第一篇:平面向量的数量积及其应用教学设计说明
平面向量的数量积及其应用设计立意及思路
平面向量在教材中独立成章,它既反映了现实世界的数量关系,又体现了几何图形的位置关系,具有代数形式和几何形式的“双重身份”,它将数和形有机地结合起来,是中学数学知识网络的一个“交汇点”,成为联系众多知识内容的媒介。特别是在处理解析几何的有关度量、角度、平行、垂直、共线等问题时,运用向量知识,可以使几何问题直观化、符号化、数量化,从而把“定性”研究推向“定量”研究。
由于向量具有“双重性”,所以,向量成为了“在知识网络交汇处设计试题”的很好载体。而在知识交汇点处命题,既是当今高考的热点,又是重点。从近几年高考试卷来看,对向量的考查除了直接考查平面向量外,还将向量与解析几何、向量与三角等内容相结合,以平面向量的相关知识为载体,以数形转化思想为主线,在知识网络交汇点处设计创新力度大,综合性强的问题。因此,研究向量与其它内容的综合运用,对培养学生的综合能力(尤其是培养学生从学科整体的高度解决问题的综合能力)和数学素养,把握高考命题趋势,都有着重要的意义。,本节课复习目标是在回顾和梳理基础知识的基础上,突出平面向量的数量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高学生分析问题与综合运用知识解决问题的能力,使学生站在新的高度来认识和理解向量。在知识点4.平面向量数量积运算律的回顾中安排“思考讨论:abac,乙:bc,则 以及在双基训练3.甲:(ab)c与a(bc)是否相等?”甲是乙的什么条件的判断。目的是让学生通过通讨论和练习,深刻认识到向量数量积运算中“结合律”及“消去律”是不成立的。
例
1、是以平面向量的知识为平台,与三角函数的有关运算综合。第(1)小题目的是让学生理解并掌握体向量垂直问题的多种证明方法,常用的方法有三种,一是根据数量积的定义证明,二是利用数量积的坐标运算来证明,三是利用
向量运算的几何意义来证。第(2)小题目的是让学生掌握ab|a||b|,但反之不成立,并将向量相等问题转化为模相等问题,建立等量关系。
例2是函数的最值与向量综合问题,用两种方法建立函数关系式,体现向量具有代数形式和几何形式“双重性”,培养学生的综合应用能力。
第二篇:平面向量的数量积及应用教学设计[推荐]
高效课堂教学模式探讨公开课
平面向量的数量积及应用教学设计
华罗庚中学 袁劲竹
一、教材分析
向量作为一种基本工具,在数学解题中有着极其重要的地位和作用。利用向量知识,可以解决不少复杂的的代数几何问题。《平面向量的数量积及应用》,计划安排两个课时,本节课是第2课时。也就是,在复习了平面向量数的有关概念,坐标表示,以及平面向量数量积的基础知识之后,本节课是进一步去认识、掌握平面向量数量积及平面向量的相关应用。
二、课标要求
1、平面向量的数量积
①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义; ②体会平面向量的数量积与向量投影的关系;
③掌握数量积的坐标表达式,会进行平面向量数量积的运算;
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2、向量的应用
经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
三、命题走向及高考预测
通过对近几年广东高考试题的分析,向量的数量积及运算律一直是高考数学的热点内容之一,对向量的数量积及运算律的考查多为一个小题;另外作为工具在考查三角函数、立体几何、平面解析几何等内容时经常用到.整个命题过程紧扣课本,重点突出,有时考查单一知识点;有时通过知识的交汇与链接,全面考查向量的数量积及运算律等内容。
预测高考:
预测2012年广东高考仍将以向量的数量积的运算、向量的平行、垂直为主要考点,以与三角、解析几何知识交汇命题为考向。
四、学情分析
