二次函数习题及答案

时间:2019-05-12 22:18:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数习题及答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数习题及答案》。

第一篇:二次函数习题及答案

基础达标验收卷

一、选择题:

1.(2003•大连)抛物线y=(x-2)2+3的对称轴是().A.直线x=-3

B.直线x=3

C.直线x=-2

D.直线x=2

2.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在().A.第一象限;B.第二象限;C.第三象限;

D.第四象限

3.(2004•天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有().A.b2-4ac>0

B.b2-4ac=0

C.b2-4ac<0

D.b2-4ac≤0

4.(2003•杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有().A.b=3,c=7

B.b=-9,c=-15 C.b=3,c=3

D.b=-9,c=21 5.(2004•河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为().6.(2004•昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是().A.4+m

B.m

C.2m-8

D.8-2m

二、填空题

1.(2004•河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则 y=_______.2.(2003•新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003•天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004•武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003•黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002•北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:

三、解答题

1.(2003•安徽)已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;

(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.(2004•济南)已知抛物线y=-x2+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值;

(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.3.(2004•南昌)在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y•轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符号条件的抛物线还有哪几条?不求解析式,•请用约定的方法一一表示出来;

(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出解析式及直线的解析式;如果不存在,请说明理由.能力提高练习

一、学科内综合题

1.(2003•新疆)如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题

2.(2004•河南)•某市近年来经济发展速度很快,•根据统计:•该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005•年该市国内生产总值将达到多少?

3.(2003•辽宁)某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:

(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?

4.(2003•吉林)如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?

三、开放探索题 5.(2003•济南)•某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要的结论.一是发现抛物线y=ax2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax2+2x+3的顶点的横坐标减少 ,纵坐标增加 ,得到A点的坐标;若把顶点的横坐标增加 ,纵坐标增加 ,得到B点的坐标,则A、B两点一定仍在抛物线y=ax2+2x+3上.(1)请你协助探求出当实数a变化时,抛物线y=ax2+2x+3的顶点所在直线的解析式;

(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;

(3)在他们第二个发现的启发下,运用“一般——特殊——一般”的思想,•你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立,请说明理由.6.(2004•重庆)如图,在直角坐标系中,正方形ABCD的边长为a,O为原点,•点B在x轴的负半轴上,点D在y轴的正半轴上.直线OE的解析式为y=2x,直线CF过x轴上一点C(-a,0)且与OE平行.现正方形以每秒 的速度匀速沿x轴正方向平行移动,•设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.(1)当0≤t<4时,写出S与t的函数关系;(2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,•请求出最大值;若没有,请说明理由.答案: 基础达标验收卷

一、1.D 2.D 3.A 4.A 5.B 6.C

二、1.(x-1)2+2

2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-x2+2x+

4.如y=-x2+1 5.1

6.y= x2-x+3或y=-x2+ x-3或y=-x2-x+1或y=-x2+ x-1

三、1.解:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得b=-2.∴函数解析式为y=x2-2x-1.(2)y=x2-2x-1=(x-1)2-2.图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x≥3时,y≥2.∴当x>0时,使y≥2的x的取值范围是x≥3.2.(1)设A(x1,0)B(x2,0).∵A、B两点关于y轴对称.∴

解得m=6.(2)求得y=-x2+3.顶点坐标是(0,3)

(3)方程-x2+(6-)x+m-3=0的两根互为相反数(或两根之和为零等).3.解:(1)符合条件的抛物线还有5条,分别如下:

①抛物线AEC;②抛物线CBE;③抛物线DEB;④抛物线DEC;⑤抛物线DBC.(2)在(1)中存在抛物线DBC,它与直线AE不相交.设抛物线DBC的解析式为y=ax2+bx+c.将D(-2,),B(1,0),C(4,0)三点坐标分别代入,得

解这个方程组,得a= ,b=-,c=1.∴抛物线DBC的解析式为y= x2-x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2,),得a= 也可.】

又将直线AE的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得

解这个方程组,得m=-3,n=-6.∴直线AE的解析式为y=-3x-6.能力提高练习

一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y轴的左侧, ∴-<0,∴b>0.又∵抛物线交于y轴的负半轴.∴c<0.(2)如图,连结AB、AC.∵在Rt△AOB中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0).又∵在Rt△ACO中,∠ACO=60°,∴OC=OA•cot60°= ,∴C(,0).设二次函数的解析式为

y=ax2+bx+c(a≠0).由题意

∴所求二次函数的解析式为y= x2+(-1)x-3.2.依题意,可以把三组数据看成三个点:

A(0,8.6),B(5,10.4),C(10,12.9)

设y=ax2+bx+c.把A、B、C三点坐标代入上式,得

解得a=0.014,b=0.29,c=8.6.即所求二次函数为

y=0.014x2+0.29x+8.6.令x=15,代入二次函数,得y=16.1.所以,2005年该市国内生产总值将达到16.1亿元人民币.3.解:(1)设s与t的函数关系式为s=at2+bt+c 由题意得

解得

∴s= t2-2t.(2)把s=30代入s= t2-2t, 得30= t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s= ×72-2×7= =10.5;

把t=8代入,得s= ×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴

解得

抛物线的解析式为y=-x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.5.略

6.解:(1)当0≤t<4时,如图1,由图可知OM= t,设经过t秒后,正方形移动到ABMN,∵当t=4时,BB1=OM= ×4= a,∴点B1在C点左侧.∴夹在两平行线间的部分是多边形COQNG,其面积为:

平行四边形COPG-△NPQ的面积.∵CO= a,OD=a,∴四边形COPQ面积= a2.又∵点P的纵坐标为a,代入y=2x得P(,a),∴DP=.∴NP=t)2-(t-a)2 = a2-[(5-t)2+(t-4)2] = a2-(2t2-18t+41)= a2-[2•(t-)2+ ].∴当t= 时,S有最大值,S最大= a-• = a2.

