的k阶顺序主子阵Bk可由A的阶顺序主子阵分别左,右相乘对角阵而 0bn得到,即 b10a11a1kb10Bk 0baa0bkk1kkk计算Bk的行列式,有 Bkbi2Ak0 i1n故由正定矩阵的等价命题知结论正确. 14.设A为正定矩阵,B为实反对称矩阵,则AB0.证:因为M是n阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M的特征值及特征向量写成复数形式,进一步可以证明对于n阶实矩阵M,如果对任意非零列向量X,均有 XTMX0 可推出M的特征值(或者其实部)大于零. 由于M的行列式等于它的特征值之积,故必有M0 . 因为A是正定矩阵,B是反对称矩阵,显然对任意的 非零向量X,均有 XT(AB)X0,而A+B显然是实矩阵,故AB0.T 15.设A是n阶正定矩阵,B为nm矩阵,则r(BAB)=r(B). T 证:考虑线性方程组BX0与BABX0,显然线性方程组BX0 的解一定是BTABX0的解. TT 考虑线性方程组BABX0,若X0是线性方程组BABX0的任一解,因此有BTABX00. 上式两端左乘X0有 T(BX0)TA(BX0)0 · ·112 T 因为A是正定矩阵,因此必有BX00,故线性方程组BX0与 BABX0是同解方程组,所以必有r(BAB)= r(B).16.设A为实对称阵,则存在实数k,使|AkE|0.证:因为A为实对称阵,则存在正交矩阵P,使 TP1APdiag(1,,i,,i).其中i为A的特征值,且为实数,i1,,2.于是 APdiag(1,,i,,n)P1 1k |AkE||P|ik|P|(ik) 1i1nnk取kmax{|i|1},则1in|(k)0,故 |AkEii1n0.17.设A为n阶正定阵,则对任意实数k0,均有|AkE|kn.证:因为A为正定矩阵,故A为实对称阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使 11,PAPin于是对任意k0,有 1k|P| |AkE|1P1 APinikP|1|(ik)kkn.i1i1nnnk 18.设A为半正定阵,则对任意实数k0,均有|AkE|0.证:因为A为半正定矩阵,故A为实对称矩阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使 PAPdiag1(,于是对任意k0,有 |AkE|P||dia1g(k,ik, 1i,,n,,A)Pdiag(1,,i,,n)P1 n,k,P1|(|ik)kn0.)i1n·113· 19.A为n阶实矩阵,为正实数,记BEAA,则B正定.T 证:BT(EATA)TEAAB,故B是实对称矩阵.T 对X0,有(X,X)0,(AX,AX)0,因此有 AX(X,X)AX(AX,)0 XTBXXT(EATA)XXTXXTAT故 BEAA为正定矩阵.20.A是mn实矩阵,若AA是正定矩阵的充分必要条件为A是列满秩矩阵. 证:先证必要性 方法一 设AA 是正定矩阵,故X00,有 TX0(ATA)X0(AX0)T(AX0)0 由此AX00,即线性方程组AX0仅有零解,所以r(A)=n,即A是列满秩矩阵. TTT方法二 因为AA 是正定矩阵,故r(AA)=n,由于 TTnr(ATA)r(A)n 所以r(A)=n. 即A是列满秩矩阵. 再证充分性:因A是列满秩矩阵,故线性方程组仅有零解,X0,X为实向量,有AX0.因此 XT(ATA)X(AX)T(AX)(AX,AX)0 显然AA 是实对称矩阵,所以AA 是正定矩阵. 21.设A为n阶实对称阵,且满足A6A4E0,则A为正定阵.证:设为A的任意特征值,ξ为A的属于特征值的特征向量,故ξ0,则 2TTAξξ,2A2ξ2ξ 由 A6A4E0 有 Aξ6Aξ4ξ0 2(264)ξ0 2由 ξ0,故 640.350.因为A为实对称矩阵,故A为正定阵.22.设三阶实对称阵A的特征值为1,2,3,其中1,2对应的特征向量分别为ξ1(1,0,0)T,ξ2(0,1,1)T,求一正交变换XPY,将二次型fXTAX化成标准形.