高中数学竞赛讲义(八)平面向量

时间:2019-05-14 13:42:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学竞赛讲义(八)平面向量》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学竞赛讲义(八)平面向量》。

第一篇:高中数学竞赛讲义(八)平面向量

高中数学竞赛讲义

(八)──平面向量

一、基础知识

定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a.|a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。

定理2 非零向量a, b共线的充要条件是存在实数

0,使得a=

f

定理3平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。

定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。定理4平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x1x2+y1y2, cos(a, b)=4.a//bx1y2=x2y1, a

b

x1x2+y1y2=0.(a, b0),定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1, y1),(x, y),(x2, y2),则

讲义八

/ 8

定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。

定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.【证明】 因为|a|2·|b|2-|a·b|2=

-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn),b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:

(x1y1+x2y2+…+xnyn)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn), b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。

2)对于任意n个向量,a1, a2, …,an,有| a1, a2, …,an|≤| a1|+|a2|+…+|an|。

二、方向与例题

1.向量定义和运算法则的运用。

例1 设O是正n边形A1A2…An的中心,求证:

【证明】 记后与原正n边形重合,所以,若

不变,这不可能,所以,则将正n边形绕中心O旋转

例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则

又因为BC与GP互相平分,所以BPCG为平行四边形,所以BG所以

PC,所以

讲义八

/ 8

充分性。若因为,延长AG交BC于D,使GP=AG,连结CP,则,则,所以GB

CP,所以AG平分BC。

同理BG平分CA。

所以G为重心。

例3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。

【证明】 如图所示,结结BQ,QD。

因为所以==又因为同理,②,③

由①,②,③可得

。得证。

2.证利用定理2证明共线。

例4 △ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。,·

【证明】 首先

=

其次设BO交外接圆于另一点E,则连结CE后得CE又AH又EABC,所以AH//CE。AB,CH

AB,所以AHCE为平行四边形。

讲义八

/ 8

所以所以所以所以与,共线,所以O,G,H共线。

所以OG:GH=1:2。

3.利用数量积证明垂直。

例5 给定非零向量a, b.求证:|a+b|=|a-b|的充要条件是a【证明】|a+b|=|a-b|

(a+b)2=(a-b)

2b.a·b=0

a

b.a2+2a·b+b2=a2-2a·b+b2例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。

【证明】 设,则,又,所以

a·(b-c).(因为|a|2=|b|2=|c|2=|OH|2)

又因为AB=AC,OB=OC,所以OA为BC的中垂线。所以a·(b-c)=0.所以OE

CD。

4.向量的坐标运算。

例7 已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。

讲义八/ 8

【证明】 如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x, y),则y-1), 又因为,因为,所以-x-(y-1)=0.=(x,,所以x2+y2=2.由①,②解得

所以

设所以所以,则,即F=4+

。由和,共线得,所以AF=AE。

三、基础训练题

1.以下命题中正确的是__________.①a=b的充要条件是|a|=|b|,且a//b;②(a·b)·c=(a·c)·b;③若a·b=a·c,则b=c;④若a, b不共线,则xa+yb=ma+nb的充要条件是x=m, y=n;⑤若在b=(-3, 4)上的投影为-4。

2.已知正六边形ABCDEF,在下列表达式中:①③ ;④

与,相等的有__________.;②;,且a, b共线,则A,B,C,D共线;⑥a=(8, 1)3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________.4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.5.已知a, b不共线,条件.6.在△ABC中,M是AC中点,N是AB的三等分点,且于D,若7.已知__________.8.已知

=b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.讲义八

/ 8

=a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________,BM与CN交,则λ=__________.不共线,点C分

所成的比为2,则9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1,-1), 若c·b=4,则b的坐标为__________.,10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.与11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问的夹角取何值时的值最大?并求出这个最大值。