第二篇:二次函数练习题及答案

二次函数练习题

一、选择题:

1.下列关系式中,属于二次函数的是(x为自变量)()

A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()

A.(1,-4)

B.(-1,2)

C.(1,2)

D.(0,3)

23.抛物线y=2(x-3)的顶点在()

A.第一象限

B.第二象限

C.x轴上

D.y轴上

4.抛物线的对称轴是()

A.x=-

2B.x=2

C.x=-

4D.x=4

5.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()

A.ab>0,c>0

B.ab>0,c<0

C.ab<0,c>0

D.ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点

在第___象限()

A.一

B.二

C.三

D.四

7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交 x轴于点A(m,0)和点B,且m>4,那么AB的长是()

A.4+m

B.m

C.2m-8

D.8-2m

8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()

9.已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线 上的点,且-1

1C.y3

10.把抛物线物线的函数关系式是()A.C.的图象向左平移2个单位,再向上平移3个单位,所得的抛

B.D.二、填空题:

11.二次函数y=x2-2x+1的对称轴方程是______________.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15.已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:

(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点

三、解答题:,则y1的值是_________.19.若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A关于对称轴

对称的点A′的坐标;

(2)求此二次函数的解析式;

20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;

(2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.3

答案与解析:

一、选择题

1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为

.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y随x的增大而减小,所以y2

.答案选C.二、填空题

11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.5

答案:

三、解答题

19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)

.(2)由题设知:

∴y=x2-3x-4为所求

(3)

20.考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根

又∵(x1+1)(x2+1)=-8

∴x1x2+(x1+x2)+9=0

∴-(k+4)-(k-5)+9=0

∴k=5

∴y=x2-9为所求

(2)由已知平移后的函数解析式为:

y=(x-2)2-9

且x=0时y=-5

∴C(0,-5),P(2,-9)

21.解:

(1)依题意:

.(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-

1∴B(5,0)

由,得M(2,9)

作ME⊥y轴于点E,则

可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:

总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)

这时商品的销售量是(500+200x)

总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元

第三篇:二次函数

2.二次函数定义__________________________________________________二次函数(1)导学案

一.教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:

二、教学过程

(一)提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)

(二)、观察;概括

(1)函数关系式(1)和(2)的自变量各有几个?

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点?

三、课堂练习

1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P25练习第1,2,3题。

四、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

五.堂堂清

下列函数中,哪些是二次函数?

(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1

第四篇:二次函数

?二次函数?测试

一.选择题〔36分〕

1、以下各式中,y是的二次函数的是

()

A.

B.

C.

D.

2.在同一坐标系中,作+2、-1、的图象,那么它们

()

A.都是关于轴对称

B.顶点都在原点

C.都是抛物线开口向上

D.以上都不对

3.假设二次函数的图象经过原点,那么的值必为

()

A.

0或2

B.

0

C.

D.

无法确定

4、点〔a,8〕在抛物线y=ax2上,那么a的值为〔

A、±2

B、±2

C、2

D、-2

5.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是〔

〔A〕y=3〔x+3〕2

〔B〕y=3〔x+2〕2+2

〔C〕y=3〔x-3〕2

〔D〕y=3〔x-3〕2+2

6.抛物线y=x2+6x+8与y轴交点坐标〔

〔A〕〔0,8〕

〔B〕〔0,-8〕

〔C〕〔0,6〕

〔D〕〔-2,0〕〔-4,0〕

7、二次函数y=x2+4x+a的最大值是2,那么a的值是〔

A、4

B、5

C、6

D、7

8.原点是抛物线的最高点,那么的范围是

()

A.

B.

C.

D.

9.抛物线那么图象与轴交点为

A.

二个交点

B.

一个交点

C.

无交点

D.

不能确定

10.不经过第三象限,那么的图象大致为

y

y

y

y

O

x

O

x

O

x

O

x

A

B

C

D

11.对于的图象以下表达正确的选项是

A

顶点作标为(-3,2)

B

对称轴为y=3

C

当时随增大而增大

D

当时随增大而减小

12、二次函数的图象如下图,那么以下结论中正确的选项是:〔

A

a>0

b<0

c>0

B

a<0

b<0

c>0

C

a<0

b>0

c<0

D

a<0

b>0

c>0

二.填空题:〔每题4分,共24分〕

13.请写出一个开口向上,且对称轴为直线x

=3的二次函数解析式。

14.写出一个开口向下,顶点坐标是〔—2,3〕的函数解析式;

15、把二次函数y=-2x2+4x+3化成y=a〔x+h〕2+k的形式是________________________________.16.假设抛物线y=x2

+

4x的顶点是P,与X轴的两个交点是C、D两点,那么

PCD的面积是________________________.17.(-2,y1),(-1,y2),(3,y3)是二次函数y=x2-4x+m上的点,那么

y1,y2,y3从小到大用

“<〞排列是

.18.小敏在某次投篮中,球的运动路线是抛物线的一局部(如图),假设命中篮圈中心,那么他与篮底的距离是________________________.三.解答题(共60分)

19.〔6分〕假设抛物线经过点A〔,0〕和点B〔-2,〕,求点A、B的坐标。

20、(6分)二次函数的图像经过点〔0,-4〕,且当x

=

2,有最大值—2。求该二次函数的关系式:

21.〔6分〕抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。

25米x22、〔6分〕农民张大伯为了致富奔小康,大力开展家庭养殖业,他准备用40米长的木栏围一个矩形的鸡圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的羊鸡圈。请你设计使矩形鸡圈的面积最大?并计算最大面积。

23、二次函数y=-〔x-4〕2

+4

〔本大题总分值8分〕

1、先确定其图象的开口方向,对称轴和顶点坐标,再画出草图。

2、观察图象确定:X取何值时,①y=0,②y﹥0,⑶y﹤0。

24.〔8分〕某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,假设每千克涨价一元,日销售量将减少20千克。

〔1〕现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?

〔2〕假设该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。

25.〔8分〕某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流〔在各个方向上〕沿形状相同的抛物线路径落下〔如下图〕。假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米。

〔1〕求这条抛物线的解析式;

〔2〕假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。

26.〔12分〕二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,〔1〕求A、B、C三点的坐标;

〔2〕如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;

〔3〕是否存在这样的点P,使得PO=PA,假设存在,求出点P的坐标;假设不存在,说明理由。

第五篇:线性代数二次型习题及答案

第六章

二次型

B1与合同.AB22

证:因为A1与B1合同,所以存在可逆矩C1,使B1C1TAC11,1.设方阵A1与B1合同,A2与B2合同,证明T

因为A2与B2合同,所以存在可逆矩C2,使B2C2A2C2.A

1令

CC1,则C可逆,于是有 C2T1C1B1C1TACA1C11

TBC2A2CAC2222A1B1即

与合同.AB22

2.设A对称,B与A合同,则B对称

证:由A对称,故AA.因B与A合同,所以存在可逆矩阵C,使BCAC,于是

TTAT1CC2CA2BT(CTAC)TCTATCCTACB

即B为对称矩阵.3.设A是n阶正定矩阵,B为n阶实对称矩阵,证明:存在n阶可逆矩阵P,使PTAP与PTBP均为对角阵.证:因为A是正定矩阵,所以存在可逆矩阵M,使

