第一篇:2015届高考数学总复习几何证明选讲第2课时 圆的进一步认识课时训练 新人教A版选修4-1
选修4-1 几何证明选讲第2课时 圆的进一步认识(理科专用)
1.如图,在半径为7的圆O中,弦AB、CD相交于点P,PA=PB=2,PD
=1,求圆心O到弦CD的距离.
解:连结OD,取CD的中点M.则圆心O到弦CD的距离为OM.4+15由相交弦定理得PA·PB=DP·PC,解得PC=4,所以MD==.2
25233所以OM=OD2-MD2=7-==.242
2.如图,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若
CEAB=3AD,求的值. EO
AB221解:设圆的半径为R,则AD==R,OD=R-R=R.又OD2=OE·OC,所以OE333
3OD2118CE==R,CE=R-R=R,所以=8.OC999EO
3.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,PD∶DB=9∶16,分别求PD、AB的值.
解:由PD∶DB=9∶16,可设PD=9x,DB=16x.因为PA为圆O的切线,所以PA2=PDPB,11所以32=9x(9x+16x),化为x2=,所以x=.25
59所以PD=9x=,PB=25x=5.5
因为AB为圆O的直径,PA为圆O的切线,所以AB⊥PA.所以AB=PB2-PA2=52-32=4.4.如图,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,求PA的值.
解:连结OA,则∠AOC=60°,∠OAP=90°,因为OA=1,所以PA=3.5.自圆O外一点P引切线与圆切于点A,M为PA的中点,过M引割线交圆于B、C两点.求证:∠MCP=∠MPB.证明:∵ PA与圆相切于A,PMMB=.MC
PM
∴ MA2=MB·MC.又M为PA的中点,∴ PM=MA,∴ PM2=MB·MC,∴ ∵ ∠BMP=∠PMC,∴ △BMP∽△PMC,∴ ∠MCP=∠MPB.16.如图,圆O的两条弦AC、BD互相垂直,OE⊥
AB,垂足为E,求证:OE=CD.证明:连结AO并延长交圆O于F,则AF为圆O的直径,连结BF、CF,则∠ABF=
∠ACF=90°.∵ OE⊥AB,又O为AF的中点,∴ E为AB的中点,∴ OE=BF.∵ ∠
︵︵
1ACF=90°,∴ AC⊥CF.又AC⊥BD,∴ BD
∥CF,则DC=BF,∴ DC=BF,∴ OE=CD.7.如图,AB是圆O的直径,C、F为圆O上的点,且CA平分∠BAF,过点C作CD⊥AF交AF的延长线于点D.求证:DC是圆O的切线.
证明:连结OC,所以∠OAC=∠OCA.又CA平分∠BAF,所以∠OAC=∠FAC,所以∠FAC=∠OCA,所以OC∥AD.又CD⊥AF,所以CD⊥OC,所以DC是圆O的切线.
8.如图,圆O1与圆O2交于M、N两点,直线AE与这两个圆及MN依次交于A、B、C、D、E.求证:AB·CD=BC·DE.证明:因为A、M、D、N四点共圆,所以AC·CD=MC·CN.同理,有BC·CE=MC·CN,所以AC·CD=BC·CE,即(AB+BC)·CD=BC·(CD+DE),所以AB·CD=BC·DE.9.如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交CD的延长线于点P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:BE=EF.(1)解:∵ PA2=PC·PD,PA=2,PC=1,∴ PD=4.又PC=ED=1,∴ CE=2.∵ ∠PAC=∠CBA,∠PCA=∠CAB,PCAC
∴ △PAC∽△CBA,∴ =,ACAB
∴ AC2=PC·AB=2,∴ AC=2.(2)证明:∵ BE=AC2,CE=2,而CE·ED=BE·EF,2×
1∴ EF=2,∴ EF=BE.10.如图,AB是圆O的直径,D、E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC、AE、DE.求证:∠E=∠C.证明:连结AD.∵ AB是圆O的直径,∴ ∠ADB=90°.∴ AD⊥BD.∵ BD=DC,∴ AD是线段BC的中垂线. ∴ AB=AC.∴ ∠B=∠C.又∵ D、E为圆上位于AB异侧的两点,∴ ∠B=∠E.∴ ∠E=∠C.11.如图所示,AB是圆O的直径,G为AB延长线上的一点,GCD是圆O的割线,过点G作AB的垂线交AC的延长线于点E、交AD的延长线于点F,过G作圆O的切线,切点为H.求证:
(1)C、D、F、E四点共圆;(2)GH2=GE·
GF.证明:(1)如图,连结BC.∵ AB是圆O的直径,∴ ∠ACB=90°.∵ AG⊥FG,∴ ∠AGE=90°.又∠EAG=∠BAC,∴ ∠ABC=∠AEG.又∠FDC=∠ABC,∴ ∠FDC=∠AEG.∴ ∠FDC+∠CEF=180°.∴ C、D、F、E四点共圆.
