第一篇:高中数学竞赛标准讲义:第十五章:复数
高中数学竞赛标准讲义:第十五章:复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=a2b2.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。3.共轭与模,若z=a+bi,(a,b∈R),则za-bi称为z的共轭复数。模与共轭的性质有:
z1(1)z1z2z1z2;(2)z1z2z1z2;(3)zz|z|2;(4)z2z1;(5)z2|z1z2||z1||z2|;(6)|z1|z1|;(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z2|z2|1。z4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2),则z1•|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则z•z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若z20,z1r1[cos(θ1-θ2)+isin(θ1-θ2)],用z2r2指数形式记为z1z2=r1r2ei(θ1+θ2),z1r1i(12)e.z2r25.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).2k2kisin),k=0,1,2,„,n-1。6.开方:若wnr(cosθ+isinθ),则wnr(cos nn22isin7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=cos,nn则全部单位根可表示为1,Z1,Z12,,Z1n1.单位根的基本性质有(这里记ZkZ1k,k=1,2,„,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意
0,当n|m,mm整数m,当n≥2时,有1Z1mZ2=特别1+Z1+Z2+„+Zn-1=0;(3)xn-1+xn-2+„Zn1n,当n|m,+x+1=(x-Z1)(x-Z2)„(x-Zn-1)=(x-Z1)(x-Z12)„(x-Z1n1).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=z;z是纯虚数的充要条件是:z+z=0(且z≠0).10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则z=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac<0时方程的根为x1,2bi.2a
二、方法与例题 1.模的应用。
例1 求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明] 若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(z+1)=(z-1)(z-1),化简得z+z=0,又z=0不是方程的根,所以z是纯虚数。例2 设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。[解] 因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)=|f(1)+f(-1)-f(i)-f(-i)|
≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.2.复数相等。
例3 设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
2xx10[解] 若方程有实根,则方程组2有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,xx0则方程x2-x+1=0中Δ<0无实根,所以λ≠-1。所以x=-1, λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。3.三角形式的应用。
例4 设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解] 由题设得
[cos()isin()]ncosn()isin()cos(n)isin(n),所以222222n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。4.二项式定理的应用。
02410013599例5 计算:(1)C100;(2)C100 C100C100C100C100C100C100
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100= ***24100)+(C100C100iC100iC100iC100i=(C100C100C100C10002410013599)i,比较实部和虚部,得C100=-250,C100C100C100C100C100C100C10013599=0。C100C100C100C1005.复数乘法的几何意义。
例6 以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明] 设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,CAz1a,BAz1a,由复数乘法的几何意义得:CNz3ai(z1a),①BMz2ai(z1a),②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=
z2z3ai,为定值,所以MN2的中点P为定点。
例7 设A,B,C,D为平面上任意四点,求证:AB•AD+BC•AD≥AC•BD。
[证明] 用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|•|C-D|+|B-C|•|A-D|≥(A-B)(C-D)+(B-C)(A-D).所以|A-B|•|C-D|+|B-C|•|A-D|≥|A-C|•|B-D|, “=”成立当且仅当BABCDABCArg()Arg(),即Arg()Arg()=π,即A,B,C,D共圆时成立。不DACDBADC等式得证。
6.复数与轨迹。
例8 ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得4x26(y).3所以ΔABC的外心轨迹是轨物线。7.复数与三角。
例9 已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。[证明] 令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则 z1+z2+z3=0。所以z1z2z3z1z2z30.又因为|zi|=1,i=1,2,3.所以zi•zi=1,即zi1.zi22由z1+z2+z3=0得x12x2x32z1z22z2z32z3z10.①
111又z1z2z3z2z3z1z1z2z3zzzz1z2z3(z1z2z3)0.23122所以z12z2z30.所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.所以cos2α+cos2β+cos2γ=0。
