第一篇:九年级数学教材分析
[教材分析]
2011——2012学年度第一学期九年级数学教材分析
凤凰山益海学校杨红媛
一、基本情况:
本学期是初中学习的关键时期本学期我担任九年级的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
二、指导思想:
九年级数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教材分析:
本学期的内容共分七章,知识前后联系紧密,教材的德育因素、重难点分析如下:
第二十七章:圆重点:圆的基本性质难点:过三点的圆、弧长和扇形面积。
第二十八章:一元二次方程重点:用三种方法(配方法、公式法、因式分解法)解一元二次方程。难点:用一元二次方程解决实际问题。
第二十九章:相似形重点:相似三角形的条件及性质。难点:相似三角形的应用。
第三十章:反比例函数重点:反比例函数的图像和性质。难点:反比例函数的应用。
第三十一章:锐角三角函数重点:锐角三角函数值的求法。难点:锐角三角函数的应用。
第三十二章:命题与证明重点:等腰三角形、平行四边形、矩形、菱形、等腰梯形的性质定理及判定定理及证明。难点:这些定理的证明过程。
第三十三章:概率的计算与估计重点:用列举法和树形图求概率。难点:几何概率。
四、教学目的:
在新课方面通过讲授圆形的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能与
三角形相联系。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分圆,《证明
(二)》等。代数部分《一元二次方程》,《反比例函数》等。以及与统计有关的《频率与概率》。《证明
(二)》,圆的重点是
1、要求学生掌握证明的基本要求和方法,学会推理论证;
2、探索证明的思路和方法,提倡证明的多样性。难点是
1、引导学生探索、猜测、证明,体会证明的必要性;
2、在教学中渗透如归纳、类比、转化等数学思想。《一元二次方程》,《反比例函数》的重点是
1、掌握一元二次方程的多种解法;
2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是
1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
第二篇:九年级上册数学教材分析及教学计划
九年级上册数学教材分析及教学计划
一、教学内容:
本学期所教初三数学包括第一章 证明
(二),第二章 一元二次方程,第三章 证明
(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明
(二),证明
(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率 则是与统计有关。
二、教学目的:
在新课方面通过讲授《证明(二)》和《证明
(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
三、教学重点、难点
本册教材包括几几何何部分《证明
(二)》,《证明
(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明
(二)》,《证明
(三)》的重点是
1、要求学生掌握证明的基本要求和方法,学会推理论证;
2、探索证明的思路和方法,提倡证明的多样性。难点是
1、引导学生探索、猜测、证明,体会证明的必要性;
2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是
1、掌握一元二次方程的多种解法;
2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是
1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
第三篇:教材分析人教版九年级数学下册
[教材分析]
九年级数学下册教材分析
九年级下册,是本套教材中的最后一册。这册书包括4章,约需26课时,供九年级下学期使用。具体内容如下:
第34章 二次函数(约10课时)
第35章 圆(约8课时)
第36章 抽样调查(约8课时)
第37章 投影与视图(约10课时)
一、内容分析
第34章 二次函数
本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。
第34.1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函
第34.2节“用函数观点数的基础知识,它们为后面两节的学习打下理论基础。看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
第34.3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教材从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。
本章教学结束之后,学生在已经学习了一次函数(包括正比例函数)、反比例函数和二次函数,这些都是代数函数,即解析式中只涉及代数运算(加、减、乘、除、乘方、开方)的函数。至此,学生对函数的认识已告一段落。将
其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教材安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教材对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教材通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。
第37章 投影与视图
本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动。全章分为三节。
第37.1 节“投影”中,首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。整个讨论过程是按照一维、二维和三维的顺序发展的。
第37.2节“三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。