12.在四边形ABCD中,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。

四、高考水平训练题

1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足

则点P的轨迹一定通过△ABC的________心。

2.在△ABC中,3.非零向量=__________.4.若O为△ABC 的内心,且为__________.5.设O点在△ABC 内部,且__________.6.P是△ABC所在平面上一点,若__________心.7.已知,则|

|的取值范,则P是△ABC 的,则△AOB与△AOC的面积比为,则△ABC 的形状,且a·b<0,则△ABC的形状是__________.,若点B关于

所在直线对称的点为B1,则围是__________.8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.9.在△ABC中,O为中线AM上的一个动点,若AM=2,则值为__________.10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2,-2)+ λ(4, 5), λ∈R},mj MN=__________.讲义八

/ 8 的最小11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,(1)求y=f(x)的解析式及定义域;(2)求的取值范围。

12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。

(1)试问点P的轨迹是什么?(2)若点P坐标为(x0, y0), 求tan.五、联赛一试水平训练题

1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p, q

与的夹角,满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.2.p为△ABC内心,角A,B,C所对边长分别为a, b, c.O为平面内任意一点,则

=___________(用a, b, c, x, y, z表示).3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k∈R),则k的取值范围是___________.4.平面内四点A,B,C,D满足,则的取值有___________个.5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则

取值的集合是___________.6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinC·,则点O为△ABC 的___________心.(a-b)”的___________条件.,又(c·b):(b·a):(a·c)=1:2:3,则△ABC

+sinB·7.对于非零向量a, b, “|a|=|b|”是“(a+b)8.在△ABC 中,三边长之比|a|:|b|:|c|=____________.9.已知P为△ABC内一点,且,CP交AB于D,求证:

讲义八

/ 8

10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。

11.设坐标平面上全部向量的集合为V,a=(a1, a2)为V中的一个单位向量,已知从V到的变换T,由T(x)=-x+2(x·a)a(x∈V)确定,(1)对于V的任意两个向量x, y, 求证:T(x)·T(y)=x·y;

(2)对于V的任意向量x,计算T[T(x)]-x;(3)设u=(1, 0);,若,求a.六、联赛二试水平训练题

1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何?证明你的结论。

2.已知AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE,使得AM:AC=CN:CE=r,如果B,M,N三点共线,求r.3.在矩形ABCD的外接圆的弧AB上取一个不同于顶点A,B的点M,点P,Q,R,S是M分别在直线AD,AB,BC,CD上的射影,求证:直线PQ与RS互相垂直。

4.在△ABC内,设D及E是BC的三等分点,D在B和F之间,F是AC的中点,G是AB的中点,又设H是线段EG和DF的交点,求比值EH:HG。

5.是否存在四个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?

6.已知点O在凸多边形A1A2…An内,考虑所有的AiOAj,这里的i, j为1至n中不同的自然数,求证:其中至少有n-1个不是锐角。

7.如图,在△ABC中,O为外心,三条高AD,BE,CF交于点H,直线ED和AB交于点M,FD和AC交于点N,求证:(1)OB

DF,OC

DE,(2)OH

MN。

8.平面上两个正三角形△A1B1C1和△A2B2C2,字母排列顺序一致,过平面上一点O作,求证△ABC为正三角形。

9.在平面上给出和为 的向量a, b, c, d,任何两个不共线,求证:

|a|+|b|+|c|+|d|≥|a+d|+|b+d|+|c+d|.讲义八/ 8

第二篇:高中数学平面向量的公式知识点

【摘要】“高中数学平面向量的公式知识点”数学公式讲解是这门学科的要点,套用公式是最终的题解方法,希望本文可以为大家带来帮助:

定比分点

定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 a•b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”

a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律

a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b|,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。

第三篇:高中数学平面向量教学研究作业(江惠玲) (

高中数学“平面向量”教学研究作业(江惠玲)

请给出平面向量知识结构示意图

答:

向量是近代数学中重要和基本的数学概念之一。在高中教材中,平面向量章节内容主要有几个方面:⑴向量的物理背景与概念、向量的几何表示、相等向量与共线向量;⑵向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义;⑶平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示;⑷平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角;⑸平面几何中的向量方法、向量在物理中的应用举例。此外,教材安排了扩展内容,主要是向量几向量符号的由来,向量的运算(运算律)与图形性质。这些知识既有不同又紧密联系,教学的时候要注意联系与比较,并通过实际解题训练,来提高学生的理解能力和应用能力。