学生已复习了向量的相关概念、线性运算、数量积及初步应用,已较好地理解了向量的概念,比较熟练地掌握向量的运算和性质,已初步体会研究向量运算的一般方法,具有一定的观察、探究能力,这为学生进一步复习数量积数量积及应用做了铺垫。由于本班是普通班,受实数乘法运算的影响,造成不少学生对数量积理解上的偏差,从而出现错误。
五、教学目标
知识目标:
1、掌握平面向量的数量积公式及向量的夹角公式;
2、运用平面向量的知识解决有关问题。
能力目标:
1、通过本节课的学习培养学生观察、分析、化归转化的能力;
2、提高学生分析问题、解决问题的能力。
六、教学重点、难点
重点:平面向量数量积公式及平面向量的应用。
难点:如何将有关问题等价转化为向量问题。
七、教法、学法分析
教法:采取启发引导、反馈评价等方式;
学法:引导学生积极参与、自主探索,培养探究能力。
八、教学过程
【 基本知识点回顾 】
1、向量的数量积的概念
高效课堂教学模式探讨公开课
b的数量积。
2、数量积的性质(e是单位向量,〈a,e〉=θ)已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos叫做a与
(1)e·a=a·e=__________.(2)当a与b同向时,a·b=_____;当a与b反向时,a·b=__________.特别
地,有a·a=_______或|a|=________(3)a⊥b⇔__________.(4)cos〈a,b〉=________.3、数量积的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a·b=______________.2(2)若a=(x,y),则|a|=_______,|a|=________.→(3)若A(x1,y1),B(x2,y2),则|AB|=|BA|=____________________.(4)设a=(x1,y1),b=(x2,y2),则a⊥b⇔_____________________.4、向量的应用
(1)平面向量数量积的运算
(2)利用平面向量数量积解决平行与垂直问题(3)利用平面向量数量积解决夹角问题
(4)平面向量的综合运用
注:本节课是第2课时,重点学习(3)利用平面向量数量积解决夹角问题和(4)平面向量的综合运用,其中平面向量的综合运用主要是在三角函数中的应用,在立体几何、解析几何等方面的应用放在后面学习。
【典例剖析】
应用3:利用平面向量数量积解决夹角问题
11例
1、(2011年广州调研)已知a1,ab,(ab)(ab),求: 22(1)a与b的夹角的大小;(2)ab与ab夹角的余弦值
思路分析(先提问学生,然后板演解题过程):利用向量夹角的余弦公式求解
设计意图:让学生分析解题思路以培养学生的口头表达能力,归纳概括能力。让学生上台板演可以暴露学生存在的问题,老师及时予以纠正,并呈现标准的解答格式,促使学生自我反思,以加强学生答题的规范性,做到“会做的题目得满分,不会做的题目不得零分”。
【巩固练习】
(1)(09重庆理)已知A、6
a
1、b6且a(ba)2,则向量a与b的夹角是()
B、C、D、4322
高效课堂教学模式探讨公开课
(2()2010年高考课标全国卷)则a,b夹角的余弦值等于()816168 C、D、A、B、65656565a,b为平面向量,已知a(4,3),2ab(3,18),答案:(1)C;(2)C;
设计意图:选用的两道题中,一道题向量是非坐标形式的,另一道题向量是坐标形式的,通过练习,让学生学会选用适当的公式解题,巩固所学知识。同时,让学生多参与、多思考、多活动,改变教师大段讲解的倾向,使师生活动交替进行,调节学生的注意力,促进学生各方面的发展。
题后小结:
(1)当a,b是非坐标形式时,求a与b的夹角,需求得a·b及|a|,|b|或得出它们的关系.(2)若已知a与b的坐标,则可直接利用公式 x1x2+y1y2cosθ=.2222 x1+y1·x2+y2
应用四:平面向量的综合运用
sin),c(1,例
2、(2009 湖北理)已知向量a(cos,b(cos,sin),0).(1)求向量b+c的长度的最大值;
(2)设 π4,且a⊥(bc),求cos的值.
