高三-《平面向量数量积》数学说课稿
一、说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二、说学习目标和要求
通过本节的学习,要让学生掌握
(1)平面向量数量积的坐标表示。
(2)平面两点间的距离公式。
(3)向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五、说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1)模的计算公式
(2)平面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
2.4.2平面向量数量积的坐标表示、模、夹角
教学目标:
1、知识目标:推导并掌握平面向量数量积的坐标表达式,会利用数量积求解向量的模、夹角及判定垂直等问题.2、能力目标:通过自主互助探究式学习,培养学生的自学能力,启发学生用多角度去思考和解决问题的能力,促进学生对知识的掌握和灵活运用.3、情感目标:通过自主学习,增强学生的成就感,提高学生学习的积极性和自信心.教学重点:利用数量积的坐标表示解决模、夹角、垂直等问题.教学难点:平面向量数量积的坐标表达式的推导.教法:启发式教学,讲练结合 学法:自主互助探究式 教学用具:多媒体 教学过程设计:
一、复习引入
(教师提问,学生回答)
二、知识探究
1.平面向量数量积的坐标表示
b(x,y)abx1x2y1y2 a(x,y)已知非零向量,22,则11(找学生到黑板上推导)结论:两个向量数量积等于它们对应坐标的乘积的和.思考:向量数量积的坐标表示与前面所学的向量的坐标运算有什么联系和区别?
(学生讨论回答,教师归纳)例
1.已知a(2,3),b(2,4),c(1,2),求: (1)ab;(2)a(bc);(3)
(ab)(ab);(4)2(ab).(教师讲前两问,学生做后两问)
2.平面向量数量积的应用
(1)求模问题:
(让学生自己推导)i)a(x,y),axy22.(x2x1)(y2y1)22ii)A(x,y1),B(x2,y2)1,AB(平面上两点间距离公式).a1iii)求a的单位向量e,eaaa,其中e1.例2.(1)已知a(3,4),e是a的单位向量,求a,e.(2)已知A(1,2),B(3,4),求
巩固练习:P107练习1 已知a(3,4),b(5,2),求aAB.,b,ab
(2)判定向量的垂直关系:(让学生自己推导)abab0x1x2y1y20
a//bx1y2x2y10
(对比记忆)例3.已知A(1,2),B(2,3),C(-2,5),试判断ABC的形状,并给出证明.(3)求向量的夹角:(让学生自己推导)思考:i)的范围?
ii)由cos能确定吗?为什么?
(找学生回答)例4.巩固练习.P107 练习3
已知a(3,2),b(5,7),求a与b设a(5,7),b(6,4),求ababcosabx1x2y1y2xy2121xy222
2及a与b的夹角(精确到1).0的夹角(精确到1).0
思考:不使用计算器,结合上面的例题,能求出的值吗?(找学生回答)
三、能力提升
已知a(cos,sin),b(cos,sin),证明
(ab)(ab).四、小结
这节课咱们一起学习了: 1.平面向量数量积的坐标表示 2.平面向量数量积的应用(1)求模;(2)判定垂直;(3)求夹角.希望大家在掌握的基础上加以灵活应用.五、作业
P108 A组5(1),(2),(3)任选一个、9、11.六、课后探索题: 已知a(2,1),b(x,1)
(1)若a与b(2)若a与b(3)若a与b的夹角为45,则实数x的值是_____;
0的夹角为锐角,则实数x的取值范围是_____;的夹角为钝角,则实数x的取值范围是_____.