例10 求和:S=cos200+2cos400+„+18cos18×200.[解] 令w=cos200+isin200,则w18=1,令P=sin200+2sin400+„+18sin18×200,则S+iP=w+2w2+„+18w18.①由①×w得w(S+iP)=w2+2w3+„+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+„
1w(1w18)918w319S.18w,所以S+iP=+w-18w=,所以9i21w221w18198.复数与多项式。
例11 已知f(z)=c0zn+c1zn-1+„+cn-1z+cn是n次复系数多项式(c0≠0).求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.nn-1iθ[证明] 记c0z+c1z+„+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0e=0为n次方程,其必有n个根,设为z1,z2,„,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)•„•(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2„znc0,取模得|z1z2„zn|=1。所以z1,z2,„,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.9.单位根的应用。
例12 证明:自⊙O上任意一点p到正多边形A1A2„An各个顶点的距离的平方和为定值。[证明] 取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为en2in,则顶点A2A3„An对应复数分别为ε2,ε3,„,εn.设点p对应复数z,则|z|=1,2nk2nkkn且=2n-|pAk||z|(z)(z)(2kzkz)
k1k1k1k1=2n-zz2nzzk2n.命题得证。kkk1k1k1k1nnknn10.复数与几何。
例13 如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明] 以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复
CiB数乘法的几何意义知D=iC,B=iA;取Q,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;
1iDA又由C-Q=i(B-Q)得Qi(Q),即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Qii为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,„,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,„,若p1986=p0.证明:ΔA1A2A3为等边三角形。
3[证明] 令u=e,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0, p2=(1+u)A2-up1, p3=(1+u)A3-up2, ①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,„,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、基础训练题
1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。
1002.若z∈C且z2=8+6i,且z3-16z-=__________。z3.复数z满足|z|=5,且(3+4i)•z是纯虚数,则z__________。4.已知z213ii,则1+z+z2+„+z1992=__________。
5.设复数z使得z1的一个辐角的绝对值为,则z辐角主值的取值范围是__________。z266.设z,w,λ∈C,|λ|≠1,则关于z的方程z-Λz=w的解为z=__________。
1x1x2arcsin__________。7.设0 29.若a,b,c∈C,则a2+b2>c2是a2+b2-c2>0成立的__________条件。 10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。 11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。 12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1•z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。13.N个复数z1,z2,„,zn成等比数列,其中|z1|≠1,公比为q,|q|=1且q≠±1,复数w1,w2,„,wn满足条件:wk=zk+1+h,其中k=1,2,„,n,h为已知实数,求证:复平面内表示w1,w2,„,wnzk的点p1,p2,„,pn都在一个焦距为4的椭圆上。 四、高考水平训练题 1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。2.设复数z满足z+|z|=2+i,那么z=__________。 3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转他走过n千米后,首次回到原出发点,则n=__________。 角度,6(43i)2(13i)104.若z,则|z|=__________。12(1i)5.若ak≥0,k=1,2,„,n,并规定an+1=a1,使不等式aakak1a2kk1n2k1ak恒成立的实 k1n数λ的最大值为__________。 x2y21上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨6.已知点P为椭圆95迹方程为__________。 7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。 z2R”的__________条件。8.已知z∈C,则命题“z是纯虚数”是命题“ 1z29.若n∈N,且n≥3,则方程zn+1+zn-1=0的模为1的虚根的个数为__________。10.设(x2006+x2008+3)2007=a0+a1x+a2x2+„+anxn,则a0a3k1a3k2an__________。22aa1a2aa345+„2222+a3k-11.设复数z1,z2满足z1•z2Az1Az20,其中A≠0,A∈C。证明:(1)|z1+A|•|z2+A|=|A|2;(2) z1Az1A.z2Az2A12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.|z1||z2||z3|1,zzz13.给定实数a,b,c,已知复数z1,z2,z3满足1231,求 z2z3z1|az1+bz2+cz3|的值。 三、联赛一试水平训练题 11.已知复数z满足|2z|1.则z的辐角主值的取值范围是__________。 