(2)∵ GH为圆O的切线,GCD为割线,∴ GH2=GC·GD.由C、D、F、E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF,GCGE
∴ △GCE∽△GFD.∴,GFGD
即GC·GD=GE·GF,∴ GH2=GE·
GF.
第二篇:2015届高考数学总复习几何证明选讲第1课时 相似三角形的进一步认识课时训练 新人教A版选修4-1
选修4-1 几何证明选讲第1课时 相似三角形的进一步认识
(理科专用)
1.在Rt△ABC中,CD、CE分别是斜边AB上的高和中线,该图中共有几个三角形与
△ABC相似?
解:△ACD、△CBD与△ABC相似,共2个.
ABBCAC52.如图,在△ABC和△DBE
中,===,若△ABC与△DBE的周长之差为DBBEDE310 cm,求△ABC的周长.
解:利用相似三角形的相似比等于周长比可得△ABC的周长为25 cm.3.在△ABC中,D、E分别为AB、AC上的点,且DE∥BC,△ADE的面积是2 cm2,梯形DBCE的面积为6 cm2,求DE∶BC的值.
解:△ADE∽△ABC,利用面积比等于相似比的平方可得DE∶BC=1∶2.4.如图,在△ABC中,∠A=90°,正方形DEFG的边长是6 cm,且四个顶点都在△ABC的各边上,CE=3 cm,求BC的长.
解:∵ 四边形DEFG是正方形,∴ ∠GDB=∠FEC=90°,GD=DE=EF=6 cm.∵ ∠
BDGDB+∠C=90°,∠B+∠BGD=90°,∴ ∠C=∠BGD,∴ △BGD∽△FCE,∴ =,EFEC
EF·GD即BD==12 cm,∴ BC=BD+DE+EC=21 cm.EC
EFFG5.如图,在四边形ABCD中,EF∥BC,FG∥AD,求+的值. BCAD
EFAFFGCFEFFGAFCFAF+CF解:由EF∥BC得=,由FG∥AD得=,所以+=+=BCACADCABCADACCACA
=1.16.如图,在△ABC中,D为BC边上中点,延长BA到E,使AE=EB,连结DE,3交AC于F.求AF∶FC值.
1解:过D点作DP∥AC(如图),因为D是BC的中点,所以P为AB的中点,且DP=
2AC.1
1又AE
=EB,所以AE=AP,所以AF=DP=AC,所以AF∶FC=1∶3.32
4°
7.如图,∠B=∠D,AE⊥BC,∠ACD=90,且AB=6,AC=4,AD=12.求BE的长.