MTAME

记B1MBM,则显然B1是实对称矩阵,于是存在正交矩阵Q,使 TQTB1QDdiag(1,,n)

其中1,,n为B1MTBM的特征值.令P=MQ,则有

PTAPE,PTBPD

A,B同时合同对角阵.4.设二次型f(ai1mi11令A(aij)mn,则二次型f的秩等于r(A).xainxn)2,证:方法一

将二次型f写成如下形式:

f(ai1x1aijxjainxn)2

i1m设Ai=(ai1,,aij,,ain)

(i1,,m)

·107· a11a1ja1nA1则

Aai1aijainAi

am1amjamjAmA1mTTTT于是

AA(A1,,Ai,,Am)AiAiTAi

i1Amai1mm22故

f(ai1x1aijxjainxn)=[(x1,xj,xn)aij]

i1i1ainai1x1x1mmT

=[(x1,xj,xn)aij(ai1,aij,ain)xj]=(x1,xj,xn)(AiAi)xj

i1i1axxinnn

=X(AA)X

因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTTTr(ATA)=r(A),故二次型f的秩为r(A).

T方法二

设yiai1x1ainxn,i1,,n.记Y(y1,,ym),于是

YAX,其中X(x1,,xn)T,则

2fyi2y12ymYTYXT(ATA)X.i1m

因为AA为对称矩阵,所以AA就是所求的二次型f的表示矩阵. 显然TTr(ATA)=r(A),故二次型f的秩为r(A).

T

5.设A为实对称可逆阵,fxAx为实二次型,则A为正交阵可用正交变换将f化成规范形.证:设i是A的任意的特征值,因为A是实对称可逆矩阵,所以i是实数,且i0,i1,,n.因为A是实对称矩阵,故存在正交矩阵P,在正交变换XPY下,f化为标准形,· ·108即

fXTAXYT(PTAP)YYTDYYTdiag(1,,i,,n)Y

21y1

(*)iyi2nyn

因为A是正交矩阵,显然DPTAPdiag(1,,i,,n)也是正交矩阵,由D为对角实矩阵,故i21即知i只能是1或1,这表明(*)恰为规范形.因为A为实对称可逆矩阵,故二次型f的秩为n.设在正交变换XQY下二次型f化成规范形,于是

22YDY

fXTAXY(QTAQ)Yy1yr2yr21ynT其中r为f的正惯性指数,Ddiag(1,,1,1,,1).TT

显然D是正交矩阵,由DQAQ,故AQDQ,且有AAAAE,故ATT是正交矩阵.6.设A为实对称阵,|A|0,则存在非零列向量ξ,使ξTAξ0.证:方法一

因为A为实对称阵,所以可逆矩阵P,使

PTAPDdiag(1,,i,,n)

其中i(i1,,n)是A的特征值,由|A|0,故至少存在一个特征值k,使k0,0取ξP1,则有

0100TT1k0 ,1,0,0)k

ξAξ(0,,1,,0)PAP1(00n0

方法二(反证法)

T

若X0,都有XAX0,由A为实对称阵,则A为半正定矩阵,故|A|0与|A|0矛盾.222

7.设n元实二次型fXAX,证明f在条件x1x2xn1下的最大值恰T为方阵A的最大特征值.

解:设1,2,,n是f的特征值,则存在正交变换XPY,使 fXTAXYT(PTAP)Y1y122y2nyn设k是1,2,,n中最大者,当XXx1x2xn1时,有

·109·

T22222XTXYTPTPYYTYy12y2yn1

因此

2222f1y122y2nyn k(y12y2yn)k

222这说明在x1=1的条件下f的最大值不超过k. x2xn

Y0(y1,,yk,,yn)T(0,,0,1,0,.0)T 则

Y0TY01

222f1y122y2kyknynk

令X0PY0,则

TX0X0Y0TY1

并且

Tf(X0)X0AX0Y0T(PTAP)Y0k

222这说明f在X0达到k,即f在x1x2xn1条件下的最大值恰为方阵A的最大特征值.

8.设A正定,P可逆,则PAP正定.证:因为A正定,所以存在可逆矩阵Q,使AQTQ,于是

PAPPQQP(QP)QP,显然QP为可逆矩阵,且 TTTTT(PTAP)T(QP)TQPPTAP,即PTAP是实对称阵,故PTAP正定.9.设A为实对称矩阵,则A可逆的充分必要条件为存在实矩阵B,使AB+BA正定.

证:先证必要性

取BA,因为A为实对称矩阵,则 1TABBTAE(A1)TA2E

当然ABBA是正定矩阵. 再证充分性,用反证法.

若A不是可逆阵,则r(A)

因为A是实对称矩阵,B是实矩阵,于是有

TTTX0(ABBTA)X0(AX0)TBX0X0B(AX0)0

这与ABABBA是正定矩阵矛盾.

10.设A为正定阵,则AA3A仍为正定阵.证:因为A是正定阵,故A为实对称阵,且A的特征值全大于零,易见A,A,A2*1AA3A全是实对称矩阵,且它们的特征值全大于零,故A,A,A全是正定矩阵,2*T2*12*11为实对称阵.对X0,有

XT(A2A*3A1)XXTA2XXTA*XXTA1X0

· ·110

AA3A的正定矩阵.11.设A正定,B为半正定,则AB正定.T

证:显然A,B为实对称阵,故AB为实对称阵.对X0,XAX0,2*1XTBX0,因XT(AB)X0,故AB为正定矩阵.12.设n阶实对称阵A,B的特征值全大于0,A的特征向量都是B的特征向量,则AB正定.证:设A,B的特征值分别为i,i(i1,,n).由题设知i0,i0,i1,,n.PTAPdiag(1,,i,,n)

为PiA的特征向量,i1,,n.因为A是实对称矩阵,所以存在正交矩阵P(P1,,Pi,,Pn),使 即

AP,iiiP

由已知条件Pi也是B的特征向量,故

BPiiPii1,i,,n

因此

ABPiAiPi(ii)Pi,这说明ii是AB的特征值,且ii0,i1,,n.又因为

ABPPdiag(11,,ii,,nn),PTP1.故

ABPdiag(11,,ii,,nn)P,显然AB为实对称阵,因此AB为正定矩阵.13.设A(aij)nn为正定矩阵,b1,b2,,bn为非零实数,记

B(aijbbij)nn

则方阵B为正定矩阵.