解:设ξ3(x1,x2,x3)T为A的属于特征值3的特征向量,由于A是实对称矩阵,故ξ1,ξ2,ξ3满足正交条件 1x10x20x30 0x1x1x0231 解之可取ξ3(0,1,1),将其单位化有 · ·11 411T11T,),P3(0,)222210011 令 P(P1,P2,P3)0.2211022则在正交变换XPY下,将f化成标准形为 P1(1,0,0)T,P2(0,22 fXTAXYT(PTAP)Yy122y23y 323.设 122A24a 2a42二次型fXTAX经正交变换XPY化成标准形f9y3,求所作的正交变换.2解:由f的标准形为f9y3,故A的特征值为120,39.1故 |EA|22a2(9) 422214a2 令0,则 2解之 a4.4a0 2a4122由此 A244 244 对于120有 122122 0EA244000 244000可得A的两个正交的特征向量 22ξ12,ξ21 12 ·115· 1对于39,可得A的特征向量为2 2将特征向量单位化得 221111P12,P21,P32 3331222211则P(P1,P2,P3)212为正交矩阵,31222211正交变换XPY为X212Y.3122 注:因特征向量选择的不同,正交矩阵P不惟一.222 24.已知二次型fx12x2(1k)x32kx1x22x1x3正定,求k.解:二次型的表示矩阵 11kAk20 101k1k20k20由A正定,应有A的各阶顺序主子式全大于0.故 k2,即.2|A|0k(kk2)0解之 1k0.222 25.试问:三元方程3x13x23x32x1x22x1x32x2x3x1x2x30,在三维空间中代表何种几何曲面.222 解:记f3x13x23x32x1x22x1x32x2x3x1x2x3 311x1x1则 f(x1,x2,x3)131x2(1,1,1)x2 113xx33311 设 A131.1132则|EA|(2)(5).故A的特征值为122,35.· ·116 对于122,求得特征向量为 1ξ11,0由Schmidt正交化得 1ξ20.11β11,0121β2.211对于35得特征向量ξ31,标准化得 1111632111P1,P,P23 26321063111263111 令 P(P1,P2,P3) 63221063则在正交变换XPY下 22f2y122y25y33y3 于是f0为 22y122y25(y3323) 102022为椭球面.26.求出二次型f(2x1x2x3)(x12x2x3)(x1x22x3)的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有 ·117· 222222 f4x1x2x34x1x24x1x32x2x3x124x2x34x1x22x1x34 2x3x222 x1x24x32x1x24x1x34x2x3 22222 6x16x26x36x1x26x1x36x2x36(x12x2x3x1x2x1x3x2x3) 1132323119x2x3)2x2x3x2x3]6(x1x2x3)2(x2x3)2 2244222211yxx11222x3 令 y2x2x3 yx33111y122x111即 y20x2 y001x33 6[(x1则可逆变换为 1x1x20x03在此可逆线性变换下f的标准形为 112y111y2 01y392y2.2f6y12 27.用初等变换和配方法分别将二次型 222 (1)f1x13x22x44x1x24x1x42x2x4 (2)f22x1x26x2x32x1x3 化成标准形和规范形,并分别写出所作的合同变换和可逆变换.解:先用配方法求解 (1)f1(x14x1x24x1x4)3x22x42x2x4 (x12x22x4)x26x46x2x4(x12x22x4)(x23x4)3x4 222222222y1x12x22x4yx3x224 令 即 yx33y4x4x1y12y24y4xy3y224 xy33x4y4 · ·118 12040103 令 P00100001 则二次型f经可逆线性变换xPy化成标准形 f1y12y23y4y1z1z1y1yzzy2222 若再令 即 y3z3 zy33y3zz3y4444311 令 Q133222则原二次型f1经可逆线性变换xPQz化成规范形f1y1.y2y4x1y1y2 (2)先线性变换x2y1y2 xy33原二次型化成 2222 f22(y1y2)6y1y36y2y32y1y32y2y32y12y24y1y38y2y3 222 2(y1y3)22y2 2(y1y3)22(y22y3)26y38y2y32y3z1y1y3y1z1z3110101 令z2y22y3,即y2z22z3.