高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4

时间:2019-05-12 17:11:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4》。

第一篇:高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4

第二章平面向量

本章内容介绍

向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习习近平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.(让学生对整章有个初步的、全面的了解.)

第6课时

§2.3.4平面向量共线的坐标表示

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性 授课类型:新授课

教 具:多媒体、实物投影仪 教学过程:

一、复习引入: 1.平面向量的坐标表示

分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj 把(x,y)叫做向量a的(直角)坐标,记作a(x,y)

其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算

若a(x1,y1),b(x2,y2),用心

爱心

专心 则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y).若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

二、讲解新课:

a∥b(b0)的充要条件是x1y2-x2y1=0

设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2) 消去λ,x1y2-x2y1=0

yy21探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵b0 ∴x2,y2中至少有一个不为0(2)充要条件不能写成y1y2 ∵x1,x2有可能为0 x1x2ab

x1y2x2y10(3)从而向量共线的充要条件有两种形式:a∥b(b0)

三、讲解范例:

例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x 解:∵a=(-1,x)与b=(-x,2)共线 ∴(-1)×2-x•(-x)=0

 ∴x=±2 ∵a与b方向相同 ∴x=2

例5 已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB与平行于直线CD吗?

用心

爱心

专心 解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴AB∥CD

又 ∵ AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD

四、课堂练习:

1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为() A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为()A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结(略)

六、课后作业(略)

七、板书设计(略)

八、课后记:

用心

爱心

专心

第二篇:高中数学 第二章《平面向量的正交分解和坐标表示及运算》教案 新人教A版必修4

第5课时§2.3.2—§2.3.3平面向量的正交分解和坐标表示及运算

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课

教 具:多媒体、实物投影仪 教学过程:

一、复习引入:

1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量

二、讲解新课: 1.平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○我们把(x,y)叫做向量a的(直角)坐标,记作 a(x,y)…………○

2式叫做向其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0). 1

如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1)若a(x1,y1)ab(x1x2,y1y2),b(x2,y2),则ab(x1x2,y1y2),两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j 即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2)(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)(x1,y1)=(x2 x1,y2 y1)(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y)

三、讲解范例:

例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)

例4已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0 得:(3,4)+(2,5)+(x,y)=(0,0)32x0x5即: ∴ ∴F3(5,1)45y0y1

四、课堂练习:

1.若M(3,-2)N(-5,-1)且 MP12MN,求P点的坐标

2.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.五、小结(略)

六、课后作业(略)

七、板书设计(略)

八、课后记:

第三篇:高中数学 2.3平面向量的基本定理及坐标表示教学设计 新人教A版必修4

2.3《平面向量的基本定理及坐标表示》教学设计

【教学目标】

1.了解平面向量基本定理;

2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;

3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.【导入新课】 复习引入: 1. 实数与向量的积

实数λ与向量a的积是一个向量,记作:λa.(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.2.运算定律 aaaaaa结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+b)=λa+λb.3.向量共线定理

向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.新授课阶段

一、平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量.二、平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为 1

基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○1○我们把(x,y)叫做向量a的(直角)坐标,记作 2 a(x,y)…………○2○

2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2○式叫做向量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0).如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、平面向量的坐标运算

(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j,即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2).(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)-(x1,y1)=(x2 x1,y2 y1).(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y).2

例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC,得D1=(2,2).当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0).例4 已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0,得:(3,4)+(2,5)+(x,y)=(0,0),即:32x0,x5, ∴ ∴F3(5,1).45y0,y1.例5 已知a=(2,1), b=(-3,4),求a+b,a-b,3a+4b的坐标.解:a+b=(2,1)+(-3,4)=(-1,5),a-b=(2,1)-(-3,4)=(5,-3),3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解.例6 已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标.解:设点D的坐标为(x,y), AB(1,3)(2,1)(1,2),DC(3,4)(x,y)(3x,4y),且ABDC,(1,2)(3x,4 y).即 3-x=1,4-y=2.解得x=2,y=2.所以顶点D的坐标为(2,2).3