解:因为AE⊥BC,所以∠AEB=∠ACD=90°.因为∠B=∠D,所以△AEB∽△ACD,ACADAB·AC6×4所以=,所以AE==2.在Rt△AEB中,BE=AB-AE=6-2=
AEABAD1242.8.如图,在△ABC中,D是AC中点,E是BD三等分点,AE的延长线交BC于F.求S△BEF
S四边形DEFC
BFBE1
解:过D点作DM∥AF交BC于M.因为DM∥AF,所以因为EF∥DM,BMBD3
S△1S△22
所以,即S△BDM=9S△BEF.又=,即S△DMC=△BDM=6S△BEF,所以S四边形DEFC
3S△BDM9S△BDM3
S△BEF1
=14S△BEF,因此.S四边形
DEFC14
9.如图,若AD是△ABC中∠A的平分线,EF是AD的中垂线且交BC的延长线与F点.求证:FD2=FC·FB.解:如图,连结FA.∵ EF是AD的中垂线,∴ AF=DF,∴ ∠2+∠3=∠4=∠1+∠B.而∠1=∠2,∴ ∠3=∠B.又∠AFB共用,∴ △FAC∽△FBA.∴ ∴ AF 2=BF·CF,即DF 2=BF·
CF.AFBF
FCAF
10.如图,在△ABC中,AB=AC,延长BC到D,使CD=BC,CE⊥BD,交AD于E,连结BE,交AC于点F.求证:AF=FC.证明:取BC的中点H,连结AH.∵ AB=AC,∴ AH⊥BC.∵ CE⊥BD,∴ AH∥EC.∵ CD=BC,∴ CD=2CH.则DE=2AE.取ED的中点M,连结CM.则ME=AE.∵ C为BD的中点,∴ CM∥BE.则F为AC的中点,即AF=
FC.11.如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.BF
(1)求
FC
(2)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1∶S2的值.
解:(1)过D点作DG∥BC,交AF于G点,∵ E是BD的中点,∴ BE=DE.又∠EBF=∠EDG,∠BEF=∠DEG,∴ △BEF≌△DEG,则BF=DG,∴ BF∶FC=DG∶FC.∵ D是AC的中点,则DG∶FC=1∶2,则BF∶FC=1∶2.(2)若△BEF以BF为底,△BDC以BC为底,由(1)知BF∶BC=1∶3,又由BE∶BD
S△BEF111
=1∶2可知h1∶h2=1∶2,其中h1、h2分别为△BEF和△BDC的高,则×,S△BDC326
则S1∶S2=.
第三篇:【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线
第【高考会这样考】 2讲 圆周角定理与圆的切线
考查圆的切线定理和性质定理的应用.
【复习指导】
本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法
.基础梳理
1.圆周角定理
(1)
(2)
(3)圆周角定理的推论
①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.
2.圆的切线
(1)直线与圆的位置关系
(2)①切线的性质定理:圆的切线垂直于经过切点的半径.
②切线的判定定理
过半径外端且与这条半径垂直的直线是圆的切线.
(3)切线长定理
从圆外一点引圆的两条切线长相等.
3.弦切角
(1)
(2)弦切角定理及推论 ①定理:弦切角的度数等于所夹弧的度数的一半.
②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.
双基自测
1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC
为直径的圆与斜边交于点P,则BP长为________.
解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定
理知,AC2=
AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D
是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠
BAC=100°,1∴∠BDC=2∠BOC=50°.答案 50°
3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.
解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=
60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×12=π.答案 π
4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大
小为________.
解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°
5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与
圆O上过点P的切线PA相交于点A,若∠M=30°,AP=3,则圆O的直径为________.
解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以
AP23OP⊥AP,在Rt△ADO中,OP==tan 60°2,故圆
O的直径为4.tan ∠AOP答案
4考向一 圆周角的计算与证明
【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.
解析 连接AD,BC.因为AB是圆O的直径,所以∠
ADB=∠ACB=90°.CDAD又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:==sin∠DACsin∠ACD
ABsin∠ABDAD1=AB=3,又CD=1,所以sin∠DAC=sin∠DAP=3sin∠ABDsin∠ABD
2所以cos∠DAP=
32.2又sin∠APB=sin(90°+∠DAP)=cos∠DAP=2.答案
2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.
【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.
解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π
考向二 弦切角定理及推论的应用
【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.
[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线 段之间的比例关系,从而求解.