令P1110,P2012 zyyz0010013333则原二次型f2经可逆线性变换xP1P2z化成标准形 f22z122z26z3z1w12z1 若再令w22z2 即 z2w6z33z3 2w122w2 26w36·119· 222 令 Q 266则原二次型f2经可逆线性变换xP1P2Qw化成规范形 22.f2w12w2w3 用初等变换法求解 1223 (1)设A00211223 (AE4)00210201 0002***02010002000***0010r22r100c22c1021010r43r20c43c20001000100 01033030103010002100***000***1000 0100 0110r4(2)r101 c4(2)c1000310101r3300 1c3300120200001T4330001010021002100 令 P1,P20010 001034304313033222则原二次型f1经过可逆线性变换xP1y化成标准形f1y1y23y3.二次型经过可逆线性变换xP2z化成规范形f1z1z2z4.· ·120 222T011 (2)设A103 1301100010r3(1)r203010c3(1)c21 (AE3)113000101003360010 0111001 r33r1c33c101010010001021r1r2c1c210000063110063200110 r12(2)r1111c1002(2)c12220 00631110011201 2r121,2c112r2,2c010162220 6r23,6c300162666611T0110T 令 P112210,P11202222311662666则原二次型f2经过可逆线性变换xP1y化成标准形 f2y2122212y26y3 二次型经过可逆线性变换xP2z化成规范形 f2222z1z2z3 28.用三种不同方法化下列二次型为标准形和规范形.(1)f22212x13x24x2x33x3 (2)f22222x1x2x3x42x1x22x1x42x2x32x3x4 解:先用配方法求解 001011 121· · 42522x2x3)3x32x123(x2x3)2x3 333y1x1x1y122 令 y2x2x3 即 x2y2y3 33y3x3x3y31002 令 P01 3001 (1)f12x13(x222则二次型f1经可逆线性变换xPy化成标准形 2f12y123y252y3 32z1y12z12y13z2 若再令 z23y2 即 y2315z15y33yz3335223 令 Q 3155原二次型f1经可逆线性变换xPQz化成规范形 22.f1z12z2z3 (2)f2(x12x1x22x1x4)x2x3x42x2x32x3x4 (x1x2x4)2x32x2x32x3x42x2x4 2 (x1x2x4)2(x3x2x4)2(x22x4)23x4 2222y1x1x2x4yx2x224 令 即 y3x2x3x4y4x4 · ·122 x1y1y2y4xy2y224 x3y2y3y4x4y411010102 令 P0111 0001则二次型f2经可逆线性变换xPy化成标准形 f2y223y22y12y34 z1y1y1z1 若再令 z2y2 即 y2z2zy 3y 33z3z43y4y433z411 令 Q1 33 原二次型fPQz化成规范形f22222经可逆线性变换x2z1z2z3z4.用初等变换法求解 20 (1)设A0032 02320010200100 (AE03)032010r(233)r2c(203001030230013)c25200303110010012 12r112c10100103r1 23c21535r1535c3215150010155 123· · 101 令 P1020300,1TP212000132151500 15522T则原二次型f1经过可逆线性变换xP1y化成标准形f12y13y2222可逆线性变换xP2z化成规范形f1z1.z2z352y3.