z 2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2z在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。 3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z1,z2,„,z20,则复数1995z1,z1995,,z1995220所对应的不同点的个数是__________。 4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。 1305.设wi,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=90,22|AO|=|BO|,则ΔOAB面积是__________。 6.设wcosisin,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。 557.已知(3i)m=(1+i)n(m,n∈N+),则mn的最小值是__________。 8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z1•z2的实部为零,z1的辐角主值为,则z2=__________。63i7)1]n的值中有实数__________个。219.当n∈N,且1≤n≤100时,[(10.已知复数z1,z2满足z2z1,且Argzz1z23,Argz2zz27,Argz3,则Arg1的68z3值是__________。 11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素? 1ixn)A的所有根都是不相等的实根(n∈N+).12.证明:如果复数A的模为1,那么方程(1ix13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件? 六、联赛二试水平训练题 1.设非零复数a1,a2,a3,a4,a5满足 a2a3a4a5a1a2a3a4 aaaaa1(aaaaa)S,12345123454其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。 2(n1)nsinn1(n2)。2.求证:sinsinnnn23.已知p(z)=zn+c1zn-1+c2zn-2+„+cn是复变量z的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)2<4b2+1.4.运用复数证明:任给8个非零实数a1,a2,„,a8,证明六个数a1a3+a2a4, a1a5+a2a6, a1a7+a2a8, a3a5+a4a6, a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。 5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.6.设z1,z2,z3为复数,求证: |z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理 1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1. 已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。 数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。 5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。 6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。 7. 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。 例题答案: 1.分析:5个点的分布是任意的。如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。 以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。 如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么 ∠PQN=∠C,∠QNP=∠A 因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以 PQ≥PM。显然BC≥PQ,故BC≥PM。 由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。 说明: (1)这里是用等分三角形的方法来构造“抽屉”。类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,„,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。 (2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于“,请读者试证之,并比较证明的差别。 (3)用同样的方法可证明以下结论: 2i)在边长为1的等边三角形中有n+1个点,这n+1个点中一定有距离不大于的两点。 ii)在边长为1的等边三角形内有n+1个点,这n+1个点中一定有距离小于的两点。 (4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命 题仍然成立。 (5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长 为1的正三角形内(包括边界)有两点其距离不超过”。 2.分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若 nm∈N+,K∈N+,n∈N,则m=(2k-1)·2,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,„„ 证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数): 23456 (1){1,1×2,1×2,1×2,1×2,1×2,1×2}; 234 5(2){3,3×2,3×2,3×2,3×2,3×2}; 4(3){5,5×2,5×2,5×2,5×2}; 3(4){7,7×2,7×2,7×2}; (5){9,9×2,9×2,9×2}; (6){11,11×2,11×2,11×2}; 数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com „„ (25){49,49×2}; (26){51}; „„ (50){99}。 这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。 说明: (1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。想一想,为什么?因为1-2n中共含1,3,„,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。给n以具体值,就可以构造出不同的题目。