设计意图:通过典例精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、解决问题的能力。
【自主探究、共同提高】
1、(06天津理)设向量a与b的夹角为,a(3,3),2ba(1,1),则cos_____
02、已知两单位向量a与b的夹角为120,若c2ab,dba,试求c与d的夹角的余弦值
3、设02,已知两个向量则向量p1p2长度的最大值是op1(cos,sin),op2(2sin,2cos),______ 答案: 1、31010;
2、92142;
3、32
设计意图:要求每位学生自己先做练习,然后对照答案进行自主的学习、同座之间互相探讨,然后听老师或学生进行讲解。本环节尽量留出时间让学生充分地比较,互相学习,共同提高。
高效课堂教学模式探讨公开课
【课堂小结】:
1、向量知识,向量观点有着广泛的应用,本节课主要学习了两方面的应用: 利用平面向量数量积解决夹角问题和平面向量的综合应用(在三角函数中应用)
2、本节课主要学习了化归转化的思想方法
向量的数量积公式,沟通了向量与实数间的转化关系
设计意图:课堂小结由师生共同进行,以此培养学生的口头表达能力,归纳概括能力。同时要引导学生学会总结:做完一道题目的总结,学完一课、一章的总结,有总结才有提高,通过:练习—总结—再练习,提高学习效率。
【课堂小测】
A、300
1、(05北京)a1,b2,cab,且ca,则向量a与b的夹角为()
2、已知a1,b
000 B、60 C、120 D、150
2,且a(ab),则向量a与b的夹角是_______.
3、已知向量a(sin,1),b(1,cos),且22(2).求ab的最大值(1).若ab,求
答案:
1、C
2、4
3、(1)4,(2)21
设计意图:通过课堂小测快速反馈,既可以把学生取得的进步变成有形的事实,使之受到鼓励,乐于接受下一个任务,又可以及时发现学生存在的问题,及时矫正乃至调节教学的进度,从而有效地提高课堂教学的效率。
思考题、设向量m(cos,sin)和n(2sin,cos),(,2)82且mn,求cos()的值528
【课后作业,分层练习】
必做: 《课时作业本》第4章第3课时
选做:(2009·江苏)设向量a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β).
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的最大值;
(3)若tan αtan β=16,求证:a∥b.设计意图:出选做题的目的是注意分层教学和因材施教,为学有余力的学生提供思考空间。
【教学反思】 待写„„
第三篇:平面向量的数量积教案
2.4.2平面向量数量积的坐标表示、模、夹角
教学目标:
1、知识目标:推导并掌握平面向量数量积的坐标表达式,会利用数量积求解向量的模、夹角及判定垂直等问题.2、能力目标:通过自主互助探究式学习,培养学生的自学能力,启发学生用多角度去思考和解决问题的能力,促进学生对知识的掌握和灵活运用.3、情感目标:通过自主学习,增强学生的成就感,提高学生学习的积极性和自信心.教学重点:利用数量积的坐标表示解决模、夹角、垂直等问题.教学难点:平面向量数量积的坐标表达式的推导.教法:启发式教学,讲练结合 学法:自主互助探究式 教学用具:多媒体 教学过程设计:
一、复习引入
(教师提问,学生回答)
二、知识探究
1.平面向量数量积的坐标表示
b(x,y)abx1x2y1y2 a(x,y)已知非零向量,22,则11(找学生到黑板上推导)结论:两个向量数量积等于它们对应坐标的乘积的和.思考:向量数量积的坐标表示与前面所学的向量的坐标运算有什么联系和区别?
(学生讨论回答,教师归纳)例
1.已知a(2,3),b(2,4),c(1,2),求: (1)ab;(2)a(bc);(3)
(ab)(ab);(4)2(ab).(教师讲前两问,学生做后两问)
2.平面向量数量积的应用
(1)求模问题:
(让学生自己推导)i)a(x,y),axy22.(x2x1)(y2y1)22ii)A(x,y1),B(x2,y2)1,AB(平面上两点间距离公式).a1iii)求a的单位向量e,eaaa,其中e1.例2.(1)已知a(3,4),e是a的单位向量,求a,e.(2)已知A(1,2),B(3,4),求
巩固练习:P107练习1 已知a(3,4),b(5,2),求aAB.,b,ab
(2)判定向量的垂直关系:(让学生自己推导)abab0x1x2y1y20
a//bx1y2x2y10
(对比记忆)例3.已知A(1,2),B(2,3),C(-2,5),试判断ABC的形状,并给出证明.(3)求向量的夹角:(让学生自己推导)思考:i)的范围?
ii)由cos能确定吗?为什么?