二次型经过311011110 (2)设A011110111011000111100100 (AE4) 011100101011000110011000100010011110000111r2(1)r1r4r1 c2(1)c101110010c4c101110111100010110110001000100010011110000011r3r2r3r4 c3c201121110c3c400320012010010120110001000100010001110002010r3(2)r2r2r4 c3(2)c200302111c2c400302010010010100110001000020001011r4()r22 00302111 1c4()c2211110000222 · ·124 000100 010001000100 111001000101 1110011011r2c222 110r3c3332r42c40***01233220033000101120 令 P12333 33312202212222fy2y3yy4.f2可则原二次型f2可经可逆线性变换xP化成标准形y212312经可逆线性变换xP2z化成规范形 222 f2z12z2z3z41T0000101 P22311131102220123 32200102T用正交变换法求解 200 (1)f1的矩阵为A032,023200由 |EA|知A的特征值为1,2,5.00322(1)(2)(5),3100x10x100对11,解022x20,得x2k1,取T11,单位化 1022x0x1330000x10x1112P0xk0P1,对22,解012x,得,取220,220x002013x322 ·125· 0x1030对35解022x20,得022x03x100xk1T 取321,单位化得1x13P30022,令 P22222210002,则P为正交阵,经正交变换XPY,222222原二次型f化为fXTAXy1.2y25y311011110 (2)f2的矩阵为 A0111101111011110由 |EA|(1)(3)(1)2 01111011知A的特征值为1,3,1,1.x12101x1011xx12100122, 得 k,取T1对11,解1x3011121x301x1x1012044122112单位化得P1对23,解,01211210210x1010x2021x3012x401, 得 x11x2k1.x311x4 · ·126 121 取 T1122 1单位化得 P21.1212 对341,解 0101x1x1101001x0x0202,得 01011010x3x0xk1k1 312040x4011 取 T300,T41,1001202 再令 P023,P2240 22021122220112 令 P2202112,则P为正交阵,经正交变换XPY,02221122022原二次型f化为 fXTAXy222213y2y3y4.29.判断下列二次型正定,负定还是不定.(1)f22212x26x24x32x1x22x1x3 127· · 解:二次型f1的矩阵为 121A160 104A的各阶顺序全子式 20,21162110,111160380.04所以二次型f1是负定二次型.2222 (2)f2x13x29x319x42x1x24x1x32x1x46x2x412x3x4 解:二次型f2的矩阵为 11211303 A209613619A的各阶顺序主子式 112111211130310,20,13060,240 13209620913619所以二次型f2是正定二次型.2222 (3)f3x1x214x37x46x1x34x1x44x2x3 解:二次型f3的矩阵为 103012A3214200A的各阶顺序主子式 20 0720330.0710,1031001210,01210,0132143214200103所以二次型f3是不定二次型.222 30.求一可逆线性变换XCY,把二次型f12x15x24x32x1x24x1x3化成 · ·128规范形fy22y211y23,同时也把二次型 f322x222x213x232x1x32x1x34x2x3 化成标准形f2222k1y1k2y2k3y3.