第一篇:特殊的平行四边形单元设计(大全)
万祥学校初二数学备课组单元教学设计
廖长义高甜
主题单元标题特殊的平行四边形
主题学习概述
本节内容是平行四边形的一个重要部分,本节的学习内容包括“矩形和菱形的性质与判定”、“正方形的性质与判定”,这是原有平行四边形知识的延续,也是我们后续学习的铺垫,是初中几何知识的重要组成部分。
在本主题单元中,设计了个专题来组织学习活动。
专题一:理解并掌握矩形与菱形的性质;
专题二:理解并掌握矩形与菱形的判定;
专题三:理解并掌握正方形的性质与判定。
主题学习目标
1、知识与技能:
掌握特殊平行四边形的性质与判定,并会运用特殊平行四边形的性质与判定解题、证题。
2、能力目标:通过作图、操作说理,培养用数学语言规范表达的能力,培养观察、分析、猜想、归纳知识的自学能力,培养类比、转化、推导、论证的数学思维品质。
3、情感目标:渗透从具体到抽象,特殊到一般的数学思想以及事物之间互相转化的辨证观点。激发学生学习数学的兴趣,在交流与合作中体验成功的喜悦,树立自信心。
教学重点:矩形、菱形、正方形与平行四边形的性质的区别与联系;三种特殊平行四边形的判定的运用;能熟练运用特殊平行四边形的性质与判定解题、证题。
教学难点:运用特殊平行四边形的性质与判定解决有关问题。
教法:
以学生的合作探究为主体,教师的适时引导为辅的教学方式。采用类比、归纳的方法让学生比较特殊平行四边形的性质和判定。
过程与方法:经历“问题——图像——自主思考——得出结论——拓展”的数学思维活动过程.主题单元问题设计
1、理解矩形和菱形的定义;掌握矩形和菱形性质和判定方法,并能运用它们进行相关的计算和证明
2、理解掌握矩形和菱形判定方法
3、理解正方形的定义;掌握正方形的性质;
理解掌握正方形的判定方法并能运用它们进行相关的计算与证明。
第二篇:特殊平行四边形专题
特殊平行四边形专题(最后一题)
一、解答题(本大题共12小题,共120.0分)
1.如图,正方形ABCD的边长为4,点P为对角线BD上一动点,点E在射线BC上.(1)填空:∠PBC=______度.
(2)若BE=t,连结PE、PC,则|PE+PC的最小值为______,|PE-PC|的最大值是______(用t表示);
(3)若点E 是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
BD是一条对角线,D不重合)2.在正方形ABCD中,点E在直线CD上(与点C,连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.
(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是______,位置关系是______;(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;
(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.
N分别是正方形ABCD的边CB、CD的延长线上的点,AN、MN,3.已知,点M、连接AM、∠MAN=135°.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)
(1)如图①,若BM=DN,求证:MN=BM+DN.
(2)如图②,若BM≠DN,试判断(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由.
第1页,共4页 BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,4.已知,如图1,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;
(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.
5.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由;
(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.
AB=AC,AD⊥BC,AN是△ABC外角∠CAM6.已知:如图,在△ABC中,垂足为点D,的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.
第2页,共4页 7.已知正方形ABCD中,对角线AC、BD相交于O.
①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF
②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB延长线于点F,其它条件不变,OE=OF还成立吗?
8.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
F分别在边BC,CD上,9.(1)如图1,正方形ABCD中,点E,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
第3页,共4页 10.已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
2(3)若DF=8-4,求正方形ABCD的面积?
11.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;
(2)①当AE= ______ cm时,四边形CEDF是矩形; ②当AE= ______ cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)
12.(本题满分9分)长方形是特殊的平行四边形,具备平行四边形的所有性质。在长方形 , ,垂直平分分别交、于点、,垂足为.中 ,(1)如图1,连接(2)求AE的长、.求证:AE=CF;
(3)如图2,动点、分别从、两点同时出发 ,沿和各边匀速运动一周.即点自 → →
→停止 ,点自 → → →停止.在运动过程中,已知点的速度为每秒 5 ,点的速度为每秒 4 ,运动时间为秒 ,当、、、四点为顶点的四边形是平行四边形时 ,求的值
第4页,共4页
第三篇:特殊平行四边形:证明题
特殊四边形之证明题
1、如图8,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.