证:方法一

因为A是正定矩阵,故A为对称矩阵,即aijaji,所以aijbibjajibjbi,这说明B是对称矩阵,显然

a11b21abb1anbb1221n1b10a11a1nb102abbababb2121222n2n2

B= 0baa0bnn1nnnabbabbabbnnnnn1n1n2n1

对任给的n维向量X(x1,,xn)0,因b1,b2,,bn为非零实数,所以

T(b1x1,,bnxn)T0,又因为A是正定矩阵,因此有

b10a11a1nb10TT

XBXXX

0baa0bnn1nnna11a1nb1x1

=(b1x1,,bnxn)0

aabxnnnnn1即B是正定矩阵.

·111·

方法二

a11b12a12b1b2a1nb1bnabbab2abb2n2n B2121222abbabbabbnnnnn1n1n2n1则因为A是实对称矩阵,显然B是实对称矩阵,b10

B的k阶顺序主子阵Bk可由A的阶顺序主子阵分别左,右相乘对角阵而

0bn得到,即

b10a11a1kb10Bk

0baa0bkk1kkk计算Bk的行列式,有

Bkbi2Ak0

i1n故由正定矩阵的等价命题知结论正确.

14.设A为正定矩阵,B为实反对称矩阵,则AB0.证:因为M是n阶实矩阵,所以它的特征值若是复数,则必然以共轭复数形式成对出现;将M的特征值及特征向量写成复数形式,进一步可以证明对于n阶实矩阵M,如果对任意非零列向量X,均有

XTMX0

可推出M的特征值(或者其实部)大于零. 由于M的行列式等于它的特征值之积,故必有M0 .

因为A是正定矩阵,B是反对称矩阵,显然对任意的 非零向量X,均有

XT(AB)X0,而A+B显然是实矩阵,故AB0.T

15.设A是n阶正定矩阵,B为nm矩阵,则r(BAB)=r(B).

T

证:考虑线性方程组BX0与BABX0,显然线性方程组BX0 的解一定是BTABX0的解.

TT

考虑线性方程组BABX0,若X0是线性方程组BABX0的任一解,因此有BTABX00.

上式两端左乘X0有 T(BX0)TA(BX0)0

· ·112

T

因为A是正定矩阵,因此必有BX00,故线性方程组BX0与 BABX0是同解方程组,所以必有r(BAB)= r(B).16.设A为实对称阵,则存在实数k,使|AkE|0.证:因为A为实对称阵,则存在正交矩阵P,使 TP1APdiag(1,,i,,i).其中i为A的特征值,且为实数,i1,,2.于是

APdiag(1,,i,,n)P1

1k

|AkE||P|ik|P|(ik)

1i1nnk取kmax{|i|1},则1in|(k)0,故

|AkEii1n0.17.设A为n阶正定阵,则对任意实数k0,均有|AkE|kn.证:因为A为正定矩阵,故A为实对称阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使

11,PAPin于是对任意k0,有

1k|P|

|AkE|1P1 APinikP|1|(ik)kkn.i1i1nnnk

18.设A为半正定阵,则对任意实数k0,均有|AkE|0.证:因为A为半正定矩阵,故A为实对称矩阵,且A的特征值i0,i1,,n.则存在正交矩阵P,使

PAPdiag1(,于是对任意k0,有

|AkE|P||dia1g(k,ik, 1i,,n,,A)Pdiag(1,,i,,n)P1

n,k,P1|(|ik)kn0.)i1n·113·

19.A为n阶实矩阵,为正实数,记BEAA,则B正定.T

证:BT(EATA)TEAAB,故B是实对称矩阵.T

对X0,有(X,X)0,(AX,AX)0,因此有

AX(X,X)AX(AX,)0

XTBXXT(EATA)XXTXXTAT故

BEAA为正定矩阵.20.A是mn实矩阵,若AA是正定矩阵的充分必要条件为A是列满秩矩阵.

证:先证必要性

方法一

设AA 是正定矩阵,故X00,有

TX0(ATA)X0(AX0)T(AX0)0

由此AX00,即线性方程组AX0仅有零解,所以r(A)=n,即A是列满秩矩阵. TTT方法二

因为AA 是正定矩阵,故r(AA)=n,由于 TTnr(ATA)r(A)n

所以r(A)=n. 即A是列满秩矩阵.

再证充分性:因A是列满秩矩阵,故线性方程组仅有零解,X0,X为实向量,有AX0.因此

XT(ATA)X(AX)T(AX)(AX,AX)0

显然AA 是实对称矩阵,所以AA 是正定矩阵.

21.设A为n阶实对称阵,且满足A6A4E0,则A为正定阵.证:设为A的任意特征值,ξ为A的属于特征值的特征向量,故ξ0,则

2TTAξξ,2A2ξ2ξ

A6A4E0

Aξ6Aξ4ξ0

2(264)ξ0 2由

ξ0,故

640.350.因为A为实对称矩阵,故A为正定阵.22.设三阶实对称阵A的特征值为1,2,3,其中1,2对应的特征向量分别为ξ1(1,0,0)T,ξ2(0,1,1)T,求一正交变换XPY,将二次型fXTAX化成标准形.解:设ξ3(x1,x2,x3)T为A的属于特征值3的特征向量,由于A是实对称矩阵,故ξ1,ξ2,ξ3满足正交条件

1x10x20x30 0x1x1x0231

解之可取ξ3(0,1,1),将其单位化有

· ·11

411T11T,),P3(0,)222210011

P(P1,P2,P3)0.2211022则在正交变换XPY下,将f化成标准形为 P1(1,0,0)T,P2(0,22 fXTAXYT(PTAP)Yy122y23y

323.设

122A24a

2a42二次型fXTAX经正交变换XPY化成标准形f9y3,求所作的正交变换.2解:由f的标准形为f9y3,故A的特征值为120,39.1故

|EA|22a2(9)

422214a2

令0,则

2解之

a4.4a0 2a4122由此

A244

244

对于120有

122122

0EA244000

244000可得A的两个正交的特征向量

22ξ12,ξ21

12

·115·

1对于39,可得A的特征向量为2

2将特征向量单位化得

221111P12,P21,P32

3331222211则P(P1,P2,P3)212为正交矩阵,31222211正交变换XPY为X212Y.3122

注:因特征向量选择的不同,正交矩阵P不惟一.222

24.已知二次型fx12x2(1k)x32kx1x22x1x3正定,求k.解:二次型的表示矩阵

11kAk20

101k1k20k20由A正定,应有A的各阶顺序主子式全大于0.故 k2,即.2|A|0k(kk2)0解之

1k0.222

25.试问:三元方程3x13x23x32x1x22x1x32x2x3x1x2x30,在三维空间中代表何种几何曲面.222

解:记f3x13x23x32x1x22x1x32x2x3x1x2x3

311x1x1则

f(x1,x2,x3)131x2(1,1,1)x2

113xx33311

A131.1132则|EA|(2)(5).故A的特征值为122,35.· ·116

对于122,求得特征向量为

1ξ11,0由Schmidt正交化得

1ξ20.11β11,0121β2.211对于35得特征向量ξ31,标准化得

1111632111P1,P,P23 26321063111263111

P(P1,P2,P3)