解:记f1XTAX,其中 A212150204 200212150091rA2043r1r1r12012E10022 c3c1c12c11112010001201000120000911000r11022162001025r2039r29r2331c23669c21110r34c112229212c2230c301343690010304125266取 P02136,则PTAPE 004记 fT2XBX,其中 129· · 3012B032 12210021253120266则 BT22032211PBP063 01223651336640043111220212526634422 25242021132636444 1112300341212242312 141321B2 2224其中 B3122132 222显然B都是实对称矩阵,它们的特征值为11,B24倍的关系,特征向量相同.3120(33)12(4) |EB2|1321(3)2(42)22202(4)4则B2的特征值为0,234,故B1的特征值为0,1,1.以下求B2的特征向量.·130 · 0112211 对于10,求得α1,单位化后122 1122 对于1α234,求得α21,300 1 由Schmidt标准正交化后得 121212132, 0212111222 令 Q(111,2,3)2122.11202 则Q为正交矩阵,且有 0QTB(PTBP)Q11QQT 112511266121222 令 CPQ121023161222312213004102242于是 QTPTAPQQTEQE 27362131620342131· · 即 CACE T0CTBC1 1在可逆线性变换XCY下 f1y12y2y322.f2y2y3(注:经验算本题所得C是正确的,需要注意的是C并不惟一) 31.求一可逆线性变换XPY,将二次型f化成二次型g.22f2x129x23x38x1x24x1x310x2x3 22g2y123y26y34y1y24y1y38y2y3 42222295,gYTBY,B234 解:fXTAX,A4253246 将A,B分别作合同变换如下: 24220020049501101022r1011rr000A253rr3r132 c22c1 c3c2E100c3c1121121010010011001001001 在可逆线性变换XC1Z下 f2z12z2121C1011 0012204012r1026rr3r12c10cc3c111010001 其中 2223B24E10010022在可逆线性变换YC2Z下g2z1z2.· ·132 02204r3r201c3c210001010110000 121111其中 C2012 0011由 ZC2Y得 1XC1ZC1C2Y 12111113611012003令 PC1C201 00100100122在可逆线性变换XPY下fg2z1.z2 32.A是正定矩阵,AB是实对称矩阵,则AB是正定矩阵的充分必要条件是B的特征值全大于零. 证:先证必要性. 设 为B的任一特征值,对应的特征向量为X,则X0, 且有 1BXX 用XA左乘上式有 TXT(AB)XXTAX 因为AB,A都是正定矩阵,故 XT(AB)X0,于是0,即B的特征值全大于零. 再证充分性. XTAX0 因为A是正定矩阵,所以A合同于单位矩阵,故存在可逆矩阵P,使 PTAPE (1) 由AB是对称矩阵,知P(AB)P也是实对称矩阵,因此存在正交矩阵Q,使 TQT[PT(AB)P]QDdiag(1,,i,,n) (2) 即有 (QPA)B(PQ)Ddiag(1,,i,,n) (3) 其中1,,i,,n是P(AB)P的特征值. 在(1)的两端左乘Q,右乘Q有 TTTTQT(PTAP)QE即(QTPTA)(PQ)E TT这说明(QPA)与(PQ)互逆,也就是说 (QTPTA)(PQ)1 将上式代入(3),说明矩阵B与对角阵D相似,故它们的特征值相等;由条件知B的特征值全大于零,因此对角阵D的特征值也全大于零. 由(2)知AB与D合同,因此AB的特征值全大于零. ·133· T 33.