(1)求证:△ADE≌△CBF.
(2)若ADBD,则四边形BFDE是什么特殊四边形?请证明你的结论.
F C
A E B2、如图,四边形ABCD中,AB∥CD,AC平分BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.
(1)求证:AD=CE;
(2)填空:四边形ADCE的形状是.
A
DMN
B
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB ;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
6、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
F
A
B
E
D B N
7.600,它的两底分别是16cm、30cm。求它的腰长。
(两种添线方法)
C
8.如图
(七),在梯形ABCD中,AD∥BC,ABADDC,ACAB,将CB延长至点F,使BFCD.
(1)求ABC的度数;
(2)求证:△CAF为等腰三角形.
C
B 图七 F
第四篇:特殊平行四边形证明题
特殊平行四边形之证明题
题型一:菱形的证明
1、如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F。请你猜想DE与DF的大小有什么关系?并证明你的猜想
2.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.(1)求证:AD=CE;
(2)填空:四边形ADCE的形状并证明.
A
M
N3、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
F
A
B
E
D4、将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
D′A F D
B
E
C
题型二:正方形的证明题
5、把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
D
C6、四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.
F
A
E
(第5题)
7.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F.(1)求证:△ABF≌△DAE;(2)求证:DEEFFB.
A
B
D
G
C
题型三:矩形的证明题
8.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.
C
E
A F
9.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.
求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.
P
A
Q
B
D
C10、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AFDC,连接CF.(1)求证:D是BC的中点;
(2)如果ABAC,试猜测四边形ADCF的形状,并证明你的结论.
B
D
C11、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.(第23题)
12、如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.
E
题型五:综合证明题
13、如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若AED2EAD,求证:四边形ABCD是正方形.
E
A
B
C
第五篇:特殊平行四边形试卷(最终版)
2017-2018学第一章测试题
一、选择题
1.以不在同一直线上的三个点为顶点作平行四边形,最多能作()A.4个 B.3个 C.2个 D.1个 2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是(); A.5cm和7cm B.18cm和28cm C.6cm和8cm D.8cm和12cm 3.如图,平行四边形ABCD中,经过两对角线交点O的直线分别交BC于点E,交AD于点F.若BC=7,CD=5,OE=2,则四边形ABEF的周长等于().A.14 B.15 C.16 D.无法确定
4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()
A.4 B.6 C.8 D.10
5.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()
A.15°或30° B.30°或45° C.45°或60° D.30°或60°
6.如图,菱形ABCD 中,对角线AC、BD交于点O,菱形ABCD周长为32,点P是边CD的中点,则线段OP的长为()
A.3 B.5 C.8 D.4 7.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2 B.S1>S2 C.S1<S2 D.不能确定
8.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()
A.6 B.
C.2(1+)
D.1+
9.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是()
A.60° B.70° C.75° D.80°
10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()
A.14 B.12 C.24 D.48
第II卷(非选择题)
二、填空题(题型注释)
11.如图,在菱形ABCD中,AC,BD是对角线,如果∠BAC=70°,那么∠ADC等于 .
12.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若AC=4,则四边形CODE的周长为
13.如图,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为 2或的四边形是平行四边形.
秒时,以点P,Q,E,D为顶点
14.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是
cm.
15.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为 _________ .
16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为 .
17.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是 .
18.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是 .
四、解答题(题型注释)
19.如图,点E、F、G、H分别为矩形ABCD四条边的中点,证明:四边形EFGH是菱形.
20.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
21.如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)求证:BF=AE+FG;
(2)若AB=2,求四边形ABFG的面积.
22.如图,△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
23.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
24.已知:矩形ABCD中,对角线AC与BD交与点O,∠BOC=120°,AC=4cm.求:矩形ABCD的周长和面积。