我用FreeMind设计了一个向量知识结构图:

我认为上面制作的这个图表基本上反映了高中数学中的平面向量的知识结构。

揭东县梅岗中学 江惠玲

第四篇:平面向量在高中数学教学中的作用

平面向量在高中数学教学中的作用

平面向量是高中数学引入的一个新概念.利用平面向量的定义、定理、性质及有关公式,可以简化解题过程,便于学生的理解和掌握.向量运算主要作用可以提高学生针对数学运算的理解层次,本身这个运算学生总最初接触运算都是数与数之间的运算,而加入向量运算之后,向量运算涉及到数学元素更高,比如说实数、字母、甚至向量,甚至还可以把几何图形加入运算当中,这本身对数学层次更大的一个提高。而且向量运算对数学的思想也体现的比较多,就是在解析几何当中,或者是在平面几何当中,向量应用确实很方便,一个运算既有代数意义又有几何意义,但是到了立体几何的话,我觉得向量运算仅仅就变成算术了,算术对立体几何本意还是没有有一点想像,就是它到底人学生重点掌握什么,掌握运算还是掌握思维和想像。

一、向量在代数中的应用

根据复数的几何意义,在复平面上可以用向量来表示复数。这样复数的加减法,就可以看成是向量的加减,复数的乘除法可以用向量的旋转和数乘向量得到,学了向量,复数事实上已没有太多的实质性内容。因而变选学内容也就不难理解了。另外向量所建立的数形对应也可用来证明代数中的一些恒等式、不等式问题,只要建立一定的数模型,可以较灵活地给出证题方法。

二、向量在三角中的应用

当我们利用单位圆来研究三角函数的几何意义时,表示三角函数就是平面向量。利用向量的有关知识可以导出部分诱导公式。由于用向量解决问题时常常是从三角形入手的,这使它在三角里解决有关三角形的问题发挥了重要作用,一个最有力的证据就是教材中所提供的余弦定理的证明:只要在根据向量三角形得出的关系式的两边平方就可利用向量的运算性质得出要证的结论,它比用综合法提供的证明要简便得多。

三、向量在平面解析几何中的应用

由于向量作为一种有向线段,本身就是有向直线上的一段,且向量的坐标可以用起点、终点的坐标来表示,使向量与平面解析几何特别是其中有关直线的部分保持着一种天然的联系。平面直角坐标系内两点间的距离公式,也就是平面内相应的向量的长度公式;分一条线段成定比的分点坐标,可根据相应的两个向量的坐标直接求得;用直线的方向向量(a , b)表示直线方向比直线的斜率更具有一般性,且斜率实际是方向量在 a = 0时的特殊情形。另外向量的平移也可用来化简二次曲线,即通过移动图形的变换来达到化简二次曲线的目的,实际上与解析几何中移轴变换达到同样的效果。

四、向量在几何中的应用

在解决几何中的有关度量、角度、平行、垂直等到问题时用向量解决也很方便。特别是平面向量可以推广到空间用来解决 立体几何问题。例如在空间直线和平面这部分内容光焕发中,解决平行、相交、包含以及计算夹角、距离等问题用传统的方法往往较为繁琐,但只要引入向量,利用向量的线性运算及向量的数量积和向量积以后,一切都归结为数字式符号运算。这些运算都有法则可循,比传统的方法要容易得多

总之,平面向量已经渗透到中学数学的许多方面,向量法代替传统教学方法已成为现代数学发展的必然趋势。向量法是一种值得学生花费时间、精力去掌握的一种新生方法,学好向量知识有助于理解和掌握与之有关联的学科。因此在职中数学教学中加强向量这一章的教学,为更好地学习其它知识做好必要的准备工作就显得尤为重要。但传统教学思想对向量抵触较大,许多教者认为向量法削弱了学生的空间想象能力,且学生初学向量时接受较为困难,这就要求我们不断探索,找出最佳的教和学的方法,发挥向量的作用,使向量真正地面为现代数学的基础。