例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?” (2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么? ①从2,3,4,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍? ②从1,2,3,„,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍? 你能举出反例,证明上述两个问题的结论都是否定的吗? (3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗? 3.证明:把前25个自然数分成下面6组: 1; ① 2,3; ② 4,5,6; ③ 7,8,9,10; ④ 11,12,13,14,15,16; ⑤ 17,18,19,20,21,22,23,⑥ 因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。 说明: (1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。 显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。这样,我们可以用如上一种特殊的分类法:递推分类法: 从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。 能与2同属于一个集合的数只有3,于是{2,3}为一集合。 数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。 (2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为 {26,27,28,29,30,31,32,33,34,35,36,37,38,39}; 第8个抽屉为:{40,41,42,„,60}; 第9个抽屉为:{61,62,63,„,90,91}; „„ 那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;(2)从前39个自然数中任取8个自然数;(3)从前60个自然数中任取9个自然数;(4)从前91个自然数中任取10个自然数;„ ]内。 都可以得到同一个结论:其中存在2个数,它们相互的比值在上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。如果我们改变区间[](p>q)端点的值,则又可以构造出一系列的新题目来。 4.分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合10就有2=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。 再来看各个真子集中一切数字之和。用N来记这个和数,很明显: 10≤N≤91+92+93+94+95+96+97+98+99=855 这表明N至多只有855-9=846种不同的情况。由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。 若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然 A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。 说明:本例能否推广为如下命题: 已给一个由m个互不相等的n位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。 请读者自己来研究这个问题。5.分析与解答:由中点坐标公式知,坐标平面两点(x1,y1)、(x2,y2)的中点坐标是。欲使都是整数,必须而且只须x1与x2,y1与y2的奇偶性相同。坐标平面上的任意整点按照横纵两个坐标的奇偶性考虑有且只有如下四种:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数)以此构造四个“抽屉”,则在坐标平面上任取五个整点,那么至少有两个整点,属于同一个“抽屉”因此它们连线的中点就必是整点。 说明:我们可以把整点的概念推广:如果(x1,x2,„xn)是n维(元)有序数组,且x1,x2,„xn中的每一个数都是整数,则称(x1,x2,„xn)是一个n维整点(整点又称格点)。如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此 n3共可分为2×2ׄ×2=2个类。这是对n维整点的一种分类方法。当n=3时,2=8,此时可数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。这就是1971年的美国普特南数学竞赛题。在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是: (A)最少可为0个,最多只能是5个(B)最少可为0个,最多可取10个 (C)最少为1个,最多为5个(D)最少为1个,最多为10个 (正确答案(D))6.分析:本题也似乎是茫无头绪,无从下手,其关键何在?仔细审题,它们的“和”能“被100整除”应是做文章的地方。如果把这100个数排成一个数列,用Sm记其前m项的和,则其可构造S1,S2,„S100共100个”和"数。讨论这些“和数”被100除所得的余数。注意到S1,S2,„S100共有100个数,一个数被100除所得的余数有0,1,2,„99共100种可能性。“苹果”数与“抽屉”数一样多,如何排除“故障”? 证明:设已知的整数为a1,a2,„a100考察数列a1,a2,„a100的前n项和构成的数列S1,S2,„S100。 如果S1,S2,„S100中有某个数可被100整除,则命题得证。否则,即S1,S2,„S100均不能被100整除,这样,它们被100除后余数必是{1,2,„,99}中的元素。由抽屉原理I知,S1,S2,„S100中必有两个数,它们被100除后具有相同的余数。不妨设这两个数为Si,Sj(i<j),则100∣(Sj-Si),即100∣。命题得证。 说明:有时候直接对所给对象作某种划分,是很难构造出恰当的抽屉的。这时候,我们需要对所给对象先作一些变换,然后对变换得到的对象进行分类,就可以构造出恰当的抽屉。本题直接对{an}进行分类是很难奏效的。但由{an}构造出{Sn}后,再对{Sn}进行分类就容易得多。 另外,对{Sn}按模100的剩余类划分时,只能分成100个集合,而{Sn}只有100项,似乎不能应用抽屉原则。但注意到余数为0的类恰使结论成立,于是通过分别情况讨论后,就可去掉余数为0的类,从而转化为100个数分配在剩下的99个类中。这种处理问题的方法应当学会,它会助你从“山穷水尽疑无路”时,走入“柳暗花明又一村”中。 最后,本例的结论及证明可以推广到一般情形(而且有加强的环节): 在任意给定的n个整数中,都可以找出若干个数来(可以是一个数),它们的和可被n整除,而且,在任意给定的排定顺序的n个整数中,都可以找出若干个连续的项(可以是一项),它们的和可被n整除。 将以上一般结论中的n赋以相应的年份的值如1999,2000,2001„,就可以编出相应年份的试题来。如果再赋以特殊背景,则可以编出非常有趣的数学智力题来,如下题: 有100只猴子在吃花生,每只猴子至少吃了1粒花生,多者不限。