第一篇:高中数学必修4人教A教案第二章平面向量复习
第二章
平面向量复习课
(一)一、教学目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法
7.向量的坐标运算(加.减.实数和向量的乘法.数量积)
8.数量积(点乘或内积)的概念,a·b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1.实数与向量的积的运算律:
(1)(a)()a(2)()a aa(3)(ab)ab
2.平面向量数量积的运算律:
(1)abba
(2)(a)b(ab)a(b)
(3)(ab)c acbc
3.向量运算及平行与垂直的判定: 设a(x1,y1),b(x2,y2),(b0).则ab(x1x2,y1y2)
ab(x1x2,y1y2)
abx1x2y1y2
a//bx1y2x2y10.abx1x2y1y20.4.两点间的距离:
|AB|(x1x2)2(y1y2)2
5.夹角公式: cosab a bx1x2y1y2 x1y1x2y22222
6.求模:
aaa
ax2ya(x1x2)2(y1y2)2
(二)习题讲解:第二章 复习参考题
(三)典型例题
例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c
解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b
(四)基础练习:
(五)、小结:掌握向量的相关知识。
(六)、作业:
第二章
平面向量复习课
(二)一、教学过程
(一)习题讲解:
(二)典型例题
例1.已知圆C:(x3)(y3)4及点A(1,1),M是圆上任意一点,点N在线
22段MA的延长线上,且MA2AN,求点N的轨迹方程。
练习:1.已知O为坐标原点,OA=(2,1),OB=(1,7),OC=(5,1),OD=xOA,y=DB·DC(x,y∈R)
求点P(x,y)的轨迹方程;
2.已知常数a>0,向量m(0,a),n(1,0),经过定点A(0,-a)以mn为方向向量的直线与经过定点B(0,a)以n2m为方向向量的直线相交于点P,其中R.求点P的轨迹C的方程;
例2.设平面内的向量OA(1,7), OB(5,1), OM(2,1),点P是直线OM上的一个动点,求当PAPB取最小值时,OP的坐标及APB的余弦值.
解
设OP(x,y).∵
点P在直线OM上,∴ OP与OM共线,而OM(2,1),∴
x-2y=0即x=2y,有OP(2y,y).∵ PAOAOP(12y,7y),PBOBOP(52y,1y),∴ PAPB(12y)(52y)(7y)(1y)
= 5y2-20y+12 = 5(y-2)2-8.
从而,当且仅当y=2,x=4时,PAPB取得最小值-8,此时OP(4,2),PA(3,5),PB(1,1).
于是|PA|34,|PB|2,PAPB(3)15(1)8,∴ cosAPBPAPB|PA||PB|8342417 17小结:利用平面向量求点的轨迹及最值。
作业:
第二篇:高中数学必修4平面向量复习5正弦定理余弦定理
5.5正弦定理、余弦定理
要点透视:
1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.
(1)a=2RsinA,b=2RsinB,c=2RsinC;
abc(2)sinA=,sinB=,sinC=: 2R2R2R
(3)sinA:sinB:sinC=a:b:c.
可以用来判断三角形的形状,其主要功能是实现三角形中的边角关系转化,如常把a,b,c换成2Rsin A,2Rsin B,2Rsin C来解题.
2.判断三角形的形状特征,必须从研究三角形的边与边关系,或角与角的关系入手,充分利用正弦定理与余弦定理进行边角转化,由三角形的边或角的代数运算或三角运算,找出边与边或角与角的关系,从而作出正确判断.
3.要注意利用△ABC中 A+B+C=π,以及由此推得的一些基本关系式
BCAsin(B+C)=sinA,cos(B+C)=-sinA,sin=cos等,进行三角变换的运2
2用.
4.应用解三角形知识解决实际问题时,要分析和研究问题中涉及的三角形,它的哪些元素是已知的,哪些元素是未知的,应选用正弦定理还是余弦定理进行求解.
5.应用解三角形知识解实际问题的解题步骤:
(1)根据题意画出示意图.
(2)确定实际问题所涉及的三角形,并搞清该三角形的已知元和末知元.
(3)选用正、余弦定理进行求解,并注意运算的正确性.
(4)给出答案.
活题精析:
例1.(2001年全国卷)已知圆内接四边形ABCD的边长是AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.