第五篇:高中数学竞赛讲义-抽屉原理

数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com

抽屉原理

在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。

“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。

(一)抽屉原理的基本形式

定理

1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。

在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。

同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。

例题讲解

1. 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于

2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。

4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。

5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。

6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。

7. 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

例题答案:

1.分析:5个点的分布是任意的。如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。

如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么

∠PQN=∠C,∠QNP=∠A

因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以 PQ≥PM。显然BC≥PQ,故BC≥PM。

由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。

说明:

(1)这里是用等分三角形的方法来构造“抽屉”。类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,„,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。

(2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于“,请读者试证之,并比较证明的差别。

(3)用同样的方法可证明以下结论:

2i)在边长为1的等边三角形中有n+1个点,这n+1个点中一定有距离不大于的两点。

ii)在边长为1的等边三角形内有n+1个点,这n+1个点中一定有距离小于的两点。

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命 题仍然成立。

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长 为1的正三角形内(包括边界)有两点其距离不超过”。

2.分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若

nm∈N+,K∈N+,n∈N,则m=(2k-1)·2,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,„„

证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):

23456

(1){1,1×2,1×2,1×2,1×2,1×2,1×2};

234

5(2){3,3×2,3×2,3×2,3×2,3×2};

4(3){5,5×2,5×2,5×2,5×2};

3(4){7,7×2,7×2,7×2};

(5){9,9×2,9×2,9×2};

(6){11,11×2,11×2,11×2};

数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com

„„

(25){49,49×2};

(26){51};

„„

(50){99}。

这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。

说明:

(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,„,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”

(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?

①从2,3,4,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

②从1,2,3,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?

你能举出反例,证明上述两个问题的结论都是否定的吗?

(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗? 3.证明:把前25个自然数分成下面6组:

1;

2,3;

4,5,6;

7,8,9,10;

11,12,13,14,15,16;

17,18,19,20,21,22,23,⑥

因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。

说明:

(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。

显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。这样,我们可以用如上一种特殊的分类法:递推分类法:

从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。

能与2同属于一个集合的数只有3,于是{2,3}为一集合。

数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com

如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。

(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为

{26,27,28,29,30,31,32,33,34,35,36,37,38,39};

第8个抽屉为:{40,41,42,„,60};

第9个抽屉为:{61,62,63,„,90,91};

„„

那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;(2)从前39个自然数中任取8个自然数;(3)从前60个自然数中任取9个自然数;(4)从前91个自然数中任取10个自然数;„

]内。

都可以得到同一个结论:其中存在2个数,它们相互的比值在上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。如果我们改变区间[](p>q)端点的值,则又可以构造出一系列的新题目来。

4.分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合10就有2=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。

再来看各个真子集中一切数字之和。用N来记这个和数,很明显:

10≤N≤91+92+93+94+95+96+97+98+99=855

这表明N至多只有855-9=846种不同的情况。由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。

若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然

A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。

说明:本例能否推广为如下命题:

已给一个由m个互不相等的n位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。

请读者自己来研究这个问题。5.分析与解答:由中点坐标公式知,坐标平面两点(x1,y1)、(x2,y2)的中点坐标是。欲使都是整数,必须而且只须x1与x2,y1与y2的奇偶性相同。坐标平面上的任意整点按照横纵两个坐标的奇偶性考虑有且只有如下四种:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数)以此构造四个“抽屉”,则在坐标平面上任取五个整点,那么至少有两个整点,属于同一个“抽屉”因此它们连线的中点就必是整点。

说明:我们可以把整点的概念推广:如果(x1,x2,„xn)是n维(元)有序数组,且x1,x2,„xn中的每一个数都是整数,则称(x1,x2,„xn)是一个n维整点(整点又称格点)。如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此

n3共可分为2×2ׄ×2=2个类。这是对n维整点的一种分类方法。当n=3时,2=8,此时可数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。这就是1971年的美国普特南数学竞赛题。在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是:

(A)最少可为0个,最多只能是5个(B)最少可为0个,最多可取10个

(C)最少为1个,最多为5个(D)最少为1个,最多为10个

(正确答案(D))6.分析:本题也似乎是茫无头绪,无从下手,其关键何在?仔细审题,它们的“和”能“被100整除”应是做文章的地方。如果把这100个数排成一个数列,用Sm记其前m项的和,则其可构造S1,S2,„S100共100个”和"数。讨论这些“和数”被100除所得的余数。注意到S1,S2,„S100共有100个数,一个数被100除所得的余数有0,1,2,„99共100种可能性。“苹果”数与“抽屉”数一样多,如何排除“故障”?