63221063则在正交变换XPY下

22f2y122y25y33y3

于是f0为

22y122y25(y3323) 102022为椭球面.26.求出二次型f(2x1x2x3)(x12x2x3)(x1x22x3)的标准形及相应的可逆线性变换.解:将括号展开,合并同类项有

·117·

222222

f4x1x2x34x1x24x1x32x2x3x124x2x34x1x22x1x34 2x3x222

x1x24x32x1x24x1x34x2x3

22222

6x16x26x36x1x26x1x36x2x36(x12x2x3x1x2x1x3x2x3)

1132323119x2x3)2x2x3x2x3]6(x1x2x3)2(x2x3)2 2244222211yxx11222x3

y2x2x3

yx33111y122x111即

y20x2 y001x33

6[(x1则可逆变换为

1x1x20x03在此可逆线性变换下f的标准形为

112y111y2 01y392y2.2f6y12

27.用初等变换和配方法分别将二次型

222

(1)f1x13x22x44x1x24x1x42x2x4

(2)f22x1x26x2x32x1x3

化成标准形和规范形,并分别写出所作的合同变换和可逆变换.解:先用配方法求解

(1)f1(x14x1x24x1x4)3x22x42x2x4

(x12x22x4)x26x46x2x4(x12x22x4)(x23x4)3x4 222222222y1x12x22x4yx3x224

yx33y4x4x1y12y24y4xy3y224 xy33x4y4 · ·118

12040103

P00100001

则二次型f经可逆线性变换xPy化成标准形 f1y12y23y4y1z1z1y1yzzy2222

若再令 

即 y3z3 zy33y3zz3y4444311

Q133222则原二次型f1经可逆线性变换xPQz化成规范形f1y1.y2y4x1y1y2

(2)先线性变换x2y1y2

xy33原二次型化成

2222

f22(y1y2)6y1y36y2y32y1y32y2y32y12y24y1y38y2y3

222

2(y1y3)22y2 2(y1y3)22(y22y3)26y38y2y32y3z1y1y3y1z1z3110101

令z2y22y3,即y2z22z3.令P1110,P2012

zyyz0010013333则原二次型f2经可逆线性变换xP1P2z化成标准形 f22z122z26z3z1w12z1

若再令w22z2

即 z2w6z33z3

2w122w2 26w36·119·

222

Q

266则原二次型f2经可逆线性变换xP1P2Qw化成规范形

22.f2w12w2w3

用初等变换法求解

1223

(1)设A00211223

(AE4)00210201

0002***02010002000***0010r22r100c22c1021010r43r20c43c20001000100 01033030103010002100***000***1000 0100 0110r4(2)r101

c4(2)c1000310101r3300

1c3300120200001T4330001010021002100

P1,P20010

001034304313033222则原二次型f1经过可逆线性变换xP1y化成标准形f1y1y23y3.二次型经过可逆线性变换xP2z化成规范形f1z1z2z4.· ·120

222T011

(2)设A103

1301100010r3(1)r203010c3(1)c21

(AE3)113000101003360010 0111001

r33r1c33c101010010001021r1r2c1c210000063110063200110

r12(2)r1111c1002(2)c12220 00631110011201

2r121,2c112r2,2c010162220 6r23,6c300162666611T0110T

令 P112210,P11202222311662666则原二次型f2经过可逆线性变换xP1y化成标准形

f2y2122212y26y3

二次型经过可逆线性变换xP2z化成规范形

f2222z1z2z3

28.用三种不同方法化下列二次型为标准形和规范形.(1)f22212x13x24x2x33x3

(2)f22222x1x2x3x42x1x22x1x42x2x32x3x4

解:先用配方法求解

001011 121· · 42522x2x3)3x32x123(x2x3)2x3 333y1x1x1y122

令 y2x2x3

即 x2y2y3

33y3x3x3y31002

P01

3001

(1)f12x13(x222则二次型f1经可逆线性变换xPy化成标准形

2f12y123y252y3 32z1y12z12y13z2

若再令 z23y2

即 y2315z15y33yz3335223

Q

3155原二次型f1经可逆线性变换xPQz化成规范形

22.f1z12z2z3

(2)f2(x12x1x22x1x4)x2x3x42x2x32x3x4

(x1x2x4)2x32x2x32x3x42x2x4 2

(x1x2x4)2(x3x2x4)2(x22x4)23x4 2222y1x1x2x4yx2x224

y3x2x3x4y4x4 · ·122

x1y1y2y4xy2y224 x3y2y3y4x4y411010102

P0111

0001则二次型f2经可逆线性变换xPy化成标准形

f2y223y22y12y34 z1y1y1z1

若再令 z2y2

即 y2z2zy 3y

33z3z43y4y433z411

Q1 33

原二次型fPQz化成规范形f22222经可逆线性变换x2z1z2z3z4.用初等变换法求解

20

(1)设A0032

02320010200100

(AE03)032010r(233)r2c(203001030230013)c25200303110010012

12r112c10100103r1 23c21535r1535c3215150010155 123· · 101

令 P1020300,1TP212000132151500 15522T则原二次型f1经过可逆线性变换xP1y化成标准形f12y13y2222可逆线性变换xP2z化成规范形f1z1.z2z352y3.二次型经过311011110

(2)设A011110111011000111100100

(AE4) 011100101011000110011000100010011110000111r2(1)r1r4r1

c2(1)c101110010c4c101110111100010110110001000100010011110000011r3r2r3r4

c3c201121110c3c400320012010010120110001000100010001110002010r3(2)r2r2r4

c3(2)c200302111c2c400302010010010100110001000020001011r4()r22

00302111 1c4()c2211110000222 · ·124

000100

010001000100

111001000101

1110011011r2c222

110r3c3332r42c40***01233220033000101120

令 P12333

33312202212222fy2y3yy4.f2可则原二次型f2可经可逆线性变换xP化成标准形y212312经可逆线性变换xP2z化成规范形

222 f2z12z2z3z41T0000101

P22311131102220123 32200102T用正交变换法求解

200

(1)f1的矩阵为A032,023200由

|EA|知A的特征值为1,2,5.00322(1)(2)(5),3100x10x100对11,解022x20,得x2k1,取T11,单位化

1022x0x1330000x10x1112P0xk0P1,对22,解012x,得,取220,220x002013x322

·125· 0x1030对35解022x20,得022x03x100xk1T 取321,单位化得1x13P30022,令 P22222210002,则P为正交阵,经正交变换XPY,222222原二次型f化为fXTAXy1.2y25y311011110

