第一篇:高中数学 第二章 平面向量向量的概念教学设计 新人教B版必修4
2015高中数学 第二章平面向量向量的概念教学设计 新人教B版必
修4 1.向量概念的形成
1.1 让学生感受引入概念的必要性
引子:生:去录播室怎么走?师:出了楼门走50米就到了.
意图:向量概念不是凭空产生的.用这一简单、直观例子中的“位移不仅有大小,而且有方向”,让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容.
问题1 你能否再举出一些既有方向,又有大小的量? 意图:激活学生的已有相关经验.
(学生能容易地举出重力、浮力、作用力等物理中学过的量.)追问:生活中有没有只有大小,没有方向的量?请你举例. 意图:形成区别不同量的必要性.
(学生所举的例子有年龄、身高、面积等.)概念抽象需要典型丰富的实例.让学生举例可以观察到他们对概念属性的领悟,形成对概念的初步认识,为进一步抽象概括做准备.
T:由同学们的举例可见,现实中有的量只有大小没有方向,有的量既有大小又有方向.类似于从一支笔、一本书、一棵树……中抽象出只有大小的数量1,数学中对位移、力……这些既有大小又有方向的量进行抽象,就形成一种新的量——向量(板书概念). 演练回馈一【概念辨析】
1、身高是一个向量()
2、温度含零上和零下温度,所以温度是向量()
3、坐标平面上的x轴和y轴都是向量()
4、有人说,由于海平面以上的高度(海拔)用正数表示,海平面以下的高度用负数表示,所以海拔也是向量,你认为对吗?
1.2 向量的几何表示
问题2 数学中,定义概念后,通常要用符号表示它.怎样把你所举例子中的向量表示出来呢?
意图:让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量.
T:看来大家都认为用带箭头的线段表示向量比较好.在初中,常用AB,CD,a,b,c等表示线段.现在,我们加上箭头,用,,等表示向量.以前AB与BA表示同一线段,现在和表示同一向量吗?为什么?
S:不.向量和起点、终点正好相反.
T:对,方向是向量的本质属性之一.向量的另一本质属性是大小,我们用||表示,称为向量的模.同样,用||来表示向量的模.因为向量有大小和方向两个要素,只用代数形式或几何形式是无法确定的,必须两者结合.
思考:既然向量可以用有向线段表示,那么向量是否就是有向线段? 1.3 零向量与单位向量
T:现在,我们已经建立了一个向量的集合.就象每个人都有名字一样,这个集合中的每一个向量都有了名称.那么
问题3 你认为在所有向量组成的集合中,哪些向量较特殊?
意图:引导学生学会观察一组对象.面对一组对象,首先注意特殊对象是自然的.(学生普遍认为零向量、单位向量是特殊的.)T:大家为什么认为它们最特殊?你们是怎么想的?
意图:挖掘结果背后的思维过程.企图引导学生把向量集合与实数集类比.
(课堂中,学生从长度这个角度进行了解释,认为零向量的长度是0,单位向量的长度是1,最为特殊.这表明他们已经在把向量集与实数集作类比.从实数集的认知经验出发,自然会想到零向量、单位向量的特殊性.)
T:是的.类比实数的学习经验有利于向量的学习.在实数中,0是数的正负分界点,有0就可定义相反数;1是“单位”,作用很大.对实数的研究经验告诉我们,“引进一个新的数就要研究它的运算;引进一种运算就要研究运算律”.可以预见,引进向量就要研究向量的运算,进而就要研究相应的运算律或运算法则.所以,对于向量,还有许多内容等待我们去研究.
2.相等向量、平行向量、共线向量、相反向量概念的形成
问题例2观察图1中的正六边形ABCDEF.给图中的一些线段加上箭头表示向量,并说说你所标注的向量之间的关系.(举例)
意图:不是先给出相等向量、平行向量、共线向量、相反向量的定义,再做练习巩固,而是让学生参与概念的定义过程,使概念成为学生观察、归纳、概括之后的自然产物.
