2.4.2平面向量数量积的坐标表示、模、夹角教案[5篇范文]

时间:2019-05-12 16:55:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.4.2平面向量数量积的坐标表示、模、夹角教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.4.2平面向量数量积的坐标表示、模、夹角教案》。

第一篇:2.4.2平面向量数量积的坐标表示、模、夹角教案

2.4.2平面向量数量积的坐标表示、模、夹角

教学目标:

1、掌握平面向量数量积的坐标表示方法

2、掌握向量垂直的坐标表示的条件,及平面内两点间的距离公式.3、能用平面向量数量积的坐标表示解决有关长度、角度、垂直等几何问题.4、培养学生数形结合、转化与化归的数学思想

教学重点:平面向量数量积的坐标表示及运算规律.教学难点:平面向量数量积的坐标表示的综合运用 教学过程:

一、复习引入:

1.平面向量数量积(内积)的定义:ababcos,0,

2.两个向量的数量积的性质:

设a、b为两个非零向量,e是与b同向的单位向量.(1)

ea = ae =|a|cos;

(2)ab  ab = 0(3)aa = |a|2或|a|aa

(4)cos =

ab ;

|a||b|3.练习:已知|i||j|1,ij,且a3i2j,bij,则ab ;

二、讲解新课:



(一)探究:已知两个非零向量a(x1,y1),b(x2,y2),怎样用a和b的坐标表示ab?.1.平面两向量数量积的坐标表示

设向量i,j分别为平面直角坐标系的x轴、y轴上的单位向量,则有

ax1iy1j,bx2iy2j

∴ ab(x1iy1j)(x2iy2j)x1x2ix1y2ijx2y1ijy1y2j

x1x2y1y2 两个向量的数量积等于它们对应坐标的乘积的和.课堂练习

①若a(2,3),则aa,|a| ;

②若表示向量a的起点和终点的坐标分别为(1,2)和(2,0),则|a|

; ③若a(1,1),b(3,3),则ab

,a与b的夹角是

22由上面三题,引导学生由特殊到一般,自己推导公式 2.平面内两点间的距离公式

(1)设a(x,y),则|a|2x2y2或|a|x2y2.(2)如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么|a|(x1x2)2(y1y2)2(平面内两点间的距离公式)3. 向量垂直的判定

设a(x1,y1),b(x2,y2),则ab x1x2y1y20

4. 两向量夹角的余弦(0)

abcos =|a||b|

(二)讲解范例:

x1x2y1y2x1y122x2y222

例1 已知a1,3,b 3,1,求ab,a,b及a与b的夹角.例2已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.例

31.若a3,1,bx,3,且ab,求实数x.2.已知a(3,4),b(2,1),(akb)(ab),求k的值.2.法一由题可知解:2222akbabak1abkb0,再分别算出a,ab,b法二akb3,4k2,132k,4k,ab1,3akbab32k14k3155k0k3

三、课堂练习:练习1、2、3题



四、小结: 1.abx1x2y1y2

2.平面内两点间的距离公式 |a|3.向量垂直的判定:

(x1x2)2(y1y2)2

设a(x1,y1),b(x2,y2),则ab x1x2y1y20

五、课后作业:

思考:以原点和A(5,2)为顶点作等腰直角△OAB,使B = 90,求点B和向量AB的坐标.

第二篇:《平面向量数量积的坐标表示、模、夹角》说课稿

一、教材分析

1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节教学目标确定为:

1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题

2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

教学重点

平面向量数量积的坐标表示及应用

教学难点

探究发现公式

二、教学方法和手段

1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。

2教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。

三、学法指导

改善学生的学习方式是高中数学课程追求的基本理念。独立思考,自主探索,动手实践,合作交流等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。为了实现这一目标,本节教学让学生主动参与,让学生动手,动口、动脑。通过思考、计算、归纳、推理,鼓励学生多向思维,积极活动,勇于探索。具体体现在:1、通过提出问题,把问题的求解与探究贯穿整堂课,使学生在自主探究中发现了结论,推广了命题,使学生感到成果是自己得到的,增强了成就感,培养了学生学好数学的信心和良好的学习动机。2、通过数与形的充分挖掘,通过对向量平行与垂直条件的坐标表示的类比,培养了学生数形结合的数学思想,教给了学生类比联想的记忆方法。

四、教学程序

本节课分为复习回顾、定理推导、引申推广、例题讲析、练习与小结五部分。

复习回顾部分通过两个问题,复习了与本节内容相关的数量积概念,为本节内容的学习作了必要的铺垫。

定理推导部分通过设问,引出寻求向量的数量积的坐标表示的必要性,引入课题,并引导学生应用前述知识共同推导出数量积的坐标表示。

引申推广部分,让学生自主推导出向量的长度公式,向量垂直条件的坐标表示、夹角公式等三个结论,强化了学生的动手能力和自主探究能力。

例题讲析,通过四道紧扣教材的例题的精讲,突出了结论的应用,也起到了示范作用。

练习及小结:通过练习题验收教学效果,突出训练主线,小结部分画龙点睛,强调本节重点。再结合课后作业,进一步实现本节课的教学目的。同时小结也体现主体性,由教师提出问题学生总结得出。

第三篇:示范教案(2.4.2平面向量数量积的坐标表示、模、夹角)

2.4.2 平面向量数量积的坐标表示、模、夹角

整体设计

教学分析

平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标

1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点

教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排 1课时

教学过程

导入新课

思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课 新知探究 提出问题 ①平面向量的数量积能否用坐标表示? ②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢? ③怎样用向量的坐标表示两个平面向量垂直的条件? ④你能否根据所学知识推导出向量的长度、距离和夹角公式?