要点精析:本题主要考查三角函数的基础知识,以及应用三角形面积公式和余弦定理解三角形的方法,考查应用数学知识分析、解决实际问题的能力.
解:如图所示,连BD,四边形ABCD的面积
11S=SABDSCDB=AB·AD·sinA+BC·CDsinC,2
21∵ A+C=180°,∴ sin A= sin C,于是 S=(2×4+4×6)·sin A=16sin A. 2
222在△ABD中,BD=AB+AD-2AB·ADcosA=20-16cosA.
在△CBD中,BD2=CD2+BC2-2CD·BCcosC=52-48cosC.
213又cosA=-cosC, cosA=-, ∵ A∈(0, π), ∴ A=π, sinA=.232
3∴ S=16×=8.2
例2.(2004春北京卷)在△ABC中,a,b,c分别是∠A,∠B,∠C的对
边长,已知a,b,c成等比数列,且a2-c2=ac-bc,求∠A的大小及bsinB的c值。
要点精析:(1)∵ a,b,c成等差数列,∴ b2=ac.
又a2-c2=ac-bc,∴ b2+c2-a2=bc,在△ABC中,由余弦定理得
b2c2a21cosA==.∴ A=60°; 22bc
bsinA(2)解法1:在△ABC中,由正弦定理得sinB=,a
bsinBb2sin6032∵ b=ac,∠A=60°,∴ ==sn60=. cca2
11解法2.在△ABC中,由面积公式得bcsinA=acsinB,∵ b2=ac,22
bsinB3∠A=60°,∴ bcsinA=b2 sinB,∴ =sinA=.c2
例3.(2001年上海卷)已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
13要点精析:∵ S=absinC,∴sinc=,于是∠C=60°或∠C=120°. 22
又∵ c2=a2+b2-2abcosC,当∠C=60°时,c2=a2+b2-ab,c
当∠C=120°时,c2=a2+b2+ab,c,∴ c
.练习题
一、选择题
tanAa
21.在△ABC中,若,则△ABC是()tanBb2
A.等腰(非直角)三角形B.直角(非等腰)三角形
C.等腰三角形或直角三角形D.等腰直角三角形
ABab2.在△ABC中,tan,则三角形中()2ab
A.a=b且c>2aB.c2=a2+b2且a≠b
2cD.a=b或c2=a2+b2
3.为测某塔AB的高度,在一幢与塔AB相距20 m的楼的楼顶处测得塔顶的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是()
33A.20(1+)mB.20(1+)m 32
C.20(1+)mD.30m
4.设α,β是钝角三角形的两个锐角,下列四个不等式中不正确的是()
1A.tanαtanβ<1B.sinβ<2C.cosβ>1D.tan(α+β) 5.已知锐角三角形的三边长分别为2,3,x,则x的取值范围是()C.a=b= A.1 C.0 56.△ABC的三边分别为 2m+3,m2+2m,m2+3m+3(m>0),则最大内角的度数为() A.150°B.120°C.90°D.135° 二、填空题: abc7.在△ABC中,已知A=60°,b=1,S△ABC=3,则 sinAsinBsinC 1138.△ABC的三边满足:,则∠B= abbcabc 4129.在△ABC中,已知sinA=,sinB=,则sinC的值是.51 310.在△ABC中,BC边上的中线长是ma,用三边a,b,c表示ma,其公式是.三、解答题 11.设a,b,c是△ABC中A,B,C的对边,当m>0时,关于x的方程b(x2+m)+c(x2-m)- ax=0有两个相等实根,且sinCcosA-cosCsinA=0,试判断△ABC的形状。 12.已知⊙O的半径为R,若它的内接三角形ABC中,等式2R(sin2A-sin2C)=(2a-b)sinB成立,(1)求∠C的大小; (2)求△ABC的面积S的最大值. 13.在△ABC中,∠C=60°,BC=a,AC=b,a+b=16. (1)试写出△ABC的面积S与边长a的函数关系式; (2)当a等于多少时,S有最大值并求出最大值; (3)当a等于多少时,周长l有最小值并未出最小值. 14.在△ABC中,已知面积S=a2-(b-c)2,且b+c=8,求S的最大值. CCCC15.在△ABC中,m(cos,sin),n(cos,sin),且m与n的夹角是. 22222 (1)求C; 73(2)已知c=,三角形面积 S=3,求a+b。22 第12课时复习课 一、教学目标 1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。 2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。 4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法 7.向量的坐标运算(加.减.实数和向量的乘法.数量积) 8.数量积(点乘或内积)的概念,a²b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法” 二、知识与方法 向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直 三、典型例题 例1.对于任意非零向量a与b,求证:||a|-|b||≤|a±b|≤|a|+|b| 证明:(1)两个非零向量a与b不共线时,a+b的方向与a,b的方向都不同,并且|a|-|b|<|a±b|<|a|+|b| (3)两个非零向量a与b共线时,①a与b同向,则a+b的方向与a.b相同且|a+b|=|a|+|b|.②a与b异向时,则a+b的方向与模较大的向量方向相同,设|a|>|b|,则|a+b|=|a|-|b|.同理可证另一种情况也成立。 例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c i j 解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b 例3.