留给学生足够的时间,并提出问题5,组织学生交流.
问题5 你是怎样研究的?比如,你画了哪几个向量?你认为它们有怎样的关系? 意图:不仅关注结果,更要关注过程.尤其要挖掘学生用向量概念思维的过程.
(课堂中,有的学生首先关注大小;有的学生首先画出向量与,认为它们长度相等且方向相同,是相等的向量;也有学生首先画出向量
与,认为它们是共线的向量;等.教师适时介入,解释数学中的向量是自由向量,可以平移,因此,与也称为共线向量.“平行向量”的产生比较顺利,但“相反向量”的产生有困难,其间还类比了“相反数”.)
归纳得到:
(1)从“方向”角度看,有方向相同或相反,就是平行向量,记为 ∥;(2)从“长度”角度看,有模相等的向量,||=||;
(3)既关注方向,又关注长度,有相等向量=,相反向量=-. T:我们规定:零向量与任意向量都平行,即∥.
问题6 由相等向量的概念知道,向量完全由它的方向和模确定.由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么联系与区别?
意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程.
3.阅读课本
请同学们把课本看一遍,看看我们的讨论过程与课本讲的是否一致,有什么遗漏?有什么不同?
意图:通过阅读,对本课的内容再一次进行归整、明晰.引导学生重视课本. 4.课堂练习5.课堂小结
问题7(引导学生自己小结)能否画个图,把今天学的内容梳理一下?
(有的学生提出可以把本课的内容分为三个部分,与图2所呈现的内容基本一致,只是把“特殊关系”说成了“向量的性质”,这也是正确的.教师肯定了她的结论,展示了图2.)
T:今天我们学习向量的概念及其表示方法,并初步研究了向量这个集合,发现了其中的两个特殊向量,以及向量之间的一些特殊关系.同学们要认真体会其中的基本思路,即:从同类具体事例中抽象出共同本质特征——下定义——符号表示——认识特殊对象——考察某些特殊关系.
这里特别要注意,因为向量带有方向,所以只用代数的形式已无法表示,必须结合几何的形式.因此,向量具有代数形式和几何形式的“双重身份”.随着学习的深入,我们会看到这种身份给向量带来的力量.
另外,我们用类比数集的方法初步认识了向量的集合.我们知道,数与运算分不开,数
2的概念的发展也与运算不可分割.例如,为了解方程x=2,我们需要有无理数概念,于是要有“开方”运算.引进一种新的数,就要研究关于它的运算;引进一种运算,就要研究相应的运算律.今天我们引进了一个新的量——向量,下面我们该研究它的哪些问题?如何研究?请同学们课后认真考虑,下节课来交流.(说罢,教师在“特殊关系”的右边增加了省略号“……”.)6.布置作业(略)
第二篇:平面向量概念教学设计
篇一:平面向量概念教案
平面向量概念教案
一.课题:平面向量概念
二、教学目标
1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。
2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。
3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣
三.教学类型:新知课
四、教学重点、难点
1、重点:向量及其几何表示,相等向量、平行向量的概念。
2、难点:向量的概念及对平行向量的理解。
五、教学过程
(一)、问题引入
1、在物理中,位移与距离是同一个概念吗?为什么?
2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗?
3、在物理中,像这种既有大小、又有方向的量叫做矢量。
在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。
(二)讲授新课
1、向量的概念
练习1 对于下列各量:
①质量② 速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度
其中,是向量的有:②③④⑤
2、向量的几何表示
请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的?