(找学生回答)例4.巩固练习.P107 练习3
已知a(3,2),b(5,7),求a与b设a(5,7),b(6,4),求ababcosabx1x2y1y2xy2121xy222
2及a与b的夹角(精确到1).0的夹角(精确到1).0
思考:不使用计算器,结合上面的例题,能求出的值吗?(找学生回答)
三、能力提升
已知a(cos,sin),b(cos,sin),证明
(ab)(ab).四、小结
这节课咱们一起学习了: 1.平面向量数量积的坐标表示 2.平面向量数量积的应用(1)求模;(2)判定垂直;(3)求夹角.希望大家在掌握的基础上加以灵活应用.五、作业
P108 A组5(1),(2),(3)任选一个、9、11.六、课后探索题: 已知a(2,1),b(x,1)
(1)若a与b(2)若a与b(3)若a与b的夹角为45,则实数x的值是_____;
0的夹角为锐角,则实数x的取值范围是_____;的夹角为钝角,则实数x的取值范围是_____.
第四篇:《平面向量的数量积》教学设计及反思
《平面向量的数量积》教学设计及反思
交口第一中学
赵云鹏
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。
一、总体设想:
本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。
二、教学目标:
1.了解向量的数量积的抽象根源。
2.了解平面的数量积的概念、向量的夹角
3.数量积与向量投影的关系及数量积的几何意义
4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算
三、重、难点:
【重点】1.平面向量数量积的概念和性质
2.平面向量数量积的运算律的探究和应用 【难点】平面向量数量积的应用
四、课时安排:
2课时
五、教学方案及其设计意图: 1.平面向量数量积的物理背景
平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为WFscos,这里的是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。2.平面向量数量积(内积)的定义
已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义ab = |a||b|cos无法得到,因此另外进行了规定。3.两个非零向量夹角的概念
已知非零向量a与b,作OA=a,则∠AOB=θ(0≤θ≤π)OB=b,叫a与b的夹角.ababcos,ab是记法,abcos是定义的实质――它是一个实数。按照推理,当022时,数量积为正数;当时,数量积为零;
2当时,数量积为负。
4.“投影”的概念
定义:|b|cos叫做向量b在a方向上的投影。
投影也是一个数量,它的符号取决于角的大小。当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b|;当 = 180时投影为 |b|.因此投影可正、可负,还可为零。
根据数量积的定义,向量b在a方向上的投影也可以写成ab a
注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。5.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:a和bcos。此概念也以物体做功为基础给出。bcos是向量b在a的方向上的投影。6.两个向量的数量积的性质: 设a、b为两个非零向量,则
(1)ab ab = 0;
(2)当a与b同向时,ab = |a||b|;当a与b反向时,ab = |a||b|.特别的aa = |a|2或|a|aa
(3)|ab| ≤ |a||b|
(4)cosab,其中为非零向量a和b的夹角。ab例1.(1)已知向量a ,b,满足b2,a与b的夹角为600,则b在a上的投影为______
(2)若b4,ab6,则a在b方向上投影为 _______ 例2.已知a3,b4,按下列条件求ab
(1)a//b
(2)ab(3)a与b的夹角为 1500 7.平面向量数量积的运算律 1.交换律:a b = b a
证:设a,b夹角为,则a b = |a||b|cos,b a = |b||a|cos
∴a b = b a
2.数乘结合律:(a)b =(ab)= a(b)证:若> 0,(a)b =|a||b|cos,(ab)=|a||b|cos,a(b)=|a||b|cos,若< 0,(a)b =|a||b|cos()= |a||b|(cos)=|a||b|cos,(ab)=|a||b|cos,a(b)=|a||b|cos()= |a||b|(cos)=|a||b|cos.3.分配律:(a + b)c = ac + bc
在平面内取一点O,作OA= a,AB= b,OC= c,∵a + b(即OB)在c方向上的投影等于a、b在c方向上的投影和,即
|a + b| cos = |a| cos1 + |b| cos2
∴| c | |a + b| cos =|c| |a| cos1 + |c| |b| cos2,∴c(a + b)= ca + cb
即:(a + b)c = ac + bc
说明:(1)一般地,(a·b)с≠a(b·с)
(2)a·с=b·с,с≠0
a=b
(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2
例3 已知a、b都是非零向量,且a + 3b与7a 5b垂直,a 4b与7a 2b垂直,求a与b的夹角.解:由(a + 3b)(7a 5b)= 0 7a2 + 16ab 15b2 = 0
①
(a 4b)(7a 2b)= 0 7a2 30ab + 8b2 = 0
② 两式相减:2ab = b2 代入①或②得:a2 = b2
abb21设a、b的夹角为,则cos =
∴ = 60 |a||b|2|b|225 评述:(1)在四边形中,AB,BC,CD,DA是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;
(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.例4若记aaa2,求证:(1)(ab)2a22abb2;(2)(ab)(ab)a2b2.以此作为今后求模的基础。
围绕向量的数量积的定义,可开发出解决几何问题中有用的知识:垂直的判断,夹角的计算和线段长度的计算。根据教学实际,有的数学知识可提出问题让学生解决,并总结、概括出一般的结论或规律,但有些知识学生听讲时,理解起来都比较困难,就需要老师的讲解,此时恰当的处理方式是:先让学生学会,再说明道理。这里,两个向量垂直的判断和夹角的计算,可通过让学生自己做题后总结出来;而计算模则需要老师讲解并加以强化:由a2aaaac0osa2ababcos,当b = a时,aa2.接着演示例题并练习。
〖例2〗已知a2,b3,且a, b夹角是60,求a(ab);ab.小结与反思:
以问题的形式,来反馈一节课的重点是否突出,难点是否突破。
问题一:关于向量的数量积的概念包括哪些主要内容?如何引入的?