另解:由平行四边形法则可得

BDBABC

(2(1),13)(3(1),43)

(3,1), ODOBBD (1,3)(3,1)(2,2).例7 经过点M(2,3)的直线分别交x轴、y轴于点A,B,且|AB|3|AM|,求点A,B的坐标.解:由题设知,A,B,M三点共线,且|AB|3|AM|,设A(x,0),B(0,y),①点M在A,B之间,则有AB3AM,∴(x,y)3(2x,3).解之得:x3,y3,点A,B的坐标分别为(3,0),(0,3).②点M不在A,B之间,则有AB3AM,同理,可求得点A,B的坐标分别为(3,0),2(0,9).综上,点A,B的坐标分别为(3,0),(0,3)或(3,0),(0,9).2例8.已知三点A(2,3),B(5,4),C(7,10),若AMABAC,试求实数的取值范围,使M落在第四象限.解:设点M(x,y),由题设得(x2,y3)(3,)(5,7)(35,7),∴x33,y4,要使M落在第四象限,则x330,y40,解之得14.例8 已知向量a(8,2),b(3,3),c(6,12),p(6,4),问是否存在实数x,y,z同时满足两个条件:(1)pxaybzc;(2)xyz1?如果存在,求出x,y,z的值;如果不存在,请说明理由.4

1x,28x3y6z6,1解:假设满足条件的实数x,y,z存在,则有2x3y12z4,解之得:y,3xyz1.1z.6∴满足条件的实数x课堂小结

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.作业 见同步练习拓展提升

1.设e1,e2是同一平面内两个不共线的向量,不能以下各组向量中作为基底的是()A.e1,e2 B.e1+e2,e2 C.e1,2e2 D.e1,e1+e2 2.设e1,e2是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是()

A.e1+e2和e1-e2 B.3e1-2e2和4e1-6e2 C.e1+2e2和2e1+e2 D.e1+e2和e2

111,y,z.2363.已知e1,e2不共线,a =1e1+e2,b=4 e1+2e2,并且a,b共线,则下列各式正确的是()

A.1=1,B.1=2,C.1=3,D.1=4 4.设AB=a+5b,BC=-2a+8b,CD=3a-3b,那么下列各组的点中三点一定共线的是()

A.A,B,C B.A,C,D C.A,B,D D.B,C,D 5.下列说法中,正确的是()

①一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;

②一个平面内有无数多对不共线的向量可作为表示该平面内所有向量的基底;

③零向量不可作为基底中的向量.A.①②

B.①③

C.②③

D①②③

6.已知e1,e2是同一平面内两个不共线的向量,那么下列两个结论中正确的是()①1e1+2e2(1,2为实数)可以表示该平面内所有向量;

②若有实数1,2使1e1+2e2=0,则1=2=0.A.①

B.②

C.①②

D.以上都不对

7.已知AM=△ABC的BC边上的中线,若AB=a,AC=b,则AM=()11aaA.(- b)

B. -(- b)2211C.-(a+b)

D.(a+b)

228.已知ABCDEF是正六边形,AB=a,AE=b,则BC=()11A.(a- b)

B. -(a- b)

2211C.a+b

D.(a+b)

229.如果3e1+4e2=a,2e1+3e2=b,其中a,b为已知向量,则e1=,e2=

.10.已知e1,e2是同一平面内两个不共线的向量,且AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,如果A,B,D三点共线,则k的值为

.11.当k为何值时,向量a=4e1+2e2,b=ke1+e2共线,其中e1、e2是同一平面内两个不共线的向量.12.已知:e1、e2是不共线的向量,当k为何值时,向量a=ke1+e2与b=e1+ke2共线?  6

参考答案

1.C 2.B 3.B 4.C 5.C 6.C 7.D 8.D 9.-2a3b,11.②③⑤ 12.k=2

79ab 10.-8 44 8

第四篇:平面向量的坐标表示教案范文

平面向量共线的坐标表示

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性 授课类型:新授课 教具:多媒体、实物投影仪 教学过程:

一、复习引入: 1.平面向量的坐标表示

分别取与x轴、y轴方向相同的两个单位向量、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj

把(x,y)叫做向量a的(直角)坐标,记作a(x,y)

其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算 若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y).若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

二、讲解新课:

a∥b(b0)的充要条件是x1y2-x2y1=0

设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0

yy21探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵b0∴x2,y2中至少有一个不为0(2)充要条件不能写成y1y2∵x1,x2有可能为0 x1x2(3)从而向量共线的充要条件有两种形式:a∥b (b0)ab

x1y2x2y10

三、讲解范例:

例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x

解:∵a=(-1,x)与b=(-x,2)共线∴(-1)×2-x•(-x)=0 a∴x=±2∵与b方向相同∴x=2

例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB与平行于直线CD吗?

解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又∵2×2-4×1=0 ∴AB∥CD

又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线∴AB与CD不重合∴AB∥CD

四、课堂练习:

1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()

A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为()A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结

第五篇:北师大版高中数学(必修4)2.6《平面向量数量积的坐标表示》教案

平面向量数量积的坐标表示教案1

教学目标

1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积.

2.掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量垂直. 3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.

重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的充要条件.

难点:对向量的长度公式,两个向量垂直的充要条件的灵活运用. 教学过程设计

(一)学生复习思考,教师指导.

1.A点坐标(x1,y1),B点坐标(x2,y2).

=________

=________

2.A点坐标(x1,y1),B点坐标(x2,y2)=________

3.向量的数量积满足那些运算律?

(二)教师讲述新课.

前面我们已经学过了两个向量的数量积,如果已知两个向量的坐标,如何用这些坐标来表示两个向量的数量积,这是一个很有价值的问题.

设两个非零向量为

=(x1,y1),=(x2,y2).

=x

1+y1

为x轴上的单

+y位向量,为y轴上的单位向量,则,=x2

这就是说:两个向量的数量积等于它们对应坐标的乘积的和.

引入向量的数量积的坐标表示,我们得到下面一些重要结论:

(1)向量模的坐标表示:

(2)平面上两点间的距离公式:

向量=

(3)两向量的夹角公式

设=(x1,y1),=(x2,y2),=θ. 的起点和终点坐标分别为A(x1,y1),B(x2,y2),4.两向量垂直的充要条件的坐标表示

=(x1,y1),=(x2,y2).

即两向量垂直的充要条件是它们对应坐标乘积的和为零.

(三)学生练习,教师指导.

练习1:课本练习1.

已知a(-3,4),(5,2).

练习2:课本练习2.

已知 ··(=(2,3),=(-2,4),=(-1,-2). =2×(-2)+3×4=8,(+

+)·(-)=-7.)=0,(a+b)2=(0,7)·(0,7)=49.

练习3:已知A(1,2),B(2,3),C(-2,5).

求证:△ABC是直角三角形.

证:∵

经检验,∴⊥ =(1,1),·

=(-3,3),=(-4,2).

=1×(-3)+1×3=0.,△ABC是直角三角形.

(四)师生共同研究例题.

例1:已知向量

=(3,4),=(2,-1).

(1)求

(2)若

解:(1)与+x的夹角θ,与

垂直,求实数x的值.

=(3,4),=(2,-1).

(2)

(+x与+x)·(--

垂直,)=0,+x

=(3,4)+x(2,-1)=(2x+3,4-x)-=(3,4)-(2,-1)=(1,5).

例2:求证:三角形的三条高线交于一点.

证:设△ABC的BC、AC边上的高交于P点,现分别以BC、PA所在直线为x轴、y轴,建立直角坐标系,设有关各点的坐标为B(x1,0),C(x2,0),A(0,y1),P(0,y).

∵⊥,=(-x1,y),=(-x2,y1).

(-x1)×(-x2)+y×y1=0.

即 x1x2+yy1=0.

∴·⊥=(-x2,y),=(-x1,y1).

=(-x1)×(-x2)+y×y1=x1x2+yy1=0.,CP是AB边上的高.

故三角形的三条高线交于一点.

(五)作业.习题5.7 1,2,3,4,5.

下载高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4word格式文档
下载高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