(1)有向线段及有向线段的三要素
(2)向量的模
(4)零向量,记作____;
(5)单位向量
练习2 边长为6的等边△abc中,=__,与 相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。2)、用字母表示。
3、相等向量与共线向量
(1)相等向量的定义
(2)共线向量的定义
六.教具:黑板
七.作业
八.教学后记
篇二:平面向量的实际背景及基本概念教学设计
平面向量的实际背景及基本概念教学设计 本节课的内容是数学必修4,第二章《平面向量》的引言和第一节平面向量的实际背景及基本概念两部分,所需课时为1课时。
一 教材分析
向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的起始课,具有“统领全局”的作用。本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能
二 学情分析
在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
三 目标定位
根据以上的分析,本节课的教学目标定位: 1)、知识目标
⑪ 通过对位移、速度、力等实例的分析,形成平面向量的概念;
⑫ 学会平面向量的表示方法,理解向量集形与数于一身的基本特征;
⑬ 理解零向量、单位向量、相等向量、平行向量的含义。2)、能力目标培养用联系的观点,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维; 3)、情感目标使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
重点:向量概念、向量的几何表示、以及相等向量概念;
难点:让学生感受向量、平行或共线向量等概念形成过程;
四、教学过程概述: 4.1 向量概念的形成
4.1.1 让学生感受引入概念的必要性
引子:章节 引言
意图:向量概念不是凭空产生的。用这一简单直观的问题让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容,学生会有亲切感,有助于激发学习兴趣。
问题1 你能否再举出一些既有大小又有方向的量?
意图:激活学生的已有相关经验。
进一步直观演示,加深印象。
追问:生活中有没有只有大小没有方向的量?请举例。
类比数的概念获得向量概念的定义(板书)。4.1.2 向量的表示方法
问题2 数学中,定义概念后,通常要用符号表示它。怎样把你举例中的向量表示出来呢
意图:让学生先练习力的表示,让错误呈现,激发认知冲突,最后自觉接受用带有箭头的线段(有向线段)来表示向量。(教师引导学生进一步完善)几何表示法: 记作a b |a b|为ab的长度(又称模)。
字母表示法:a、b、c??或a、b、c 4.1.3 单位向量、零向量的概念:
问题3用有向线段表示向量,学生演板,提出问题,大家画得线段长度长短不一怎么回事?如何解决这问题?由单位长度引入单位向量
意图:这样过渡学生不会感觉新的概念是从天而降,而是进一步学习的需要
归纳小结:单位向量——长度等于1个单位长度并与a同向的向量叫做a方向上的单位向量. 让演板学生回到座位之后利用这个情境提出问题,他位移的大小是什么? 归纳小结:零向量——长度(模)为0的向量,记作0 提问:你们认为零向量和单位向量特殊吗?它们的特殊性体现在哪?类比实数集合中的0和1.4.2 相等向量、平行(共线)向量概念的形成
设计活动:传花游戏,游戏中将呈现通过学生之间传递花朵所产生的位移向量,让他们从大小和方向两个方面展开思考,教师适时介入,强化本质特征、规范概念表达,与学生一起完成概念的定义。
意图:通过游戏调动学生的兴趣和积极性,让学生通过亲身经历去体会相等向量与平行向量的本质特征。归纳:
1、从“方向”角度看,有方向相同或相反的非零向量就是平行向量。
记作:a ∥b ∥ c 任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量。
2、从“长度”角度看,有模相等的向量,︱a︱ =︱ b︱
3、既关注方向有又关注长度有相等向量:记作:a = b a 规定: 0 与任一向量都平行或(共线)。
教师通过动画演示深化上述两个概念
问题4 由相等向量的概念知道,向量完全有它的方向和大小确定。由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么区别与联系?
意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程。4.3 课堂练习:
概念辨析
两个长度相等的向量一定相等.
相等向量的起点必定相同.
平行向量就是共线向量.
若 ab 与 cd 共线,则 a、b、c、d 四点必在同一条直线上.
向量 a 与 b平行,则向量 a 与 b 的方向相同或相反.
教材例题
3、教材第79页,b组第一题(选择此题,可以进一步理解位移概念,又能为后一步的学习做好铺垫)4.4 课堂小结(引导学生小结)
问题5 欣赏一首关于向量的诗,布置任务能否用拟人的方式把你对向量的认识做个概述呢?
