第一篇:9导数情境下的不等式证明2
导数情境下的不等式证明21、已知函数g(x)=xlnx,设0 1.2 x2且x1[1,0],x2[1,2]. 2、设函数f(x)x3bx3cx有两个极值点x1、证明:10≤f(x2)≤- 3、已知函数f(x)(x1)lnxx1.证明:(x1)f(x)0.4、已知函数f(x) xax(a1)lnx,a1,2 f(x1)f(x2) 1.x1x2 (1)讨论函数f(x)的单调性;(2)证明:若a5,则对于任意x1,x2(0,),x1x2,有 5、已知函数fxx alnxx x0,fx的导函数是f'x,对任意两个不相等的正数x1,x2,xx f12;(Ⅱ)当a4时,f'x1f'x2x1x2 2 证明:(Ⅰ)当a0时,x fx1fx2 6、已知函数f(x)xe(xR)(Ⅰ)求函数f(x)的单调区间; (Ⅱ)若函数yg(x)的图象与函数yf(x)的图象关于直线x1对称,证明当x1时,f(x)g(x);(III)若x1x2,且f(x1)f(x2),证明x1x22 导数证明不等式 一、当x>1时,证明不等式x>ln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x>1,所以f'(x)>0,增函数 所以x>1,f(x)>f(1)=1-ln2>0 f(x)>0 所以x>0时,x>ln(x+1) 二、导数是近些年来高中课程加入的新内容,是一元微分学的核心部分。本文就谈谈导数在一元不等式中的应用。 例1.已知x∈(0,),求证:sinx 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n 证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx =lim(x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+...x^(n-2)*x+x^(n-1)=nx^(n-1) 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx(lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x)f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x)=lim(sin(x+Δx)-sinx)/Δx=lim(sinxcosΔx+cosxsinΔx-sinx)/Δx =lim(sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx (3)f(x)=cosx f'(x)=lim(cos(x+Δx)-cosx)/Δx=lim(cosxcosΔx-sinxsinΔx-cosx)/Δx =lim(cosx-sinxsinΔx-cos)/Δx=lim-sinxsinΔx/Δx=-sinx (4)f(x)=a^x f'(x)=lim(a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)]=lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna 若a=e,原函数f(x)=e^x 则f'(x)=e^x*lne=e^x (5)f(x)=loga^x f'(x)=lim(loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim(x/Δx)*ln(1+Δx/x)/(x*lna)=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)=lim lne/(x*lna)=1/(x*lna) 若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanx f'(x)=lim(tan(x+Δx)-tanx)/Δx=lim(sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx =lim(sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim(sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2 (7)f(x)=cotx f'(x)=lim(cot(x+Δx)-cotx)/Δx=lim(cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx =lim(cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim(cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim-sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2 (8)f(x)=secx f'(x)=lim(sec(x+Δx)-secx)/Δx=lim(1/cos(x+Δx)-1/cosx)/Δx =lim(cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim(cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx (9)f(x)=cscx f'(x)=lim(csc(x+Δx)-cscx)/Δx=lim(1/sin(x+Δx)-1/sinx)/Δx =lim(sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim(sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx))=lim-sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx (10)f(x)=x^x lnf(x)=xlnx(lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim(f(x+Δx)g(x+Δx)-f(x)g(x))/Δx =lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx =lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx =lim(f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim(f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx =lim(f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim(f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx =lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim(f(u+Δu)-f(u))/Δx=lim(f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)总结一下 (x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x) 应用导数证明不等式 常泽武指导教师:任天胜 (河西学院数学与统计学院 甘肃张掖 734000) 摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等式,以导数为工具来证明不等式。 关键字: 导数 不等式最值中值定理单调性泰勒公式 中图分类号: O13 Application derivative to testify inequality ChangZeWu teachers: RenTianSheng (HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula 1.利用微分中值定理来证明不等式 在数学分析中,我们学到了拉格朗日中值定理,其内容为: 定理1.如果函数fx在闭区间a,b上连续,在开区间a,b上可导,则至少存在一点a,b,使得f'() 拉格朗日中值定理是探讨可微函数的的几何特性及证明不等式的重要工具,我们可以根据以下两种方法来证明。 (1)首先,分析不等式通过变形,将其特殊化。其次,选取合适的函数和范围。第三,利用拉格朗日中值定理。最后,在根据函数的单调性和最大值和最小值。 (2)我们可根据其两种等价表述方式 ①f(b)f(a)f'(a(ba))(ba),01 ②fahfaf'ahh,01 我们可以的范围来证明不等式。f(b)f(a)。ba 11(x0)例1.1证明不等式ln(1)x1x 证明第一步变形1 ln(1)ln(1x)ln(x)x 第二步选取合适的函数和范围 令f(x)lnttx,1x 第三步应用拉格朗日中值定理 存在x,1x使得f'()f(1x)f(x)(1x)(x) 即ln(1x)ln(x)1 而 <1+x 1 1x 1x1)而0x 即ln(x1xln(1x)ln(x) 例 1.2证明:h>-1且h0都有不等式成立: hln(1h)h 1h 证明:令f(x)=ln(1+x),有拉格朗日中值定理,0,1使得 ln(1h)f(h)f(0)f'(h)h 当h>0时有 1h11h,当1h0时有 11h1h0,即h.1h1hh;1h1h1hh.1h1h 2.利用函数单调性证明不等式 我们在初等数学当中学习不等式的证明时用到了两种方法:一种是判断它们差的正负,另一种是判断它们的商大于1还是小于1.而我们今天所要讨论的是根据函数的导数的思想来判断大小。 定理:设函数f(x)在a,b上连续,在a,b可导,那么 (1)若在a,b内f'(x)0则f(x)在a,b内单调递增。 (2)若在a,b内f'(x)0则f(x)在a,b内单调递减。 使用定理:要证明区间a,b上的不等式f(x)g(x),只需令F(x)f(x)。g使在(x)a,b上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 设x0证明不等式ln(1x)xex 证明:令F(x)ln(1x)xex(x>0) 显然F(0)0 1exx21xx(x>0)F'(x)exex1x(1x)e 现在来证明exx210 令f(x)exx21显然f(0)0 当x0时f'(x)ex2x0 于是得f(x)在x0上递增 故对x0有f(x)f(0)f(x)0 而(1x)ex0 所以F'(x)0故F(x)递增 又因为F(0)0 所以F(x)0 所以ln(1x)xex成立 3.利用函数的最大值和最小值证明不等式 当等式中含有“=”号时,不等式f(x)g(x)(或f(x)g(x)) g(x)f(x)0(或g(x)f(x)0),亦即等价于函数G(x)g(x)f(x)有最小值或F(x)f(x)g(有最大值。x) 证明思路:由待正不等式建立函数,通过导数求出极值并判断时极大值还是极小值,在求出最大值或最小值,从而证明不等式。 1例3.1证明若p>1,则对于0,1中的任意x有p1xp(1x)p1 2 证明:构造函数f(x)xp(1x)p(0x1) 则有f'(x)pxp1p(1x)p1p(xp1(1x)p1) 令f'(x)0,可得xp1(1x)p1,于是有x1x,从而求得x1。由于2 函数f(x)在闭区间0,1上连续,因而在闭区间0,1上有最小值和最大值。 由于函数f(x)内只有一个驻点,没有不可导点,又函数f(x)在驻点x1和2 111p1)p1,f(0)f(1),区间端点(x0和x1)的函数值为f())p(1所以2222 1f(x)在0,1的最小值为p1,最大值为1,从而对于0,1中的任意x有2 11f(x)1xp(1x)p1。,既有p1p122 4.利用函数的泰勒展式证明不等式 若函数f(x)在含有x0的某区间有定义,并且有直到(n1)阶的各阶导数,又在x0处有n阶导数f(n)(x0),则有展式: f'(x0)f''(x0)fn(x0)2(xx0)(xx0)(xx0)nRn(x)f(x)f(x0)1!2!n! 在泰勒公式中,取x0=0,变为麦克劳林公式 f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x)Rn(x)1!2!n! 