(2)f2的矩阵为

A0111101111011110由

|EA|(1)(3)(1)2

01111011知A的特征值为1,3,1,1.x12101x1011xx12100122, 得

k,取T1对11,解1x3011121x301x1x1012044122112单位化得P1对23,解,01211210210x1010x2021x3012x401, 得 x11x2k1.x311x4 · ·126

121

T1122

1单位化得 P21.1212

对341,解

0101x1x1101001x0x0202,得

01011010x3x0xk1k1 312040x4011

T300,T41,1001202

再令

P023,P2240 22021122220112

令 P2202112,则P为正交阵,经正交变换XPY,02221122022原二次型f化为

fXTAXy222213y2y3y4.29.判断下列二次型正定,负定还是不定.(1)f22212x26x24x32x1x22x1x3

127· ·

解:二次型f1的矩阵为

121A160

104A的各阶顺序全子式

20,21162110,111160380.04所以二次型f1是负定二次型.2222

(2)f2x13x29x319x42x1x24x1x32x1x46x2x412x3x4

解:二次型f2的矩阵为

11211303 A209613619A的各阶顺序主子式

112111211130310,20,13060,240

13209620913619所以二次型f2是正定二次型.2222

(3)f3x1x214x37x46x1x34x1x44x2x3

解:二次型f3的矩阵为

103012A3214200A的各阶顺序主子式

20 0720330.0710,1031001210,01210,0132143214200103所以二次型f3是不定二次型.222

30.求一可逆线性变换XCY,把二次型f12x15x24x32x1x24x1x3化成 · ·128规范形fy22y211y23,同时也把二次型 f322x222x213x232x1x32x1x34x2x3 化成标准形f2222k1y1k2y2k3y3.解:记f1XTAX,其中

A212150204

200212150091rA2043r1r1r12012E10022 c3c1c12c11112010001201000120000911000r11022162001025r2039r29r2331c23669c21110r34c112229212c2230c301343690010304125266取 P02136,则PTAPE 004记

fT2XBX,其中

129· ·

3012B032

12210021253120266则 BT22032211PBP063 01223651336640043111220212526634422

25242021132636444 1112300341212242312

141321B2 2224其中

B3122132 222显然B都是实对称矩阵,它们的特征值为11,B24倍的关系,特征向量相同.3120(33)12(4)

|EB2|1321(3)2(42)22202(4)4则B2的特征值为0,234,故B1的特征值为0,1,1.以下求B2的特征向量.·130 ·

0112211

对于10,求得α1,单位化后122 1122

对于1α234,求得α21,300

1

由Schmidt标准正交化后得

121212132,

0212111222

Q(111,2,3)2122.11202

则Q为正交矩阵,且有

0QTB(PTBP)Q11QQT

112511266121222

令 CPQ121023161222312213004102242于是

QTPTAPQQTEQE

27362131620342131· · 即

CACE

T0CTBC1

1在可逆线性变换XCY下 f1y12y2y322.f2y2y3(注:经验算本题所得C是正确的,需要注意的是C并不惟一)

31.求一可逆线性变换XPY,将二次型f化成二次型g.22f2x129x23x38x1x24x1x310x2x3

22g2y123y26y34y1y24y1y38y2y3

42222295,gYTBY,B234

解:fXTAX,A4253246 将A,B分别作合同变换如下:

24220020049501101022r1011rr000A253rr3r132

c22c1 c3c2E100c3c1121121010010011001001001

在可逆线性变换XC1Z下 f2z12z2121C1011

0012204012r1026rr3r12c10cc3c111010001

其中

2223B24E10010022在可逆线性变换YC2Z下g2z1z2.· ·132

02204r3r201c3c210001010110000 121111其中

C2012

0011由

ZC2Y得

1XC1ZC1C2Y

12111113611012003令

PC1C201

00100100122在可逆线性变换XPY下fg2z1.z2

32.A是正定矩阵,AB是实对称矩阵,则AB是正定矩阵的充分必要条件是B的特征值全大于零.

证:先证必要性.

设 为B的任一特征值,对应的特征向量为X,则X0, 且有

1BXX

用XA左乘上式有 TXT(AB)XXTAX

因为AB,A都是正定矩阵,故

XT(AB)X0,于是0,即B的特征值全大于零.

再证充分性.

XTAX0

因为A是正定矩阵,所以A合同于单位矩阵,故存在可逆矩阵P,使

PTAPE

(1)

由AB是对称矩阵,知P(AB)P也是实对称矩阵,因此存在正交矩阵Q,使 TQT[PT(AB)P]QDdiag(1,,i,,n)

(2)

即有

(QPA)B(PQ)Ddiag(1,,i,,n)

(3)

其中1,,i,,n是P(AB)P的特征值.

在(1)的两端左乘Q,右乘Q有 TTTTQT(PTAP)QE即(QTPTA)(PQ)E

TT这说明(QPA)与(PQ)互逆,也就是说

(QTPTA)(PQ)1

将上式代入(3),说明矩阵B与对角阵D相似,故它们的特征值相等;由条件知B的特征值全大于零,因此对角阵D的特征值也全大于零. 由(2)知AB与D合同,因此AB的特征值全大于零.