解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,BEAB∴△EAB∽△ABC,∴AC=BC.EFBEABEF又AE∥BC,∴AFACBCAF又AD∥BC,∴AB=CD,CDEF5EF∴AB=CD,∴BC=AF,∴8=6,3015∴EF=84.15答案 4
(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.
(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.
【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;
(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,BCCD所以△BDC∽△ECB,故BE=BC,即BC2=BE×CD
.高考中几何证明选讲问题(二)
从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.
【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.
第四篇:选修4-1 几何证明选讲第2讲 圆周角定理与圆的切线
第【复习指导】 2讲 圆周角定理与圆的切线
本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理
1.圆周角定理
(1)
(2)(3)圆周角定理的推论
①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径.
2.圆的切线
(1)直线与圆的位置关系
(2)①切线的性质定理:圆的切线垂直于经过切点的半径.
②切线的判定定理
过半径外端且与这条半径垂直的直线是圆的切线.
(3)切线长定理
从圆外一点引圆的两条切线长相等.
3.弦切角
(1)
(2)弦切角定理及推论
①定理:弦切角的度数等于所夹弧的度数的一半.
②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.
双基自测
1.如图所示,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,则BP长为________.
解析 连接CP.由推论2知∠CPA=90°,即CP⊥AB,由射影定
理知,AC2=
AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.42.如图所示,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的点,已知∠BAC=80°,那么∠BDC=________.解析 连接OB、OC,则OB⊥AB,OC⊥AC,∴∠BOC=180°-∠BAC=100°,1∴∠BDC=2BOC=50°.答案 50°
3.(2011·广州测试(一))如图所示,CD是圆O的切线,切点为C,点
A、B在圆O上,BC=1,∠BCD=30°,则圆O的面积为________.
解析 连接OC,OB,依题意得,∠COB=2∠CAB=2∠BCD=60°,又OB=OC,因此△BOC是等边三角形,OB=OC=BC=1,即圆O的半径为1,所以圆O的面积为π×12=π.答案 π
4.(2011·深圳二次调研)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为________.
解析 连接BD,则有∠ADB=90°.在Rt△ABD中,AB=4,AD=2,所以∠A=60°;在Rt△ABC中,∠A=60°,于是有∠C=30°.答案 30°
5.(2011·汕头调研)如图,MN是圆O的直径,MN的延长线与圆
O上过点P的切线PA相交于点A,若∠M=30°,AP=23,则
圆O的直径为________.
解析 连接OP,因为∠M=30°,所以∠AOP=60°,因为PA切圆O于P,所以OP⊥AP,在Rt△ADO中,OP=
答案
4考向一 圆周角的计算与证明
【例1】►(2011·中山模拟)如图,AB为⊙O的直径,弦AC、BD交于点P,若ABAP3tan 60°=2,故圆O的直径为4.tan ∠AOP=3,CD=1,则sin∠APB=________.[审题视点] 连结AD,BC,结合正弦定理求解.
解析 连接AD,BC.因为AB是圆O的直径,所以∠
ADB=∠ACB=90°.又∠ACD=∠ABD,所以在△ACD中,由正弦定理得:CDAD==sin∠DACsin∠ACD
ABsin∠ABDAD1AB=3,又CD=1,所以sin∠DAC=sin∠DAP=3sin∠ABDsin∠ABD
2以cos∠DAP=32.2又sin∠APB=sin(90°+∠DAP)=cos∠DAP=32.2答案
32解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.
【训练1】 如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.
解析 连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案 16π
考向二 弦切角定理及推论的应用
【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.
[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线 段之间的比例关系,从而求解.
解析 ∵BE切⊙O于B,∴∠ABE=∠ACB.BEAB又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴AC=BC.EFBEABEF又AE∥BC,∴AF=AC,∴BC=AF.,又AD∥BC,∴AB=CD,CDEF5EF3015∴AB=CD,∴BCAF86EF=8415答案 4
(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从
而证明三角形全等或相似,可求线段或角的大小.
(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.