第37.3节“课题学习制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重的学习内容。进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。
与本套教材其他章相比较,本章内容有两个特点:第一,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算。第二,它将平面图形与立体图形紧密地联系起来,从“由物画图”和“由图想物”两个角度讨论平面图形与立体图形之间的相互转化,对于培养空间想象能力具有特殊作用。
一、教学建议
1.温故知新,与时俱进,加强新旧所学内容的联系,在新的高度上提高对所学知识的整体性认识
本册书是本套教科书中的最后一册,学习其中各章时应关注它们与此前已经学知识的联系,既要温故知新,又要与时俱进,在新的高度上对所学内容加以梳理,提高对所学知识的整体性认识。
第34章“二次函数”,是本套教科书继研究一次函数、反比例函数后以基本代数函数为研究对象的又一章。它的编写思路、内容结构等与前面的“一次函数”、“反比例函数”有许多相似的地方,都反映了“变化与对应”的基本观点,都体现了函数是解决变量间存在单值对应关系的数学模型,都渗透了综合运用函数解析式和函数图象的数形结合研究方法。本章的教学应注意在前面已学内容基础上学习新知识,同时应继续加深对函数的一般性认识。第37章“投影与视图”的教学中中,应注意将重点放在培养空间想象能力上,在学生已有的有关投影和视图投影和视图投影和视图的初步感性认识(从不同方向看物体的感觉等)的基础上,适当引入投影与视图的基本概念,归纳正投影的基本规律,借助直观模型说明问题,结合实际例子讨论问题,作好由感性认识到理性认识的过渡,着重反映平面图形与立体图形两者的联系与转化,并揭示出这些联系与转化的基础是投影规律。
综上分析,本册书的教学应结合学生的实际情况,对以前所学内容进行适当复习,加强知识间的相互联系与综合,在学生已有经验的基础上进行教学,使学生的学习形成正迁移。同时应注意进行适当的归纳总结,加深和完善对初中阶段知识的整体性认识。
2.直观实验与逻辑证明相结合,适度地培养推理能力
本套教科书对于推理能力的培养有循序渐进的整体设计,即按照“说点儿理”、“说理”、“简单推理”、“用符号表示推理”等不同层次分阶段逐步加深地安排。本册书是九年级下学期的用书,一方面,对于学生的推理能力的要求,应在前面已有高度的基础上以“一以贯之”的精神来处理,即保持已有水平并适度地使之发展。另一方面,本册书的知识内容的难度和综合性较前面几册要高,教学中,对本册书所有内容都完全纯粹地按照严格逻辑证明来要求是不合适的,对于某些内容可以采取直观实验与逻辑推理相结合的方式。第37章“投影与视图”中内容要完成的题目多是识图、画图、制作模型等类型的问题,很少涉及定量的计算,也没有形式上的证明,但是其中许多问题需要以图形为对象进行想象和分析,判断三视图与立体图形之间的对应关系,确定立体图形各部分的相对位置关系,得出图形的整体形状等,这些都需要根据一定道
理下结论,实际上包含了推理的成分。总之,本册书中多处涉及推理,教学中既要注意进一步培养学生的推理能力,使初中毕业生的数学推理水平达到应有高度,又要注意掌握推理训练的方式、数量和难度。
3.重视信息技术的应用
在教学中,有条件的学校还是要重视信息技术工具的使用。用某些计算机画图软件(如《几何画板》),可以方便地画出二次函数的图象,进而从图象探索二次函数的性质。例如,用计算机软件画出函数y=ax2+bx+c的图象,拖动图象上的一点P, 让这点沿抛物线移动,观察动点坐标的变化,可以发现:图象最低点或最高点的坐标,也就是说,当x取这点的横坐标时,y有最小值或最大值;当x小于这点的横坐标时,y随x的增大而减小(增大),当x大于这点的横坐标时,y随x的增大而增大(减小)。利用计算机软件的画图功能,很容易利用二次函数的图象解一元二次方程。要解方程ax2+bx+c=0,只要用计算机软件画出相应抛物线y=ax2+bx+c,再让计算机软件显示抛物线与x轴的公共点的坐标,就能得出要求的方程的根。
利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来。许多计算机软件还具有测量功能,这也有利于我们在图形的运动变化的过程中去发现其中的不变的位置关系和数量关系,有利于发现图形的性质。例如,许多相似图形的性质都可以利用计算机软件设置一些探究活动,再利用一些软件的测量功能,让图形动起来,在这种运动变化中发现图形的性质。
第四篇:九年级数学下册教材分析
九年级数学下册教材分析
一、教材总体思路分析
1.本册书的主要内容主要有:二次函数;解直角三角形、圆。
二次函数的学习是在学习一次函数、反比例函数基础上进行的,学生对于函数概念的认识、研究函数的方法已积累了一定的经验。通过学习,在丰富的现实背景中领会研究二次函数的重要性和必要性,经过探究认识二次函数的基本特性的过程,进一步积累研究函数的基本方法,为以后的学习打下必要的基础,同时,也感受数学与数学的其他内容、以及与其他学科的联系。关注用从函数的角度考察问题,在问题求解过程中领悟函数的应用价值。二次函数是一个重要的初等函数,对二次函数的讨论为进一步学习函数,体会函数思想奠定基础。
在研究解直角三角形中,在锐角函数值与边的比值之间建立联系,形成概念,并用数学符号做出表示,便于说明和解决许多涉及三角形计算与测量的实际问题。教材把解三角形的知识融入到现实背景中,可以结合比、比例、图形相似等知识的综合运用和说理证明,加深理解,为进一步学习“三角函数”作好理论准备。
对于圆的学习,则充分利用圆的对称性,用对称的观点观察图形,以“变换”为工具深入探索,获得一批几何事实。关注圆与直线形之间的内在联系,形成对圆和几何图形的整体性认识。探索活动中关注识别复杂图形中几何要素和基本图形(特别是直角三角形)之间的关系,关注图形的整体
结构和运动变化(图形的位置关系),用已有的知识进行说理,确认有关结论。
2.教材设计与内容组织的考虑
(1)二次函数是一个重要的初等函数,对它的讨论是从最简单的二次幂函数开始的,研究它的图象和性质。一般的二次函数可通过配方变形做出解释,对图象的研究则是从最简情形的图象出发,经平移或轴对称变换(a﹤0时)得到(以顶点坐标为标志)一般情形下的函数图象。
明确函数的三种表示形式,体现了“数学多重表示和多种意义”的特征,便于从不同侧面对函数性质的觉察和从不同角度的整合中对二次函数形成整体性认识。用图象法研究一元二次方程的近似解,主要目的是渗透数形结合思想、让学生了解研究一般方程解的基本方法,发展估算能力,帮助他们进一步从函数的角度认识方程的解的含义,这些都有重要教育价值。