在上述公式中若Rn(x)0(或0)则可得 f'(0)f''(0)2fn(0)nf(x)f(0)(x)(x)(x),1!2!n! f'(0)f''(0)2fn(0)n(x)(x)(x)。或f(x)f(0)1!2!n! 带有拉格朗日余项的泰勒公式的实质是拉格朗日微分中值定理的深化,他是一个定量估计式,该公式在不等式证明和微分不等式证明及较为复杂的极限计算中有广泛的应用。 用此公式证明不等式就是要把所证不等式化简,其中函数用此公式,在把公式右边放大或缩小得到所证不等式。 例4.1若函数f(x)满足:(1)在区间a,b上有二阶导函数f''(x),(2) f'(a)f'(b)0,则在区间a,b内至少存在一点c,使 f''(c)4f(b)f(a)。2(ba) 证明:由f(x)在xa和xb处的泰勒公式,并利用f'(a)f'(b)0,得f(x)f(a)f''()(xa)2 2!f''()f(x)f(b)(xb)2,于是2! abf''()(ba)2abf()f(a)(a),22!42 abf''()(ba)2abf()f(b)(a),22!42 f''()f''()(ba)2 相减,得f(b)-f(a)=,24 4f(b)f(a)1(ba)2 即f''()f(),(ba)224 当f''()f''()时,记c否则记c=,那么 f''(c)4f(b)f(a)(abc)(ba)2 参 考 文 献 《数学分析》上册,高等教育出版社,1990.1郑英元,毛羽辉,宋国栋编,2赵焕光,林长胜编《数学分析》上册,四川大学出版社,2006。3欧阳光中,姚允龙,周渊编《数学分析》上册,复旦大学出版社,2004.4华东师范大学数学系编《数学分析》上册,第三版,高等教育出版社2001. 利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x)分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0),这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x-lnx,容易看出,f(x)在区间[0,)上可导。 且limf(x)0f(0)x0 由f'(x)11x 可得:当x(0,)时,f'(x)f(0)0 x1x1 即x-lnx>0,所以:x>0时,x>lnx 评注:要证明一个一元函数组成的不等式成立,首先根据题意构造出一个 函数(可以移项,使右边为零,将移项后的左式设为函数),并利 用导数判断所设函数的单调性,再根据函数单调性的定义,证明要 证的不等式。 例2:当x0,时,证明不等式sinxx成立。证明:设f(x)sinxx,则f'(x)cosx1.∵x(0,),∴f'(x)0.∴f(x)sinxx在x(0,)内单调递减,而f(0)0.∴f(x)sinxxf(0)0, 故当x(0,)时,sinxx成立。 点评:一般地,证明f(x)g(x),x(a,b),可以构造函数F(x)f(x)g(x),如果F'(x)0,,则F(x)在(a,b)上是减函数,同时若F(a)0,由减函数的定义可知,x(a,b)时,有F(x)0,即证明了f(x)g(x)。 x练习:1.当x0时,证明不等式e1x12x成立。2证明:设fxe1xx12x,则f'xex1x.2xxx令g(x)e1x,则g'(x)e1.当x0时,g'xe10.g(x)在0,上单调递增,而g(0)0.gxg(0)0,g(x)0在0,上恒成立,f(x)在即f'(x)0在0,恒成立。0,上单调递增,又f(0)0,ex1x1x20,即x0时,ex222.证明:当x1时,有ln(x1)lnxln(x2).1x12x成立。2分析 只要把要证的不等式变形为 ln(x1)ln(x2),然后把x相对固定看作常数,并选取辅助函 lnxln(x1)数f(x)ln(x1).则只要证明f(x)在(0,)是单调减函数即可.lnx证明: 作辅助函数f(x)ln(x1)(x1)lnxlnxln(x1)xlnx(x1)ln(x1)于是有f(x)x12x lnxx(x1)ln2x因为 1xx1, 故0lnxln(x1)所以 xlnx(x1)ln(x1) (1,)因而在内恒有f'(x)0,所以f(x)在区间(1,)内严格递减.又因为1x1x,可知f(x)f(x1)即 ln(x1)ln(x2)lnxln(x1)所以 ln2(x1)lnxln(x2).利用导数知识证明不等式是导数应用的一个重要方面,也成为高考的一个新热点,其关键是构造适当的函数,判断区间端点函数值与0的关系,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式。 x2例3.证明不等式xln(1x)x,其中x0.2x2分析 因为例6中不等式的不等号两边形式不一样,对它作差ln(1x)(x),则发现作差以后 21x)求导得不容易化简.如果对ln(1,这样就能对它进行比较.1xx2证明: 先证 xln(1x) 2x2设 f(x)ln(1x)(x)(x0) 21x210)00 f(x)则 f(0)ln(1x1x1x' x0 即 1x0 x20 x2 f(x)0 ,即在(0,)上f(x)单调递增 1xx2 f(x)f(0)0 ln(1x)x 21x)x;令 g(x)ln(1x)x 再证 ln(则 g(0)0 g(x)11 1x1ln(1x)x x0 1 g(x)0 1xx2 xln(1x)x 练习:3(2001年全国卷理20)已知i,m,n是正整数,且1imn 证明:(1m)n(1n)m 分析:要证(1m)n(1n)m成立,只要证 ln(1m)nln(1n)m 即要证11ln(1m)ln(1n)成立。因为m 11ln(1m)ln(1n); mn从而:(1m)n(1n)m。 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题。难点在于找这个一元函数式,这就是“构造函数法”,通过这类数学方法的练习,对培养分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的。第二篇:导数证明不等式
第三篇:导数公式证明
第四篇:应用导数证明不等式
第五篇:利用导数证明不等式