请你证明:一定有若干只猴子(可以是一只),它们所吃的花生的粒数总和恰好是100的倍数。 7.证明:视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线。三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形。 考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,„,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色。 考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4。这时若B2,B3,B4之数学教育网http://www.xiexiebang.com 数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息http://www.xiexiebang.com 间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2,B3,B4,必为蓝色三角形,命题仍然成立。 说明:(1)本题源于一个古典问题--世界上任意6个人中必有3人互相认识,或互相不认识。(美国普特南数学竞赛题)。 (2)将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色。求证:存在三点,它们所成的三角形三边同色。 (3)问题(2)可以往两个方向推广:其一是颜色的种数,其二是点数。 本例便是方向一的进展,其证明已知上述。如果继续沿此方向前进,可有下题: 在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目。证明至少有三个科学家,他们互相之间讨论同一个题目。 (4)回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题。反过来,我们可以继续推广。从以上(3,1)→(6,2)→(17,3)的过程,易发现 6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958„记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,„ 我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4„这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形。 数学教育网http://www.xiexiebang.com 高中数学竞赛讲义 (八)──平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a.|a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b共线的充要条件是存在实数 0,使得a= f 定理3平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。 定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。定理4平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x1x2+y1y2, cos(a, b)=4.a//bx1y2=x2y1, a b x1x2+y1y2=0.(a, b0),定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1, y1),(x, y),(x2, y2),则 讲义八 / 8 定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。 定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.【证明】 因为|a|2·|b|2-|a·b|2= -(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn),b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式: (x1y1+x2y2+…+xnyn)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn), b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。 2)对于任意n个向量,a1, a2, …,an,有| a1, a2, …,an|≤| a1|+|a2|+…+|an|。 二、方向与例题 1.向量定义和运算法则的运用。 例1 设O是正n边形A1A2…An的中心,求证: 【证明】 记后与原正n边形重合,所以,若 不变,这不可能,所以,则将正n边形绕中心O旋转 例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则 又因为BC与GP互相平分,所以BPCG为平行四边形,所以BG所以 PC,所以 讲义八 / 8 充分性。若因为,延长AG交BC于D,使GP=AG,连结CP,则,则,所以GB CP,所以AG平分BC。 同理BG平分CA。 所以G为重心。 例3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。 【证明】 如图所示,结结BQ,QD。 因为所以==又因为同理,②,③ 由①,②,③可得 。得证。 2.证利用定理2证明共线。 例4 △ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。,· ① 【证明】 首先 = 其次设BO交外接圆于另一点E,则连结CE后得CE又AH又EABC,所以AH//CE。AB,CH AB,所以AHCE为平行四边形。 讲义八 / 8 所以所以所以所以与,共线,所以O,G,H共线。 所以OG:GH=1:2。 3.利用数量积证明垂直。 例5 给定非零向量a, b.求证:|a+b|=|a-b|的充要条件是a【证明】|a+b|=|a-b| (a+b)2=(a-b) 2b.a·b=0 a b.a2+2a·b+b2=a2-2a·b+b2例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。 【证明】 设,则,又,所以 a·(b-c).(因为|a|2=|b|2=|c|2=|OH|2) 又因为AB=AC,OB=OC,所以OA为BC的中垂线。所以a·(b-c)=0.所以OE CD。 4.向量的坐标运算。 例7 已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。 讲义八/ 8 【证明】 如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x, y),则y-1), 又因为,因为,所以-x-(y-1)=0.=(x,,所以x2+y2=2.由①,②解得 所以 设所以所以,则,即F=4+ 。由和,共线得,所以AF=AE。 三、基础训练题 1.以下命题中正确的是__________.