教材引入具有挑战性的应用性问题,目的是开阔视野,培养“用数学眼光观察事物”的习惯,提高对问题深入分析并进行数学表示的能力,提高“用数学”意识和水平。
(2)在直角三角形中先引入“锐角的正切”更容易为学生所接受。接下来讨论正弦、余弦及“锐角三角函数”的概念,这是一个数学化的过程。此时的“三角函数”实际上是“三角比”。知识的发生是为了适应测量和
计算的需要,教材通过三角函数的简单应用,巩固知识和加深理解,再现了“三角学”源起的历史进程。
(3)教材把《圆》放在几何学习的最后,不仅仅是图形比较复杂。由于对圆的研究需要借助直线形的有关知识,希望从图形性质的研究和图形位置关系的讨论为载体,对整个初中阶段中的几何知识,特别是研究方法进行回顾与提升。
几何学习有两条主线,有关图形性质的知识和研究图形的方法。知识的展开是由简单到复杂;研究方法可以是实验--论证,或从公理出发进行逻辑推演即演绎法。本套教材倾向于在实践探索的基础上进行归纳和论证,采取合情推理与逻辑推理相结合的方式,融几何方法于数学活动过程之中,关注学生创新能力的发展。
在《圆》的学习过程中,充分利用圆的最本质特性----对称,用变换的方法进行探索与发现,将通过观察、试验、归纳、概括、说理、证明等活动积累的数学经验也纳入教学目标之中。
二、教学中应注意的几个问题
1.关注对数学知识的理解
(1)对函数的认识是从七年级下学期开始的,引导学生关注变量之间的相依关系,八年级给出了函数的概念,介绍了一次函数和正比例函数,九年级学习了反比例函数和二次函数。重视对函数实质的理解和用函数的观
点进行观察分析与运用。初中阶段对函数的定义(变量----对应)在二次函数最后的“读一读”中出现,明确的将函数从“关系”中分离出来。领悟函数的实质是教学的重点。
(2)在学习《圆》的过程中,应加深对图形性质内在联系的理解,关注图形的位置关系和结构性关系的认识。在探究的基础之上,可以让学生进行适当的几何证明,但不作统一的要求。
2.重视反思与知识的重组
义务教育阶段所学的数学知识更贴近学生的生活经验。通过任务或问题驱动,教材提供了数学活动的线索,学生经历知识的发生和发展过程,个人的素质得到更为全面的发展。这种教材内容的呈现方式与系统的知识传授相比,显得知识的系统性不强。其实这正如数学历史上所发生的情形,知识的系统化是在知识产生之后进行的(如欧式几何、微积分);更重要的,知识的系统性不应当简单地由老师(教材)告之学生,而应当让学生自己经历“系统化”的过程。因此,在初中阶段的最后学习过程中,尤其应重视反思与总结,对知识进行再组,形成符合逻辑的系统知识。这个活动要在教师指导下进行,力图使得客观的知识结构成为学生自己头脑中的主观结构,而重组的活动经历成为学生重要的学习经验,使得学生由“学会”发展到“会学
九年级下册,是本套教材中的最后一册。这册书包括4章,约需26课时,供九年级下学期使用。具体内容如下:
第34章 二次函数(约10课时)
第35章 圆(约8课时)
第36章 抽样调查(约8课时)
第37章 投影与视图(约10课时)
一、内容分析
第34章 二次函数
本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。
第34.1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函
第34.2节“用函数观点数的基础知识,它们为后面两节的学习打下理论基础。看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
第34.3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教材从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。
本章教学结束之后,学生在已经学习了一次函数(包括正比例函数)、反比例函数和二次函数,这些都是代数函数,即解析式中只涉及代数运算(加、减、乘、除、乘方、开方)的函数。至此,学生对函数的认识已告一段落。将其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教材安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教材对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教材通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。
第五篇:九年级上册数学教材分析及教学计划-数学工作计划
一、基本情况:
本学期是初中学习的关键时期本学期我担任九年级三(2、4)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
一、指导思想:
九年级数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点:
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是:
1、要求学生掌握证明的基本要求和方法,学会推理论证;
2、探索证明的思路和方法,提倡证明的多样性。
难点是:
1、引导学生探索、猜测、证明,体会证明的必要性;
2、在教学中渗透如归纳、类比、转化等数学思想。
《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。
《一元二次方程》,《反比例函数》的重点是:
1、掌握一元二次方程的多种解法;
2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的'性质。
难占是:
会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。
《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
【九年级上册数学教材分析及教学计划-数学工作计划】相关文章:
1.数学教材试题
2.九年级上册数学极差教学计划
3.九年级上册数学教学计划
4.九年级上册教学计划-数学篇
5.数学九年级试题分析
6.上册数学教学计划
7.关于写数学上册教学计划
8.数学教学计划分析
9.小学数学第六册教学计划教材分析