设A,B为n阶实正定阵,证明:存在可逆阵P,使PAPE且PTBPdiag(1,2,,n),其中12n0为|AB|0的n个实根.证:因A正定,故存在可逆矩阵P1,使 TP1AP1E 因B正定,故存在可逆矩阵P2,使 BP2TP2 于是 TTTTP1BP1P1P2P2P1(P2P1)(P2P1) 易见P1BP1为正定矩阵,不妨设它的特征值为 T12n0.TTTT则 |EPBP||PAPPBP||P|111111|AB||P1| T故 |EP1BP1|0|AB|0 即 12n0为|AB|0的几个实根.由 P1BP1为正定阵,知其为实对称矩阵,所以存在正交矩阵Q,使 TQT(P1BP1)Qdiag(1,2,,n)T 令 PP,则 1Q PTAPE,PTBPdiag(1,2,,n) 34.设A为n阶实正定阵,B为n阶实半正定阵,则|AB||A|.证:因为A是n阶正定矩阵,所以存在n阶可逆矩阵C,使得 CTACE.T 因为B是n阶半正定阵,则CBC仍是实对称半正定阵,故存在正交阵Q,使得 Q1(CTBC)QQT(CTBC)QDdiag(1,,i,,n) 其中 i0,i1,n,为CTBC的特征值,且有 QT(CTAC)QE 令PCQ,则P为可逆矩阵,于是 PTAPE,PTBPD PT(AB)PPTAPPTBPED 上式两端取行列式,得 |P||AB||P||ED|(1i)1|PT||A||P| Ti1n因 |P||P|0,故 |AB||A|.35.设A,B均为实正定阵,证明:方程|AB|0的根全大于0.证:由33题知|EP1BP1|0|AB|0.其中P1BP1为正交矩阵,它的特征值i0,i1,,n,故|AB|0的根全大于0.· ·134TTT 36.设A为n阶正定矩阵,试证:存在正定矩阵B,使AB. 证:因为A是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P,使 212P-1APPTAPD n其中1,2,,n 令i为A的n个特征值,它们全大于零. i(i1,2,,n), 则 2111122222D 2nnnn1122TPT 而 APDPPnn1122PTPPT Pnn12T 令 B=PP n2显然B为正定矩阵,且AB. 37.设A为n阶可逆实方阵,证明:A可表示为一个正定阵与一正交阵的乘积. T 证:因为A是n阶可逆实方阵,故AA是正定矩阵,所以存在n阶正定矩阵B,使 ATAB2.于是有 (AB1)T(AB1)(B1)TATAB1(B1)TB2B1E 这说明AB是正交阵.令 ABQ 则 AQB,其中Q是正交矩阵,B是正定矩阵.38.A、B 为n阶正定矩阵,则AB也为n阶正定矩阵的充分必要条件是: AB=BA,即A与B可交换. ·135· 11证:方法一 先证必要性. 由于A、B、AB都是正定矩阵,所以知它们都是对称矩阵,因此有 ATA,BTB,(AB)TAB 于是 AB(AB)TBTATBA 即A与B可交换. 再证充分性. 由条件AB=BA得 (AB)T(BA)TATBTAB 因此AB是对称矩阵. 因为A,B是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P、Q,使 APTP,BQTQ 于是 ABPTPQTQ 上式左乘Q,右乘Q1得 Q(AB)Q1QPTPQT(PQT)T(PQT) 这说明AB与对称矩阵(PQT)T(PQT)相似;因为PQT是可逆矩阵,故矩阵(PQT)T(PQT)是正定矩阵,故它的特征值全大于零,所以AB的特征值也全大于零. 综合上述知AB正定. 方法二 必要性同方法一,以下证明充分性. 由条件AB=BA得 (AB)T(BA)TATBTAB 因此AB是对称矩阵. 由于A正定,所以存在可逆矩阵Q,使 A=QQ 于是 TTTT EABEQQBEQQBQ(Q) T QTE(QT)1QT(QBQT)(QT)1QTEQBQT(QT)1EQBQTT EAB0EQBQT0 这说明AB与QBQ有相同的特征值. 因为B是正定矩阵,易见QBQ也是正定矩阵,故它的特征值全大于零,所以AB的特征值也全大于零. · ·136 T综合上述知AB正定. 39.设A、B为实对称矩阵,且A为正定矩阵,证明:AB的特征值全是实数. 