·133·

T

33.设A,B为n阶实正定阵,证明:存在可逆阵P,使PAPE且PTBPdiag(1,2,,n),其中12n0为|AB|0的n个实根.证:因A正定,故存在可逆矩阵P1,使

TP1AP1E

因B正定,故存在可逆矩阵P2,使

BP2TP2

于是

TTTTP1BP1P1P2P2P1(P2P1)(P2P1)

易见P1BP1为正定矩阵,不妨设它的特征值为 T12n0.TTTT则

|EPBP||PAPPBP||P|111111|AB||P1|

T故

|EP1BP1|0|AB|0 即

12n0为|AB|0的几个实根.由

P1BP1为正定阵,知其为实对称矩阵,所以存在正交矩阵Q,使

TQT(P1BP1)Qdiag(1,2,,n)T

PP,则 1Q

PTAPE,PTBPdiag(1,2,,n)

34.设A为n阶实正定阵,B为n阶实半正定阵,则|AB||A|.证:因为A是n阶正定矩阵,所以存在n阶可逆矩阵C,使得

CTACE.T

因为B是n阶半正定阵,则CBC仍是实对称半正定阵,故存在正交阵Q,使得

Q1(CTBC)QQT(CTBC)QDdiag(1,,i,,n)

其中 i0,i1,n,为CTBC的特征值,且有

QT(CTAC)QE

令PCQ,则P为可逆矩阵,于是

PTAPE,PTBPD

PT(AB)PPTAPPTBPED

上式两端取行列式,得

|P||AB||P||ED|(1i)1|PT||A||P| Ti1n因

|P||P|0,故

|AB||A|.35.设A,B均为实正定阵,证明:方程|AB|0的根全大于0.证:由33题知|EP1BP1|0|AB|0.其中P1BP1为正交矩阵,它的特征值i0,i1,,n,故|AB|0的根全大于0.· ·134TTT

36.设A为n阶正定矩阵,试证:存在正定矩阵B,使AB.

证:因为A是正定矩阵,所以是实对称矩阵,于是存在正交矩阵P,使

212P-1APPTAPD

n其中1,2,,n

令i为A的n个特征值,它们全大于零.

i(i1,2,,n), 则

2111122222D 2nnnn1122TPT

APDPPnn1122PTPPT

Pnn12T

B=PP

n2显然B为正定矩阵,且AB.

37.设A为n阶可逆实方阵,证明:A可表示为一个正定阵与一正交阵的乘积.

T

证:因为A是n阶可逆实方阵,故AA是正定矩阵,所以存在n阶正定矩阵B,使

ATAB2.于是有

(AB1)T(AB1)(B1)TATAB1(B1)TB2B1E

这说明AB是正交阵.令

ABQ

AQB,其中Q是正交矩阵,B是正定矩阵.38.A、B 为n阶正定矩阵,则AB也为n阶正定矩阵的充分必要条件是: AB=BA,即A与B可交换.

·135· 11证:方法一

先证必要性.

由于A、B、AB都是正定矩阵,所以知它们都是对称矩阵,因此有

ATA,BTB,(AB)TAB

于是

AB(AB)TBTATBA

即A与B可交换.

再证充分性.

由条件AB=BA得

(AB)T(BA)TATBTAB

因此AB是对称矩阵.

因为A,B是正定矩阵,故它们皆为实对称矩阵,且有可逆矩阵P、Q,使

APTP,BQTQ

于是

ABPTPQTQ

上式左乘Q,右乘Q1得

Q(AB)Q1QPTPQT(PQT)T(PQT)

这说明AB与对称矩阵(PQT)T(PQT)相似;因为PQT是可逆矩阵,故矩阵(PQT)T(PQT)是正定矩阵,故它的特征值全大于零,所以AB的特征值也全大于零.

综合上述知AB正定.

方法二

必要性同方法一,以下证明充分性.

由条件AB=BA得

(AB)T(BA)TATBTAB

因此AB是对称矩阵.

由于A正定,所以存在可逆矩阵Q,使

A=QQ 于是

TTTT EABEQQBEQQBQ(Q)

T

QTE(QT)1QT(QBQT)(QT)1QTEQBQT(QT)1EQBQTT

EAB0EQBQT0

这说明AB与QBQ有相同的特征值.

因为B是正定矩阵,易见QBQ也是正定矩阵,故它的特征值全大于零,所以AB的特征值也全大于零.

· ·136

T综合上述知AB正定.

39.设A、B为实对称矩阵,且A为正定矩阵,证明:AB的特征值全是实数.

证:因为A是正定矩阵,故存在可逆矩阵Q,使AQTQ,于是有

EABEQTQBEQT(QBQT)(QT)1QEQBQ(Q)即|EAB|0|EQBQT|0.TTTT1EQBQT

因为B是实对称矩阵,所以QBQ也是实对称矩阵,因此它的特征值都是实数,故AB的特征值也都是实数.

40.设A是正定矩阵,B是实反对称矩阵,则AB的特征值的实部为零.

证:因为A是正定矩阵,故存在可逆矩阵Q,使AQTQ

EABEQTQBEQT(QBQT)(QT)1QEQBQ(Q)AB的特征值实部也为零.

TTT1EQBQT

因为B是实反对称矩阵,所以QBQT也是实反对称矩阵,因此它的特征值实部为零,故

41.设A是正定矩阵,B是半正定的实对称矩阵,则AB的特征值是非负的实数.

证:由于A是正定的,所以A也是正定的,于是存在可逆矩阵P,使得A因此

11PTP,EABAA1BAPTPBAPTE(PT)1BP1P APTPE(PT)1BP1AA1E(PT)1BP1E(PT)1BP1E(P1)TBP1

1T1即EAB0E(P)BP0.由于B是半正定的实对称矩阵,故(P)BP1T1是半正定的实对称矩阵,因此E(P1)TBP10的根是非负实数.于是EAB0的根也是非负实数,即AB的特征值是非负的实数.

42.求证实二次型f(x1,,xn)

证:二次型的矩阵为

(krsrs)xx的秩和符号差与k无关.

rsr1s1nn2k33k4k22k34k46k56k59k6A3k4nk(n1)2nk(n2)3nk(n3)

nk(n1)2nk(n2)3nk(n3)

2nk2n·137·

对矩阵A作合同变换,即把A的第1行的(-2),(-3),…,(-n)倍加到第2,3,…,n行上;同时把A的第1列的(-2),(-3),…,(-n)倍加到第2,3,…,n列上,得到与矩阵A合同的矩阵B为

2(n1)0000

00k2,2,(n1)倍依次加到第1,3,对矩阵B作合同变换,即把B的第2行的2k2,2,(n1)倍依次加到第1,3,4,…,n4,…,n行上;同时把B的第2列的2列上,得到与矩阵B合同的矩阵C为 k21B2(n1)100001C0010000000000

0由合同变换的传递性,故A与C合同,于是原二次型可经可逆线性变换化简成

f(x1,,xn)2y1y2

y1z1z2再作可逆线性变换

y2z1z2yzii于是二次型f化成规范形

(i3,,n)2 f(x1,,xn)2z122z

2显然二次型f(x1,,xn)的秩为2,符号差为0,它们的值均与k无关.

43.设二次型fa时,二次型f正定.