【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;
(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.BCCD(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BEBC
即BC2=BE×CD.高考中几何证明选讲问题(二)
从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.
【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.
第五篇:2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练
1117.设f(n)=+„+(n∈N*),那么f(n+1)-f(n)=________. 2nn+1n+
211答案: 2n+12n+2
解析:f(n+1)-f(n)
11111=(n+1)+1+(n+1)+2+„+2n+2n+1+2(n+1)
111-n+1+n+2+„+2n
11111=-.2n+12(n+1)n+12n+12n+2
-8.已知1+2×3+3×32+4×33+„+n×3n1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为____________.
11答案:a=,b=c=2
4解析:∵ 等式对一切n∈N*均成立,∴ n=1,2,3时等式成立,1=3(a-b)+c,2即1+2×3=3(2a-b)+c,1+2×3+3×32=33(3a-b)+c,3a-3b+c=1,11整理得18a-9b+c=7,解得ab=c 2481a-27b+c=34,9.已知正项数列{an}中,a1=1,an+1=1+
*a(n∈N*).用数学归纳法证明:an a3证明:当n=1时,a2=1+,a1 2ak+1ak+1时,ak 1ak+1-ak1+a=1+ak(1+ak)(1+ak+1)>0,所以n=k+1时,不等式成立.综上所述,不等式 an +-10.求证:an1+(a+1)2n1能被a2+a+1整除(其中n∈N*). 证明:① 当n=1时,a2+(a+1)1=a2+a+1能被a2+a+1整除,即当n=1时原命题成立. +-+② 假设n=k(k∈N*)时,ak1+(a+1)2k1能被a2+a+1整除.则当n=k+1时,ak2 ++-+--+(a+1)2k1=a·ak1+(a+1)2·(a+1)2k1=a·ak1+a·(a+1)2k1+(a2+a+1)·(a+1)2k1= [ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1.由归纳假设及a2+a+1能被a2+a+1整除可a· ++知,ak2+(a+1)2k1也能被a2+a+1整除,即n=k+1命题也成立. 根据①和②可知,对于任意的n∈N*,原命题成立. 11.设数列{an}的前n项和Sn=2n-an,先计算数列的前4项,后猜想an并证明之. 3解:由a1=2-a1,得a1=1,由a1+a2=2×2-a2,得a2=.由a1+a2+a3=2×3-a3,2 n2-1715得a3=.由a1+a2+a3+a4=2×4-a4,得a4=.猜想an=-.482 下面用数学归纳法证明猜想正确: 2n-121-1① 当n=1时,左边a1=1,右边=--1,猜想成立. 22 k2-12k-1② 假设当n=k时,猜想成立,就是ak-Sk=2k-ak=2k--.则当n=22 1k+1时,由Sk+1=2(k+1)-ak+1,得Sk+1-ak+1=2(k+1)-2ak+1,∴ ak+1+1)-Sk]2 kk+12-12-11=k+12k--=(+)- 222 这就是说,当n=k+1时,等式也成立. 2n-1由①②可知,an=-n∈N*均成立. 2 12.已知△ABC的三边长为有理数,求证: (1)cos A是有理数; (2)对任意正整数n,cosnA是有理数. AB2+AC2-BC2 证明:(1)由AB、BC、AC为有理数及余弦定理知cosA= 2AB·AC (2)用数学归纳法证明cosnA和sinA·sinnA都是有理数. ① 当n=1时,由(1)知cosA是有理数,从而有sinA·sinA=1-cos2A也是有理数. ② 假设当n=k(k≥1)时,coskA和sinA·sinkA都是有理数. 当n=k+1时,由cos(k+1)A=cosA·coskA-sinA·sinkA,sinA·sin(k+1)A=sinA·(sinA·coskA+cosA·sinkA)=(sinA·sinA)·coskA+(sinA·sinkA)·cosA,由①及归纳假设,知cos(k+1)A与sin A·sin(k+1)A都是有理数. 即当n=k+1时,结论成立. 综合①②可知,对任意正整数n,cosnA是有理数.