结束语:略
板书设计
5.5明确零向量的意义和作用,不过分纠缠于细节。
首先,规定零向量与任何向量平行是完善概念系统的需要。其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。总之,作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机。这节“概念课”,概念的理解无疑是重点,也是难点。概念的教学应在概念的发生发展过程中揭示它的本来面目。要让学生参与概念本质特征的概括活动过程,这也是培养学生创新精神和实践能力的必由之路!
三、教学诊断分析
本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。为了帮助学生建立向量的概念,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。具体教学中,要设计一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。这也是本堂课的核心目标。由于数学概念的高度抽象性,学生往往要费很多周折才能理解,教师应从学生的认知水平出发,针对学生的理解困难来展开教学,保证学生参与概念本质特征的概括活动,确保学生有自己想明白的机会和时间,这是至关重要的。
本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量、研究特殊向量的关系。在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑——反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。
本课中出现的特殊向量——零向量,很多教师都会在“零向量与任意向量平行上”花太多时间,原因是“这是考试中的一个陷阱”。这其实是对零向量的意义和作用理解不到位的表现:首先,规定零向量与任何向量平行是完善概念系统的需要;其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。
四、本课教学特点及预期效果分析
在学生建立向量的概念之初,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。因此在具体教学中,我设计了一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。
在向量的几何表示中,我让学生大胆探索,而不是“全包全揽”,教师引导,学生补充改进,最终明确向量几何表示的正确方法。整个过程全体同学热情参与,自我教育,互帮互学,课堂气氛生动活泼。
当同学们能将向量正确的几何表示时,我又适时地提出问题:大家画出的线段长短不一,怎么解决?由此自然过渡到单位长度上,使得单位向量的引入也就顺理成章了。
为了帮助学生学习相等向量、平行(共线)向量的概念,本课设计了“传花游戏”,通过学生之间传递花朵所产生的位移向量,让学生积极参与,仔细观察,自己概括出概念的本质特征,将课堂气氛推向一个新的高潮。在结束本课之前,为了让同学对向量加深印象,我让学生先欣赏一首关于向量的诗歌,再让学生在课外动笔写出自己对向量的感受。
本节课是从现实世界的常见实例出发,以学生自主探究的教学方式为主。在课堂上,创建了一个以全班学生共同参与的向量游戏平台,让学生在轻松愉悦的课堂环境中,共同参与,共同讨论,共同分析,让学生自然地、水到渠成的完成本节内容的学习。
第三篇:平面向量概念教案
平面向量概念教案
一.课题:平面向量概念
二、教学目标
1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。
2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。
3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣
三.教学类型:新知课
四、教学重点、难点
1、重点:向量及其几何表示,相等向量、平行向量的概念。
2、难点:向量的概念及对平行向量的理解。
五、教学过程
(一)、问题引入
1、在物理中,位移与距离是同一个概念吗?为什么?
2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗?
3、在物理中,像这种既有大小、又有方向的量叫做矢量。在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。
(二)讲授新课
1、向量的概念
练习1 对于下列各量:
①质量 ② 速度 ③位移 ④力 ⑤加速度 ⑥路程 ⑦密度 ⑧功 ⑨体积 ⑩温度
其中,是向量的有:②③④⑤
2、向量的几何表示
请表示一个竖直向下、大小为5N的力,和一个水平向左、大小为8N的力(1厘米表示1N)。思考一下物理学科中是如何表示力这一向量的?
(1)有向线段及有向线段的三要素(2)向量的模
(4)零向量,记作____;(5)单位向量
练习2 边长为6的等边△ABC中,=__,与 相等的还有哪些?