证:因为A是正定矩阵,故存在可逆矩阵Q,使AQTQ,于是有 EABEQTQBEQT(QBQT)(QT)1QEQBQ(Q)即|EAB|0|EQBQT|0.TTTT1EQBQT 因为B是实对称矩阵,所以QBQ也是实对称矩阵,因此它的特征值都是实数,故AB的特征值也都是实数. 40.设A是正定矩阵,B是实反对称矩阵,则AB的特征值的实部为零. 证:因为A是正定矩阵,故存在可逆矩阵Q,使AQTQ EABEQTQBEQT(QBQT)(QT)1QEQBQ(Q)AB的特征值实部也为零. TTT1EQBQT 因为B是实反对称矩阵,所以QBQT也是实反对称矩阵,因此它的特征值实部为零,故 41.设A是正定矩阵,B是半正定的实对称矩阵,则AB的特征值是非负的实数. 证:由于A是正定的,所以A也是正定的,于是存在可逆矩阵P,使得A因此 11PTP,EABAA1BAPTPBAPTE(PT)1BP1P APTPE(PT)1BP1AA1E(PT)1BP1E(PT)1BP1E(P1)TBP1 1T1即EAB0E(P)BP0.由于B是半正定的实对称矩阵,故(P)BP1T1是半正定的实对称矩阵,因此E(P1)TBP10的根是非负实数.于是EAB0的根也是非负实数,即AB的特征值是非负的实数. 42.求证实二次型f(x1,,xn) 证:二次型的矩阵为 (krsrs)xx的秩和符号差与k无关. rsr1s1nn2k33k4k22k34k46k56k59k6A3k4nk(n1)2nk(n2)3nk(n3) nk(n1)2nk(n2)3nk(n3) 2nk2n·137· 对矩阵A作合同变换,即把A的第1行的(-2),(-3),…,(-n)倍加到第2,3,…,n行上;同时把A的第1列的(-2),(-3),…,(-n)倍加到第2,3,…,n列上,得到与矩阵A合同的矩阵B为 2(n1)0000 00k2,2,(n1)倍依次加到第1,3,对矩阵B作合同变换,即把B的第2行的2k2,2,(n1)倍依次加到第1,3,4,…,n4,…,n行上;同时把B的第2列的2列上,得到与矩阵B合同的矩阵C为 k21B2(n1)100001C0010000000000 0由合同变换的传递性,故A与C合同,于是原二次型可经可逆线性变换化简成 f(x1,,xn)2y1y2 y1z1z2再作可逆线性变换 y2z1z2yzii于是二次型f化成规范形 (i3,,n)2 f(x1,,xn)2z122z 2显然二次型f(x1,,xn)的秩为2,符号差为0,它们的值均与k无关. 43.设二次型fa时,二次型f正定. 证:二次型 f的矩阵A的各阶顺序主子式的值与它的阶数n的奇偶性有关: (1)当n=2m+1时,二次型f的矩阵为 xi1n2ibini1xxinni1,其中a、b为实数,问a、b满足什么条件 baabAa baba · ·138它的各阶顺序主子式为 a,,am1,am(a2b2),am1(a2b2)2,,a(a2b2)m (2)当n=2m时,二次型f的矩阵为 baab Ababa它的各阶顺序主子式为 a,,am,am1(a2b2),am2(a2b2)2,,(a2b2)m 综合(1),(2)可知:当a0且a2b2时,二次型f是正定的. 44.设A为n阶实对称矩阵,r(A)=n,Aij是A(aij)nn中元素aij的代数余子式 nnAijxixj(i,j1,2,,n),二次型f(x1,x2,,xn)i1j1A1 (1)记X(x1,x2,,xn)T,把f(x1,x2,,xn)写成矩阵形式,并证明二次型f(X)的矩阵为A. (2)二次型g(X)XAX与f(X)的规范形是否相同?说明理由. 证:方法一 (1)因为A是实对称矩阵,故AijTAji.由r(A)=n, 故A可逆,且 A11*A A二次型f(x1,x2,,xn)的矩阵形式为 A11A21An1x11AAAn2x2f(X)(x1,x2,,xn)1222 AAAAxnnn1n2n111TT11从而(A)(A)A.故A也是实对称矩阵,因此二次型f(X)的矩阵为A. 11T1T11 (2)因为(A)AA(A)EA,所以A与A合同,于是二次型g(X)XTAX与f(X)有相同的规范形. 方法二 (1)同证法1 (2)对二次型g(X)XAX作可逆线性变换,XAY, 其中 T1Y(y1,y2,,yn)T,则 T1T1T11TT11 g(X)XAX(AY)A(AY)=Y(A)AAY=Y(A)AAY=YAY T1由此可知A与A合同,二次型g(X)XAX与f(X)有相同的规范形. ·139· 1T 45.试说明二次型 f(x1,x2,x3)(x1x2x3)2[ax1(ad1)x2(a2d1)x3]2 +n[(ad)xii22 (a2d)x(a3d)x]1i2i3当d10时,无论n为何值,f(x1,x2,x3)的秩均为2. 解:fXT(ATA)X,其中 1aAad2adn1ad1a2d2a2dn1a2d1a3d2 a3dn1110d12d1行对矩阵A作行的初等变换,可得A000.000 所以当d10时,A的秩为2,这与n的取值无关,因此二次型f的秩为2. 46.已知A是n阶正定矩阵,令二次型f(x1,x2,,xn)XTAXxn的矩阵为B,求证:(1)B是正定矩阵;(2)BA. 证:(1)设 a11aA21an1a11a21则 Ban1a12a1na22a2n,aijaji an2anna12a1na22a2n an2ann1 显然B为实对称矩阵,且B与A的前n-1阶顺序主子式完全相同,由于A是正定矩阵,故它的各阶顺序主子式全大于零,因此B的前n-1阶顺序主子式也全大于零. 现考虑B的第n阶顺序主子式即它的行列式,有 a11a B21an1可见B是正定矩阵. · ·140a12a1na11a1n1a22a2n+ an11an1n1an2annan1ann10=AAn10 (*)01 (2)由(*)即知BA. 47.设n元实二次型fXTAX,1,2,,n 是A的特征值,且12n. 证明:对于任一实维列向量X有1XTXXTAXnXTX.证:设1,2,,n是f的特征值,则存在正交变换X=PY,使 fXTAXYT(PTAP)Y1y122y2nyn 由已知条件12n,有 1YTYfXTAXnYTY (1) 又因为P是正交矩阵,于是有 XTXYTPTPYYTY 将此结果代入(1)即为 1XTXXTAXnXTX 48.证明:若二次型ai1i1nnijxixjXTAX是正定二次型,则 a11a21f(y1,y2,,yn)an1y1是负定二次型. a12a22an2y2a1na2nannyny1y2 yn0 证:因为f 是正定二次型,故它的表示矩阵A是正定矩阵,因此A是可逆矩阵,作可逆线性变换Y=AZ.对上述行列式的列作消法变换,将第j列的-zj(j1,2,,n)倍加入第n+1列,其中Z(z1,z2,,zn)T,则 a11a21 f(y1,y2,,yn)an1y1a12a22an2y2a1na2nannyny1a11y2a21ynan10y1a12a22an2y2a1n0a2n0 ann0yn(y1z1y2z2ynzn)TTTT A(y1z1y2z2ynzn)=AYZ=AZAZ=AZAZ 因为A是正定矩阵,所以A<0,可见f(y1,y2,,yn)是负定二次型. 49.设A是正定矩阵,则 (1)AannAn1,其中An1是A的n-1阶顺序主子式; (2)Aa11a22ann. 解:(1)因为A是正定矩阵,故 ·141· a11a12a1n1a21a22a2n1An1 aaan1n1n11n12也是正定矩阵,于是由48题知 a11a1n1y1 fn1(y1,y2,,yn1)= an11an1n1yn1y1yn10是负定二次型,因此由行列式的加法运算有 a11a1n1a1na11a1n1Aan11an1n1an1nan11an1n1an1ann10an1ann1其中An1为A的顺序主子式. 0fn1(a1n,a2n,,an1n)annAn1 0ann当a1n,a2n,,an1n中至少有一个不为零时,fn1(a1n,a2n,,an1n)<0 A 50.设P(pij)nn是n阶可逆矩阵,求证:P222(p12jp2jpnj).j1np11p21pn1pppp1222n2p 证:PTPppp2nnnpn1nTpp211pn11pnpn22p2nn12n2pi1i112*pi1n2i*2 n2pini1 因为P是可逆矩阵,故PP是正定矩阵,由49题的结论(2),有 22PP(p)(p12jp2jpnj)T2ijj1i1j12nnn显然 PPP,所以有PT222(p12jp2jpnj).j1n · ·142第三篇:二次函数
第四篇:二次函数
第五篇:线性代数二次型习题及答案