①a=b的充要条件是|a|=|b|,且a//b;②(a·b)·c=(a·c)·b;③若a·b=a·c,则b=c;④若a, b不共线,则xa+yb=ma+nb的充要条件是x=m, y=n;⑤若在b=(-3, 4)上的投影为-4。 2.已知正六边形ABCDEF,在下列表达式中:①③ ;④ 与,相等的有__________.;②;,且a, b共线,则A,B,C,D共线;⑥a=(8, 1)3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________.4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.5.已知a, b不共线,条件.6.在△ABC中,M是AC中点,N是AB的三等分点,且于D,若7.已知__________.8.已知 =b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.讲义八 / 8 =a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________,BM与CN交,则λ=__________.不共线,点C分 所成的比为2,则9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1,-1), 若c·b=4,则b的坐标为__________.,10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.与11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问的夹角取何值时的值最大?并求出这个最大值。 12.在四边形ABCD中,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。 四、高考水平训练题 1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足 则点P的轨迹一定通过△ABC的________心。 2.在△ABC中,3.非零向量=__________.4.若O为△ABC 的内心,且为__________.5.设O点在△ABC 内部,且__________.6.P是△ABC所在平面上一点,若__________心.7.已知,则| |的取值范,则P是△ABC 的,则△AOB与△AOC的面积比为,则△ABC 的形状,且a·b<0,则△ABC的形状是__________.,若点B关于 所在直线对称的点为B1,则围是__________.8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.9.在△ABC中,O为中线AM上的一个动点,若AM=2,则值为__________.10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2,-2)+ λ(4, 5), λ∈R},mj MN=__________.讲义八 / 8 的最小11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,(1)求y=f(x)的解析式及定义域;(2)求的取值范围。 12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。 (1)试问点P的轨迹是什么?(2)若点P坐标为(x0, y0), 求tan.五、联赛一试水平训练题 1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p, q 为 与的夹角,满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.2.p为△ABC内心,角A,B,C所对边长分别为a, b, c.O为平面内任意一点,则 =___________(用a, b, c, x, y, z表示).3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k∈R),则k的取值范围是___________.4.平面内四点A,B,C,D满足,则的取值有___________个.5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则 取值的集合是___________.6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinC·,则点O为△ABC 的___________心.(a-b)”的___________条件.,又(c·b):(b·a):(a·c)=1:2:3,则△ABC +sinB·7.对于非零向量a, b, “|a|=|b|”是“(a+b)8.在△ABC 中,三边长之比|a|:|b|:|c|=____________.9.已知P为△ABC内一点,且,CP交AB于D,求证: 讲义八 / 8 10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。 11.设坐标平面上全部向量的集合为V,a=(a1, a2)为V中的一个单位向量,已知从V到的变换T,由T(x)=-x+2(x·a)a(x∈V)确定,(1)对于V的任意两个向量x, y, 求证:T(x)·T(y)=x·y; (2)对于V的任意向量x,计算T[T(x)]-x;(3)设u=(1, 0);,若,求a.六、联赛二试水平训练题 1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何?证明你的结论。 2.已知AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE,使得AM:AC=CN:CE=r,如果B,M,N三点共线,求r.3.在矩形ABCD的外接圆的弧AB上取一个不同于顶点A,B的点M,点P,Q,R,S是M分别在直线AD,AB,BC,CD上的射影,求证:直线PQ与RS互相垂直。 4.在△ABC内,设D及E是BC的三等分点,D在B和F之间,F是AC的中点,G是AB的中点,又设H是线段EG和DF的交点,求比值EH:HG。 5.是否存在四个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直? 6.已知点O在凸多边形A1A2…An内,考虑所有的AiOAj,这里的i, j为1至n中不同的自然数,求证:其中至少有n-1个不是锐角。 7.如图,在△ABC中,O为外心,三条高AD,BE,CF交于点H,直线ED和AB交于点M,FD和AC交于点N,求证:(1)OB DF,OC DE,(2)OH MN。 8.平面上两个正三角形△A1B1C1和△A2B2C2,字母排列顺序一致,过平面上一点O作,求证△ABC为正三角形。 9.在平面上给出和为 的向量a, b, c, d,任何两个不共线,求证: |a|+|b|+|c|+|d|≥|a+d|+|b+d|+|c+d|.讲义八/ 8 第七章解三角形 一、基础知识 在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,pabc为半周长。 2abc1.正弦定理:=2R(R为△ABC外接圆半径)。