问题二:说出向量数量积的几何意义及运算律。
问题三:用向量的数量积可解决几何中的哪三大问题?如何解决? 数量积的概念包括两个非零向量的夹角的定义和范围、数量积的定义。 向量数量积的几何意义是:a b是向量a的模与向量b在向量a方向上的投影的乘积;运算律有三条:„„。
用向量的数量积可解决几何中三大问题:垂直的判断、夹角的计算和求线段长度。⑴abab0; ⑵cosab2aa ⑶。ab;板书设计:整个板面分成三列,把重点知识数量积的定义放在中间显著位置。由其衍生出来的几何意义、运算律放在其下面,再把后面的三大问题放在中间一列的中间位置;左边一列,是两个向量夹角的相关概念;右列集中放例题。
教学记:本节课的设计注重教学目标的明确;注重根据学生的认知规律而科学地进行知识序列的呈现;注重调动学生参与教学活动;注重课堂效果的实效性。高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。
第五篇:平面向量数量积的坐标表示教学反思.doc范文
《平面向量数量积的坐标表示、模、夹角》教学反思
1、本节课先是通过对相关知识的回顾,然后引进与x轴、y轴方向相同的两个单位向量,进一步探索两个向量数量积的坐标表示。最后通过几个例题加强学生对两个向量数量积的坐标表示的理解及其灵活应用。课堂结构清晰完整流畅。在教学中,知识的回顾,题目的设计都围绕数量积坐标表示展开。数量积公式得出后,启发学生自己动手推导出模、夹角的坐标表示,回顾了公式的同时又培养了学生的推导能力、自主学习能力。在与学生的课堂交流中能倾听学生的想法,及时纠正偏差,激发了学生自主探究的欲望,较好的提升了学生的思维能力,对于学生在探究过程中出现的问题都能认真加以点评,适时指出不足与优点,对于学生的发现与总结都能给于很好的评价与赞扬,让学生收到激励,保持学习的热情。
2、教学设计结构严谨,过渡自然,时间分配合理。知识回顾部分把上节课的数量积、夹角、模、垂直、平行的有关知识进行回顾,每一条知识点的回顾都是本堂课的新课内容。
3、新课引入部分问题设计合理,但提问的字句还需斟酌,要语简意赅,如
22思考2中:对于上述向量i,j,则i,j,i.j分别等于什么?这样的问法觉的还是太繁琐,是否可以改为计算i2,j2,i.j?这样可能更直接一点。
4、公式的得出,在应用之前或者应用之后都应该对公式的结构特征进行归纳总结。学生因为接受新知识,对公式肯定不是很了解,应该要引导学生分析公式特征及应用的注意点。
5、一节课的知识与技能是否落实,难点是否得到突破,是教学者最为关心的话题。课堂习题正是检验教学效果的工具。在习题设置上,除了覆盖重难点外,还应做到由简入深。同时,在教学过程中,通过旧知生成新知的过程,采用问题串的形式引导学生一步步完成自主探究得到生成,是比较有效的教学方式。
6、通过本次公开订,学到了很多东西,争取下一次做得更好,另外还需改进语言表达能力,希望课堂气氛可愉更加活跃。