活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下: ∵a=x1i+y1j,b=x2i+y2j, ∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0, ∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下: 1°平面向量数量积的坐标表示

两个向量的数量积等于它们对应坐标的乘积的和, 即a=(x1,y1),b=(x2,y2), 则a·b=x1x2+y1y2.2°向量模的坐标表示

若a=(x,y),则|a|=x+y,或|a|=x2y2.如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么 a=(x2-x1,y2-y1),|a|=(x2x1)2(y2y1)2.3°两向量垂直的坐标表示 设a=(x1,y1),b=(x2,y2),则 a⊥bx1x2+y1y2=0.4°两向量夹角的坐标表示

设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示,可得 cosθ=ab|a||b|x1x2y1y2xy212122

2xy2222

讨论结果:略.应用示例

例1 已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC是直角三角形.下面给出证明.∵AB=(2-1,3-2)=(1,1), AC=(-2-1,5-2)=(-3,3), ∴AB·(-3)+1×3=0.AC=1×∴AB⊥AC.∴△ABC是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.变式训练

在△ABC中,AB=(2,3),AC=(1,k),且△ABC的一个内角为直角,求k的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.AC=0.若∠A=90°,则AB⊥AC,所以AB·于是2×1+3k=0.故k=23.113同理可求,若∠B=90°时,k的值为32113;若∠C=90°时,k的值为

13.故所求k的值为23或或

3213.例2(1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC的余弦值;(2)a=(3,0),b=(-5,5),求a与b的夹角.活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)与b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=x1y1,|b|=即cosθ=ab|a||b|x1x2y1y2xy212122x2y2的积,其比值就是这两个向量夹角的余弦值,22xy2222.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB=(5,1)-(2,-2)=(3,3), AC=(1,4)-(2,-2)=(-1,6), AC=3×∴AB·(-1)+3×6=15.又∵|AB|=3232=32,|AC|=(1)262=37, ABAC|AB||AC|15323757474∴cos∠BAC=

.(2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=52.设a与b的夹角为θ,则 cosθ=ab|a||b|15352220≤θ≤π,∴θ=.又∵

34.点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.变式训练

设a=(5,-7),b=(-6,-4),求a·b及a、b间的夹角θ.(精确到1°) 解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=52(7)2由计算器得cosθ=74,|b|=(6)(4)2252

27452≈-0.03.利用计算器中得θ≈92°.例3 已知|a|=3,b=(2,3),试分别解答下面两个问题:(1)若a⊥b,求a;(2)若a∥b,求a.活动:对平面中的两向量a=(x1,y1)与b=(x2,y2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2-x2y1=0很容易混淆, 应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b=0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a=(x,y),由|a|=3且a⊥b, x2y2|a|29,得 2x3x0,99x13,x13,1313解得 或66yy1313,1313∴a=(91313,61313)或a=

91313,61313.(2)设a=(x,y),由|a|=3且a∥b,得 x2y2|a|29, 3x2y0.6x13解得y91313,6x13或y9131313)或a=(61313, 13.913∴a=(61313,91313,13).点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练

求证:一次函数y=2x-3的图象(直线l1)与一次函数y=12x的图象(直线l2)互相垂直.解:在l1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l1上取两点A(1,-1),B(2,1).同理,在直线l2上取两点C(-2,1),D(-4,2),于是: AB=(2,1)-(1,-1)=(2-1,1+1)=(1,2), CD=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).CD=1×由向量的数量积的坐标表示,可得AB·(-2)+1×2=0, ∴AB⊥CD,即l1⊥l2.知能训练

课本本节练习.解答: 1.|a|=5,|b|=29,a·b=-7.2.a·b=8,(a+b)·(a-b)=-7,a·(a+b)=0,(a+b)2=49.3.a·b=1,|a|=13,|b|=74,θ≈88°.课堂小结

1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业

课本习题2.4 A组8、9、10.设计感想

由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.