下面5个命题:①|a²b|=|a|²|b|②(a²b)2=a2²b2③a⊥(b-c),则a²c=b²c ④a²b=0,则|a+b|=|a-b|⑤a²b=0,则a=0或b=0,其中真命题是() A①②⑤ B ③④ C①③ D②④⑤ 三、巩固训练 1.下面5个命题中正确的有() ①a=ba² ②a²③a²(b+c)=a² ④c=b²c;c=b²ca=b;c+b²c;(b²c)=(a²b)²c; ⑤a² aba2ab.A..①②⑤ B.①③⑤ C.②③④ D.①③ 2.下列命题中,正确命题的个数为(A) ①若a与b是非零向量,且a与b共线时,则a与b必与a或b中之一方向相同;②若e为单位向量,且a∥e则a=|a|e ③a²a²a=|a|3 ④若a与b共线,a与c共线,则c与b共线;⑤若平面内四点A.B.C.D,必有AC+BD=BC+AD A 1 B 2 C 3 D 4 3.下列5个命题中正确的是 ①对于实数p,q和向量a,若pa=qa则p=q②对于向量a与b,若|a|a=|b|b则a=b③对于两个单位向量a与b,若|a+b|=2则a=b④对于两个单位向量a与b,若ka=b,则a=b 4.已知四边形ABCD的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD为正方形。 第二章平面向量 本章内容介绍 向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习习近平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.(让学生对整章有个初步的、全面的了解.) 第6课时 §2.3.4平面向量共线的坐标表示 教学目的: (1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算; (3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算 教学难点:向量的坐标表示的理解及运算的准确性 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.平面向量的坐标表示 分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj 把(x,y)叫做向量a的(直角)坐标,记作a(x,y) 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算 若a(x1,y1),b(x2,y2),用心 爱心 专心 则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y).若A(x1,y1),B(x2,y2),则ABx2x1,y2y1 二、讲解新课: a∥b(b0)的充要条件是x1y2-x2y1=0 设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2) 消去λ,x1y2-x2y1=0 yy21探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵b0 ∴x2,y2中至少有一个不为0(2)充要条件不能写成y1y2 ∵x1,x2有可能为0 x1x2ab x1y2x2y10(3)从而向量共线的充要条件有两种形式:a∥b(b0) 三、讲解范例: 例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x 解:∵a=(-1,x)与b=(-x,2)共线 ∴(-1)×2-x•(-x)=0 ∴x=±2 ∵a与b方向相同 ∴x=2 例5 已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB与平行于直线CD吗? 用心 爱心 专心 解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴AB∥CD 又 ∵ AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行 ∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD 四、课堂练习: 1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为() A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为()A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记: 用心 爱心 专心 【摘要】“高中数学平面向量的公式知识点”数学公式讲解是这门学科的要点,套用公式是最终的题解方法,希望本文可以为大家带来帮助: 定比分点 定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy'-x'y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx'+yy'=0。 零向量0垂直于任何向量.设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。 当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x'+y•y'。 向量的数量积的运算律 a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b|,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。第三篇:高中数学 第二章《平面向量》复习课教案 新人教A版必修4
第四篇:高中数学 2.3.4《平面向量共线的坐标表示》教案 新人教A版必修4
第五篇:高中数学平面向量的公式知识点