证:二次型 f的矩阵A的各阶顺序主子式的值与它的阶数n的奇偶性有关:

(1)当n=2m+1时,二次型f的矩阵为 xi1n2ibini1xxinni1,其中a、b为实数,问a、b满足什么条件

baabAa

baba · ·138它的各阶顺序主子式为

a,,am1,am(a2b2),am1(a2b2)2,,a(a2b2)m

(2)当n=2m时,二次型f的矩阵为

baab Ababa它的各阶顺序主子式为

a,,am,am1(a2b2),am2(a2b2)2,,(a2b2)m

综合(1),(2)可知:当a0且a2b2时,二次型f是正定的.

44.设A为n阶实对称矩阵,r(A)=n,Aij是A(aij)nn中元素aij的代数余子式

nnAijxixj(i,j1,2,,n),二次型f(x1,x2,,xn)i1j1A1

(1)记X(x1,x2,,xn)T,把f(x1,x2,,xn)写成矩阵形式,并证明二次型f(X)的矩阵为A.

(2)二次型g(X)XAX与f(X)的规范形是否相同?说明理由.

证:方法一

(1)因为A是实对称矩阵,故AijTAji.由r(A)=n, 故A可逆,且

A11*A A二次型f(x1,x2,,xn)的矩阵形式为

A11A21An1x11AAAn2x2f(X)(x1,x2,,xn)1222

AAAAxnnn1n2n111TT11从而(A)(A)A.故A也是实对称矩阵,因此二次型f(X)的矩阵为A.

11T1T11

(2)因为(A)AA(A)EA,所以A与A合同,于是二次型g(X)XTAX与f(X)有相同的规范形.

方法二

(1)同证法1

(2)对二次型g(X)XAX作可逆线性变换,XAY, 其中

T1Y(y1,y2,,yn)T,则

T1T1T11TT11

g(X)XAX(AY)A(AY)=Y(A)AAY=Y(A)AAY=YAY

T1由此可知A与A合同,二次型g(X)XAX与f(X)有相同的规范形.

·139· 1T

45.试说明二次型

f(x1,x2,x3)(x1x2x3)2[ax1(ad1)x2(a2d1)x3]2

+n[(ad)xii22 (a2d)x(a3d)x]1i2i3当d10时,无论n为何值,f(x1,x2,x3)的秩均为2.

解:fXT(ATA)X,其中

1aAad2adn1ad1a2d2a2dn1a2d1a3d2

a3dn1110d12d1行对矩阵A作行的初等变换,可得A000.000

所以当d10时,A的秩为2,这与n的取值无关,因此二次型f的秩为2.

46.已知A是n阶正定矩阵,令二次型f(x1,x2,,xn)XTAXxn的矩阵为B,求证:(1)B是正定矩阵;(2)BA.

证:(1)设

a11aA21an1a11a21则

Ban1a12a1na22a2n,aijaji an2anna12a1na22a2n

an2ann1

显然B为实对称矩阵,且B与A的前n-1阶顺序主子式完全相同,由于A是正定矩阵,故它的各阶顺序主子式全大于零,因此B的前n-1阶顺序主子式也全大于零. 现考虑B的第n阶顺序主子式即它的行列式,有

a11a

B21an1可见B是正定矩阵.

· ·140a12a1na11a1n1a22a2n+

an11an1n1an2annan1ann10=AAn10

(*)01

(2)由(*)即知BA.

47.设n元实二次型fXTAX,1,2,,n 是A的特征值,且12n. 证明:对于任一实维列向量X有1XTXXTAXnXTX.证:设1,2,,n是f的特征值,则存在正交变换X=PY,使 fXTAXYT(PTAP)Y1y122y2nyn

由已知条件12n,有

1YTYfXTAXnYTY

(1)

又因为P是正交矩阵,于是有

XTXYTPTPYYTY

将此结果代入(1)即为

1XTXXTAXnXTX

48.证明:若二次型ai1i1nnijxixjXTAX是正定二次型,则

a11a21f(y1,y2,,yn)an1y1是负定二次型.

a12a22an2y2a1na2nannyny1y2 yn0

证:因为f 是正定二次型,故它的表示矩阵A是正定矩阵,因此A是可逆矩阵,作可逆线性变换Y=AZ.对上述行列式的列作消法变换,将第j列的-zj(j1,2,,n)倍加入第n+1列,其中Z(z1,z2,,zn)T,则

a11a21

f(y1,y2,,yn)an1y1a12a22an2y2a1na2nannyny1a11y2a21ynan10y1a12a22an2y2a1n0a2n0 ann0yn(y1z1y2z2ynzn)TTTT

A(y1z1y2z2ynzn)=AYZ=AZAZ=AZAZ 因为A是正定矩阵,所以A<0,可见f(y1,y2,,yn)是负定二次型.

49.设A是正定矩阵,则

(1)AannAn1,其中An1是A的n-1阶顺序主子式;

(2)Aa11a22ann.

解:(1)因为A是正定矩阵,故

·141·

a11a12a1n1a21a22a2n1An1

aaan1n1n11n12也是正定矩阵,于是由48题知

a11a1n1y1 fn1(y1,y2,,yn1)=

an11an1n1yn1y1yn10是负定二次型,因此由行列式的加法运算有

a11a1n1a1na11a1n1Aan11an1n1an1nan11an1n1an1ann10an1ann1其中An1为A的顺序主子式.

0fn1(a1n,a2n,,an1n)annAn1 0ann当a1n,a2n,,an1n中至少有一个不为零时,fn1(a1n,a2n,,an1n)<0

A

50.设P(pij)nn是n阶可逆矩阵,求证:P222(p12jp2jpnj).j1np11p21pn1pppp1222n2p

证:PTPppp2nnnpn1nTpp211pn11pnpn22p2nn12n2pi1i112*pi1n2i*2

n2pini1

因为P是可逆矩阵,故PP是正定矩阵,由49题的结论(2),有

22PP(p)(p12jp2jpnj)T2ijj1i1j12nnn显然 PPP,所以有PT222(p12jp2jpnj).j1n · ·142

下载二次函数习题及答案word格式文档
下载二次函数习题及答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    九年级二次函数综合测试题及答案

    二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4)B.(-1,2)C. (1,2)D.(......

    二次函数综合题

    二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面......

    二次函数练习

    二次函数练习 1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________ 2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二......

    《二次函数 》教案

    命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握......

    二次函数教案

    二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模......

    《二次函数》说课稿

    《二次函数》说课稿 课题:22.1 二次函数(第一节课时) 一、教材分析: 1、教材所处的地位: 二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及......

    二次函数练习

    练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标......

    二次函数(精选五篇)

    配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2 方程左边成为一......