第四篇:平面向量数量积的坐标表示教学反思.doc范文

《平面向量数量积的坐标表示、模、夹角》教学反思

1、本节课先是通过对相关知识的回顾,然后引进与x轴、y轴方向相同的两个单位向量,进一步探索两个向量数量积的坐标表示。最后通过几个例题加强学生对两个向量数量积的坐标表示的理解及其灵活应用。课堂结构清晰完整流畅。在教学中,知识的回顾,题目的设计都围绕数量积坐标表示展开。数量积公式得出后,启发学生自己动手推导出模、夹角的坐标表示,回顾了公式的同时又培养了学生的推导能力、自主学习能力。在与学生的课堂交流中能倾听学生的想法,及时纠正偏差,激发了学生自主探究的欲望,较好的提升了学生的思维能力,对于学生在探究过程中出现的问题都能认真加以点评,适时指出不足与优点,对于学生的发现与总结都能给于很好的评价与赞扬,让学生收到激励,保持学习的热情。

2、教学设计结构严谨,过渡自然,时间分配合理。知识回顾部分把上节课的数量积、夹角、模、垂直、平行的有关知识进行回顾,每一条知识点的回顾都是本堂课的新课内容。

3、新课引入部分问题设计合理,但提问的字句还需斟酌,要语简意赅,如

22思考2中:对于上述向量i,j,则i,j,i.j分别等于什么?这样的问法觉的还是太繁琐,是否可以改为计算i2,j2,i.j?这样可能更直接一点。

4、公式的得出,在应用之前或者应用之后都应该对公式的结构特征进行归纳总结。学生因为接受新知识,对公式肯定不是很了解,应该要引导学生分析公式特征及应用的注意点。

5、一节课的知识与技能是否落实,难点是否得到突破,是教学者最为关心的话题。课堂习题正是检验教学效果的工具。在习题设置上,除了覆盖重难点外,还应做到由简入深。同时,在教学过程中,通过旧知生成新知的过程,采用问题串的形式引导学生一步步完成自主探究得到生成,是比较有效的教学方式。

6、通过本次公开订,学到了很多东西,争取下一次做得更好,另外还需改进语言表达能力,希望课堂气氛可愉更加活跃。

第五篇:平面向量的坐标表示教案范文

平面向量共线的坐标表示

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性 授课类型:新授课 教具:多媒体、实物投影仪 教学过程:

一、复习引入: 1.平面向量的坐标表示

分别取与x轴、y轴方向相同的两个单位向量、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj

把(x,y)叫做向量a的(直角)坐标,记作a(x,y)

其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算 若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y).若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

二、讲解新课:

a∥b(b0)的充要条件是x1y2-x2y1=0

设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0

yy21探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵b0∴x2,y2中至少有一个不为0(2)充要条件不能写成y1y2∵x1,x2有可能为0 x1x2(3)从而向量共线的充要条件有两种形式:a∥b (b0)ab

x1y2x2y10

三、讲解范例:

例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x

解:∵a=(-1,x)与b=(-x,2)共线∴(-1)×2-x•(-x)=0 a∴x=±2∵与b方向相同∴x=2

例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB与平行于直线CD吗?

解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又∵2×2-4×1=0 ∴AB∥CD

又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线∴AB与CD不重合∴AB∥CD

四、课堂练习:

1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()

A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为()A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结

下载2.4.2平面向量数量积的坐标表示、模、夹角教案[5篇范文]word格式文档
下载2.4.2平面向量数量积的坐标表示、模、夹角教案[5篇范文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平面向量的数量积教案

    2.4.2平面向量数量积的坐标表示、模、夹角 教学目标: 1、知识目标:推导并掌握平面向量数量积的坐标表达式,会利用数量积求解向量的模、夹角及判定垂直等问题. 2、能力目标:通......

    北师大版高中数学(必修4)2.6《平面向量数量积的坐标表示》教案

    平面向量数量积的坐标表示教案1 教学目标 1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积. 2.掌握两个向量垂直的坐标条件,能运用这......

    平面向量平行的坐标表示教案(精选五篇)

    8.3.2平面向量平行的坐标表示 教学目标:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。 教学重点:平行向量充要条件的坐......

    平面向量的数量积及运算律的教案说明

    《平面向量的数量积及运算律》的教案说明新疆石河子第一中学曹丽梅一、教学内容的本质:本教案是人教版高中数学第一册(下)第五章平面向量的第六节内容,整个课题按照课程标准分两......

    平面向量的数量积及其应用教学设计说明

    平面向量的数量积及其应用设计立意及思路平面向量在教材中独立成章,它既反映了现实世界的数量关系,又体现了几何图形的位置关系,具有代数形式和几何形式的“双重身份”,它将数......

    平面向量的数量积及应用教学设计[推荐]

    高效课堂教学模式探讨公开课平面向量的数量积及应用教学设计 华罗庚中学 袁劲竹 一、教材分析 向量作为一种基本工具,在数学解题中有着极其重要的地位和作用。利用向量知识......

    《平面向量的数量积》教学设计及反思

    《平面向量的数量积》教学设计及反思 交口第一中学 赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函......

    平面向量的坐标运算 教案

    平面向量的坐标运算 教案 一、教学目标 1、知识与技能: 掌握平面向量的坐标运算; 2、过程与方法: 通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。 3情感态度与......