sinAsinBsinC 111推论1:△ABC的面积为S△ABC=absinCbcsinAcasinB.222 推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足ab,则a=A.sinasin(a) 1absinC;再证推论2,因为B+C=-A,所2正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC= 以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推 absinasin(a),所以,即sinasin(-A)=sin(-a)sinA,sinAsinBsinAsin(A) 11等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于22 cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<.所以只有-A+a=-a+A,所以a=A,论3,由正弦定理得证。 b2c2a2 2.余弦定理:a=b+c-2bccosAcosA,下面用余弦定理证明几个常2bc222用的结论。 (1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则b2pc2qAD=pq.(1)pq2【证明】因为c=AB=AD+BD-2AD·BDcosADB,222所以c=AD+p-2AD·pcosADB.① 222同理b=AD+q-2AD·qcosADC,② 因为ADB+ADC=,所以cosADB+cosADC=0,所以q×①+p×②得 2222 b2pc2qqc+pb=(p+q)AD+pq(p+q),即AD=pq.pq22222b22c2a2 注:在(1)式中,若p=q,则为中线长公式AD.2 122212212222(2)海伦公式:因为SABCbcsinA=bc(1-cosA)= bc 44 4(b2c2a2)2122 22[(b+c)-a][a-(b-c)]=p(p-a)(p-b)(p-c).122164bc 这里pabc.2 用心 爱心 专心-1- 所以S△ABC= p(pa)(pb)(pc).二、方法与例题 1.面积法。 例1(共线关系的张角公式)如图所示,从O点发出的三条射线满足POQ,QOR,另外OP,OQ,OR的长分别为u, w, v,这里α,β,α+β∈(0, ),则P,Q,R的共线的充要条件是 sinsinsin() .uvw 【证明】P,Q,R共线SΔPQR0SOPRSOPQSORQ 1uvsin(α+β)=uwsinα+vwsinβ 222sin()sinsin,得证。 wuv 2.正弦定理的应用。 例2如图所示,△ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:AP·BC=BP·CA=CP·AB。 【证明】过点P作PDBC,PEAC,PFAB,垂足分别为D,E,F,则P,D,C,E;P,E,A,F;P,D,B,F三组四点共圆,所以EDF=PDE+PDF=PCA+PBA=BPC-BAC。 00 由题设及BPC+CPA+APB=360可得BAC+CBA+ACB=180。 所以BPC-BAC=CPA-CBA=APB-ACB=60。 00 所以EDF=60,同理DEF=60,所以△DEF是正三角形。所以DE=EF=DF,由正弦定理,CDsinACB=APsinBAC=BPsinABC,两边同时乘以△ABC的外接圆直径2R,得CP·BA=AP·BC=BP·AC,得证: 例3如图所示,△ABC的各边分别与两圆⊙O1,⊙O2相切,直线GF与DE交于P,求证:PABC。 【证明】延长PA交GD于M,GMO1AAF .MDAO2AE APAFPAAE ,由正弦定理,sin(1)sinsin(2)sinAEsin1sin .所以 AFsin2sin GMPMMDPM ,另一方面,sinsin1sinsin2GMsin2sin 所以,MDsin1sinGMAF 所以,所以PA//O1G,MDAE即PABC,得证。 因为O1GBC,O2DBC,所以只需证 3.一个常用的代换:在△ABC中,记点A,B,C到内切圆的切线长分别为x, y, z,则a=y+z, b=z+x, c=x+y.22 2例4在△ABC中,求证:a(b+c-a)+b(c+a-b)+c(a+b-c)≤3abc.【证明】令a=y+z, b=z+x, c=x+y,则 abc=(x+y)(y+z)(z+x) xyyzzx=8xyz=(b+c-a)(a+c-b)(a+b-c) =a(b+c-a)+b(c+a-b)+c(a+b-c)-2abc.222 所以a(b+c-a)+b(c+a-b)+c(a+b-c)≤3abc.4.三角换元。 例5设a, b, c∈R,且abc+a+c=b,试求P + 222 3的最大值。a21b21c21 【解】由题设b ac,令a=tanα, c=tanγ, b=tanβ, 1ac 101102 则tanβ=tan(α+γ), P=2sinγsin(2α+γ)+3cosγ≤3sin,333 11022 当且仅当α+β=,sinγ=,即a=时,Pmax=.,b2,c 3322 41222 例6在△ABC中,若a+b+c=1,求证: a+b+c+4abc<.22222 【证明】设a=sinαcosβ, b=cosαcosβ, c=sinβ, β0,.2 因为a, b, c为三边长,所以c<, c>|a-b|,222 从而0,,所以sinβ>|cosα·cosβ|.4 因为1=(a+b+c)=a+b+c+2(ab+bc+ca),222 所以a+b+c+4abc=1-2(ab+bc+ca-2abc).又ab+bc+ca-2abc=c(a+b)+ab(1-2c) 22224 =sinβcosβ+sinαcosα·cosβ·cos2β 141=41>4 = [1-cos2β+(1-cos2α)cosβcos2β] + 224 1424 cos2β(cosβ-cos2αcosβ-cos2β)411442 +cos2β(cosβ-sinβ-cosβ)=.44 1222 所以a+b+c+4abc<.三、基础训练题 1.在△ABC中,边AB为最长边,且sinAsinB= 2 3,则cosAcosB的最大值为__________.42.在△ABC中,若AB=1,BC=2,则C的取值范围是__________.3.在△ABC中,a=4, b+c=5, tanC+tanB+tanCtanB,则△ABC的面积为__________.4.在△ABC中,3sinA+4cosB=6, 3cosA+4sinB=1,则C=__________.5.在△ABC中,“a>b”是“sinA>sinB”的__________条件.6.在△ABC中,sinA+cosA>0, tanA-sinA<0,则角A的取值范围是__________.35,cosB=,则cosC=__________.513 AC 1”的__________条件.8.在△ABC中,“三边a, b, c成等差数列”是“tantan 223 7.在△ABC中,sinA= 9.在△ABC中,若sinC=2cosAsinB,则三角形形状是__________.10.在△ABC中,tanA·tanB>1,则△ABC为__________角三角形.11.三角形有一个角是60,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。 12.