总结向量的表示方法: 1)、用有向线段表示。
2)、用字母表示。
3、相等向量与共线向量(1)相等向量的定义(2)共线向量的定义
六.教具:黑板 七.作业 八.教学后记
第四篇:高中数学 2.3平面向量的基本定理及坐标表示教学设计 新人教A版必修4
2.3《平面向量的基本定理及坐标表示》教学设计
【教学目标】
1.了解平面向量基本定理;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.【导入新课】 复习引入: 1. 实数与向量的积
实数λ与向量a的积是一个向量,记作:λa.(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.2.运算定律 aaaaaa结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+b)=λa+λb.3.向量共线定理
向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.新授课阶段
一、平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量.二、平面向量的坐标表示
如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为 1
基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○1○我们把(x,y)叫做向量a的(直角)坐标,记作 2 a(x,y)…………○2○
2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2○式叫做向量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0).如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、平面向量的坐标运算
(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j,即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2).(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)-(x1,y1)=(x2 x1,y2 y1).(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y).2
例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC,得D1=(2,2).当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0).例4 已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0,得:(3,4)+(2,5)+(x,y)=(0,0),即:32x0,x5, ∴ ∴F3(5,1).45y0,y1.例5 已知a=(2,1), b=(-3,4),求a+b,a-b,3a+4b的坐标.解:a+b=(2,1)+(-3,4)=(-1,5),a-b=(2,1)-(-3,4)=(5,-3),3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解.例6 已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标.解:设点D的坐标为(x,y), AB(1,3)(2,1)(1,2),DC(3,4)(x,y)(3x,4y),且ABDC,(1,2)(3x,4 y).即 3-x=1,4-y=2.解得x=2,y=2.所以顶点D的坐标为(2,2).3
另解:由平行四边形法则可得
BDBABC
(2(1),13)(3(1),43)
(3,1), ODOBBD (1,3)(3,1)(2,2).例7 经过点M(2,3)的直线分别交x轴、y轴于点A,B,且|AB|3|AM|,求点A,B的坐标.解:由题设知,A,B,M三点共线,且|AB|3|AM|,设A(x,0),B(0,y),①点M在A,B之间,则有AB3AM,∴(x,y)3(2x,3).解之得:x3,y3,点A,B的坐标分别为(3,0),(0,3).②点M不在A,B之间,则有AB3AM,同理,可求得点A,B的坐标分别为(3,0),2(0,9).综上,点A,B的坐标分别为(3,0),(0,3)或(3,0),(0,9).2例8.已知三点A(2,3),B(5,4),C(7,10),若AMABAC,试求实数的取值范围,使M落在第四象限.解:设点M(x,y),由题设得(x2,y3)(3,)(5,7)(35,7),∴x33,y4,要使M落在第四象限,则x330,y40,解之得14.例8 已知向量a(8,2),b(3,3),c(6,12),p(6,4),问是否存在实数x,y,z同时满足两个条件:(1)pxaybzc;(2)xyz1?如果存在,求出x,y,z的值;如果不存在,请说明理由.4
1x,28x3y6z6,1解:假设满足条件的实数x,y,z存在,则有2x3y12z4,解之得:y,3xyz1.1z.6∴满足条件的实数x课堂小结
(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.作业 见同步练习拓展提升