证明:设已知的整数为a1,a2,„a100考察数列a1,a2,„a100的前n项和构成的数列S1,S2,„S100。

如果S1,S2,„S100中有某个数可被100整除,则命题得证。否则,即S1,S2,„S100均不能被100整除,这样,它们被100除后余数必是{1,2,„,99}中的元素。由抽屉原理I知,S1,S2,„S100中必有两个数,它们被100除后具有相同的余数。不妨设这两个数为Si,Sj(i<j),则100∣(Sj-Si),即100∣。命题得证。

说明:有时候直接对所给对象作某种划分,是很难构造出恰当的抽屉的。这时候,我们需要对所给对象先作一些变换,然后对变换得到的对象进行分类,就可以构造出恰当的抽屉。本题直接对{an}进行分类是很难奏效的。但由{an}构造出{Sn}后,再对{Sn}进行分类就容易得多。

另外,对{Sn}按模100的剩余类划分时,只能分成100个集合,而{Sn}只有100项,似乎不能应用抽屉原则。但注意到余数为0的类恰使结论成立,于是通过分别情况讨论后,就可去掉余数为0的类,从而转化为100个数分配在剩下的99个类中。这种处理问题的方法应当学会,它会助你从“山穷水尽疑无路”时,走入“柳暗花明又一村”中。

最后,本例的结论及证明可以推广到一般情形(而且有加强的环节):

在任意给定的n个整数中,都可以找出若干个数来(可以是一个数),它们的和可被n整除,而且,在任意给定的排定顺序的n个整数中,都可以找出若干个连续的项(可以是一项),它们的和可被n整除。

将以上一般结论中的n赋以相应的年份的值如1999,2000,2001„,就可以编出相应年份的试题来。如果再赋以特殊背景,则可以编出非常有趣的数学智力题来,如下题:

有100只猴子在吃花生,每只猴子至少吃了1粒花生,多者不限。请你证明:一定有若干只猴子(可以是一只),它们所吃的花生的粒数总和恰好是100的倍数。

7.证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。

考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,„,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。

考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。

说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。

(2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。

(3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。

本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题:

在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目。证明至少有三个科学家,他们互相之间讨论同一个题目。

(4)回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题。反过来,我们可以继续推广。从以上(3,1)→(6,2)→(17,3)的过程,易发现

6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958„记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,„

我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4„这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形。

数学教育网http://www.xiexiebang.com

下载高中数学竞赛讲义(八)平面向量word格式文档
下载高中数学竞赛讲义(八)平面向量.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平面向量复习题

    平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具......

    长春宽城区2018-2019学年高中数学平面向量单元测试题

    长春宽城区2018-2019学年高中数学平面向量单元测试题 数学(理) 2018.7 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试......

    高中数学必修4人教A教案第二章平面向量复习

    第二章平面向量复习课(一) 一、教学目标 1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。 2. 了解平面向量基本定理. 3. 向量的加法的......

    讲义---平面向量与三角形四心的交汇

    讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的......

    平面向量的应用

    平面向量的应用平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。一、用向量证明平面......

    高中数学有关平面向量的公式的知识点总结(共五篇)

    定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成......

    高中数学新课程创新教学设计案例50篇__40-43平面向量

    40平面向量的数量积 教材分析 两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概......

    高中数学必修4平面向量复习5正弦定理余弦定理

    5.5正弦定理、余弦定理要点透视:1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.(1)a=2RsinA,b=2RsinB,c=2RsinC;abc(2)sinA=,sinB=,sinC=: 2R2R2R(3)sinA:sinB:sinC=a:b:c.可以用来判断三角形的形......