已知锐角△ABC的外心为D,过A,B,D三点作圆,分别与AC,BC相交于M,N两点。求证:△MNC的外接圆半径等于△ABD的外接圆半径。 13.已知△ABC中,sinC= 四、高考水平训练题 1.在△ABC中,若tanA= sinAsinB,试判断其形状。 cosAcosB 1, tanB=,且最长边长为1,则最短边长为__________.2 32.已知n∈N+,则以3,5,n为三边长的钝角三角形有________个.+22 23.已知p, q∈R, p+q=1,比较大小:psinA+qsinB__________pqsinC.4.在△ABC中,若sin2A+sin2B+sin2C=4sinAsinBsinC,则△ABC 为__________角三角形.5.若A为△ABC 的内角,比较大小:cot A cotA__________3.8 6.若△ABC满足acosA=bcosB,则△ABC的形状为__________.7.满足A=60,a=6, b=4的三角形有__________个.8.设为三角形最小内角,且acos 222+sin-cos-asin=a+1,则a的取值范围是2222 __________.9.A,B,C是一段笔直公路上的三点,分别在塔D的西南方向,正西方向,西偏北30方向,且AB=BC=1km,求塔与公路AC段的最近距离。 10.求方程xy1yx1xy的实数解。11.求证: 17sin200.320 五、联赛一试水平训练题 1.在△ABC中,b=ac,则sinB+cosB的取值范围是____________.sinBcosA2cosC ,则△ABC 的形状为____________.sinCcosA2cosB ABC 3.对任意的△ABC,Tcotcotcot-(cotA+cotB+cotC),则T的最大值为 22.在△ABC中,若____________.4.在△ABC中,sin A sinBsinC的最大值为____________.2 5.平面上有四个点A,B,C,D,其中A,B为定点,|AB|=3,C,D为动点,且 |AD|=|DC|=|BC|=1。记S△ABD=S,S△BCD=T,则S+T的取值范围是____________.6.在△ABC中,AC=BC,ACB80,O为△ABC的一点,OAB10,ABO=30,则ACO=____________.00 7.在△ABC中,A≥B≥C≥小值为__________.ABC,则乘积cossincos的最大值为____________,最 2226 CAAC cos=____________.22 8.在△ABC中,若c-a等于AC边上的高h,则sin 9.如图所示,M,N分别是△ABC外接圆的弧AB,AC中点,P为BC上的动点,PM交AB 于Q,PN交AC于R,△ABC的内心为I,求证:Q,I,R三点共线。 10.如图所示,P,Q,R分别是△ABC的边BC,CA,AB上一点,且AQ+AR=BR+BP=CQ+CP。 求证:AB+BC+CA≤2(PQ+QR+RP)。 11.在△ABC外作三个等腰三角形△BFC,△ADC,△AEB,使BF=FC,CD=DA,AE=EB,ADC=2BAC,AEB=2ABC,BFC=2ACB,并且AF,BD,CE交于一点,试判断△ABC的形状。 六、联赛二试水平训练题 1.已知等腰△ABC,AB=AC,一半圆以BC的中点为圆心,且与两腰AB和AC分别相切于点D和G,EF与半圆相切,交AB于点E,交AC于点F,过E作AB的垂线,过F作AC的垂线,两垂线相交于P,作PQBC,Q为垂足。求证:PQ EF,此处=B。 2sin 2.设四边形ABCD的对角线交于点O,点M和N分别是AD和BC的中点,点H1,H2(不重合)分别是△AOB与△COD的垂心,求证:H1H2MN。 3.已知△ABC,其中BC上有一点M,且△ABM与△ACM的内切圆大小相等,求证: AMP(Pa),此处P (a+b+c), a, b, c分别为△ABC对应三边之长。 24.已知凸五边形ABCDE,其中ABC=AED=90,BAC=EAD,BD与CE交于点O,求证:AOBE。 5.已知等腰梯形ABCD,G是对角线BD与AC的交点,过点G作EF与上、下底平行,点E 和F分别在AB和CD上,求证:AFB=90的充要条件是AD+BC=CD。 6.AP,AQ,AR,AS是同一个圆中的四条弦,已知PAQ=QAR=RAS,求证:AR(AP+AR)=AQ(AQ+AS)。 22222 7.已知一凸四边形的边长依次为a, b, c, d,外接圆半径为R,如果a+b+c+d=8R,试问对此四边形有何要求? 8.设四边形ABCD内接于圆,BA和CD延长后交于点R,AD和BC延长后交于点P,A,B,C指的都是△ABC的内角,求证:若AC与BD交于点Q,则 cosAcosCcosB .APCRBQ 9.设P是△ABC内一点,点P至BC,CA,AB的垂线分别为PD,PE,PF(D,E,F是垂足),求证:PA·PB·PC≥(PD+PE)·(PE+PF)·(PF+PD),并讨论等号成立之条件。 高中数学复数教案 教学目标:(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2)正确对复数进行分类,掌握数集之间的从属关系;(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力. 教学重点难点:复数的概念,复数相等的充要条件.用复平面内的点表示复数M. 以及复数的运算法则 教学过程: 一、复习提问: 1.复数的定义。 2.虚数单位。 二、讲授新课 1.复数的实部和虚部: 复数z=a+bi中中的a与b分别叫做复数的实部和虚部 2.复数相等 如果两个复数的实部与虚部分别相等,就说这两个复数相等。 3.用复平面(高斯平面)内的点表示复数 复平面的定义:立了直角坐标系表示复数的平面,叫做复平面. 复数可用点 来表示.其中x轴叫实轴,y轴 除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上. 4.复数的几何意义: 复数集c和复平面所有的点的集合是一一对应的. 5.共轭复数 (1)复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)(2)a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.(3复平面内表示两个共轭复数的点z与 关于实轴对称. 6.复数的四则运算:加减乘除的运算法则。小结: 1.在理解复数的有关概念时应注意: (1)明确什么是复数的实部与虚部; (2)弄清实数、虚数、纯虚数分别对实部与虚部的要求; (3)弄清复平面与复数的几何意义; (4)两个复数不全是实数就不能比较大小。 2.复数集与复平面上的点注意事项: (1)复数 中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。 (2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。 (3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。 (4)复数集C和复平面内所有的点组成的集合一一对应: 3复数的四则运算的规律和方法。第二篇:高中数学竞赛讲义-抽屉原理
第三篇:高中数学竞赛讲义(八)平面向量
第四篇:高中数学竞赛教材讲义 第七章 解三角形
第五篇:高中数学复数教案