1.设e1,e2是同一平面内两个不共线的向量,不能以下各组向量中作为基底的是()A.e1,e2 B.e1+e2,e2 C.e1,2e2 D.e1,e1+e2 2.设e1,e2是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是()
A.e1+e2和e1-e2 B.3e1-2e2和4e1-6e2 C.e1+2e2和2e1+e2 D.e1+e2和e2
111,y,z.2363.已知e1,e2不共线,a =1e1+e2,b=4 e1+2e2,并且a,b共线,则下列各式正确的是()
A.1=1,B.1=2,C.1=3,D.1=4 4.设AB=a+5b,BC=-2a+8b,CD=3a-3b,那么下列各组的点中三点一定共线的是()
A.A,B,C B.A,C,D C.A,B,D D.B,C,D 5.下列说法中,正确的是()
①一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;
②一个平面内有无数多对不共线的向量可作为表示该平面内所有向量的基底;
③零向量不可作为基底中的向量.A.①②
B.①③
C.②③
D①②③
6.已知e1,e2是同一平面内两个不共线的向量,那么下列两个结论中正确的是()①1e1+2e2(1,2为实数)可以表示该平面内所有向量;
②若有实数1,2使1e1+2e2=0,则1=2=0.A.①
B.②
C.①②
D.以上都不对
7.已知AM=△ABC的BC边上的中线,若AB=a,AC=b,则AM=()11aaA.(- b)
B. -(- b)2211C.-(a+b)
D.(a+b)
228.已知ABCDEF是正六边形,AB=a,AE=b,则BC=()11A.(a- b)
B. -(a- b)
2211C.a+b
D.(a+b)
229.如果3e1+4e2=a,2e1+3e2=b,其中a,b为已知向量,则e1=,e2=
.10.已知e1,e2是同一平面内两个不共线的向量,且AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,如果A,B,D三点共线,则k的值为
.11.当k为何值时,向量a=4e1+2e2,b=ke1+e2共线,其中e1、e2是同一平面内两个不共线的向量.12.已知:e1、e2是不共线的向量,当k为何值时,向量a=ke1+e2与b=e1+ke2共线? 6
参考答案
1.C 2.B 3.B 4.C 5.C 6.C 7.D 8.D 9.-2a3b,11.②③⑤ 12.k=2
79ab 10.-8 44 8
第五篇:高中数学必修4人教A教案第二章平面向量复习
第二章
平面向量复习课
(一)一、教学目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法
7.向量的坐标运算(加.减.实数和向量的乘法.数量积)
8.数量积(点乘或内积)的概念,a·b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1.实数与向量的积的运算律:
(1)(a)()a(2)()a aa(3)(ab)ab
2.平面向量数量积的运算律:
(1)abba
(2)(a)b(ab)a(b)
(3)(ab)c acbc
3.向量运算及平行与垂直的判定: 设a(x1,y1),b(x2,y2),(b0).则ab(x1x2,y1y2)
ab(x1x2,y1y2)
abx1x2y1y2
a//bx1y2x2y10.abx1x2y1y20.4.两点间的距离:
|AB|(x1x2)2(y1y2)2
5.夹角公式: cosab a bx1x2y1y2 x1y1x2y22222
6.求模:
aaa
ax2ya(x1x2)2(y1y2)2
(二)习题讲解:第二章 复习参考题
(三)典型例题
例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c
解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b
(四)基础练习:
(五)、小结:掌握向量的相关知识。
(六)、作业:
第二章
平面向量复习课
(二)一、教学过程
(一)习题讲解:
(二)典型例题
例1.已知圆C:(x3)(y3)4及点A(1,1),M是圆上任意一点,点N在线
22段MA的延长线上,且MA2AN,求点N的轨迹方程。
练习:1.已知O为坐标原点,OA=(2,1),OB=(1,7),OC=(5,1),OD=xOA,y=DB·DC(x,y∈R)
求点P(x,y)的轨迹方程;
2.已知常数a>0,向量m(0,a),n(1,0),经过定点A(0,-a)以mn为方向向量的直线与经过定点B(0,a)以n2m为方向向量的直线相交于点P,其中R.求点P的轨迹C的方程;
例2.设平面内的向量OA(1,7), OB(5,1), OM(2,1),点P是直线OM上的一个动点,求当PAPB取最小值时,OP的坐标及APB的余弦值.
解
设OP(x,y).∵
点P在直线OM上,∴ OP与OM共线,而OM(2,1),∴
x-2y=0即x=2y,有OP(2y,y).∵ PAOAOP(12y,7y),PBOBOP(52y,1y),∴ PAPB(12y)(52y)(7y)(1y)
= 5y2-20y+12 = 5(y-2)2-8.
从而,当且仅当y=2,x=4时,PAPB取得最小值-8,此时OP(4,2),PA(3,5),PB(1,1).
于是|PA|34,|PB|2,PAPB(3)15(1)8,∴ cosAPBPAPB|PA||PB|8342417 17小结:利用平面向量求点的轨迹及最值。
作业: