高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例

时间:2019-05-15 06:02:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例》。

第一篇:高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例

2.5.1平面几何中的向量方法

教学目的:

1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;

2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.; 3.让学生深刻理解向量在处理平面几何问题中的优越性.教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程:

一、复习引入:

1.两个向量的数量积: ab |a||b|cos.2.平面两向量数量积的坐标表示: abx1x2y1y2.3.向量平行与垂直的判定: a//bx1y2x2y10.abx1x2y1y20.4.平面内两点间的距离公式:

|AB|5.求模:

(x1x2)2(y1y2)2

aaa

a

二、讲解新课: 例

x2y a(x1x2)2(y1y2)2

1.平行四边形是表示向量加法与减法的几何模型.如图,AC ABAD,DB ABAD,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?

DABC

思考1:

如果不用向量方法,你能证明上述结论吗?

练习1.已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.(用向量方法证明)

思考2:

运用向量方法解决平面几何问题可以分哪几个步骤?

用向量方法解决平面几何问题的“三步曲”:

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.例2.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗? FD

E RT

A B

三、课堂小结

用向量方法解决平面几何的“三步曲”:

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.四、课后作业

习题2.5 A组第1题

C 2

2.5.2向量在物理中的应用举例

教学目的:

1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题 的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;

2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会 数学在现实生活中的作用.教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.教学过程:

一、复习引入: 1.讲解上节作业题.已知A(1,0),直线l:y2x6,点R是直线l上的一点,若RA2AP,求点P的轨迹方程.2.你能掌握物理中的哪些矢量?向量运算的三角形法则与平行四边形法则是什么?

二、讲解新课:

例1.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种形象吗?

探究1.设两人拉力分别为F1,F2,其夹角为,旅行包的重力为G。(1)为何值时,|F1|最小,最小值是多少? 3

(2)| F1|能等于|G|吗?为什么? 探究2: 你能总结用向量解决物理问题的一般步骤吗? 用向量解决物理问题的一般步骤是:

(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;

(3)参数的获得:求出数学模型的有关解——理论参数值;(4)问题的答案:回到问题的初始状态,解决相关物理现象.例2.如图,一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸.已知船的速度|v1|=10 km/h,水流速度|v2|=2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?

思考

3、: “行驶最短航程”是什么意思?怎样才能使航程最短?

三、课堂小结

向量解决物理问题的一般步骤:(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;

(3)参数的获得:求出数学模型的有关解——理论参数值;(4)问题的答案:回到问题的初始状态,解决相关物理现象.四、课后作业

习题2.5 A组第4题

第二篇:2.5.1平面几何中的向量方法(教案)

2.5 平面向量应用举例 2.5.1 平面几何中的向量方法

教学目标

1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程 导入新课

前言:向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.新知探究 提出问题

①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?

②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法? ③你能总结一下利用平面向量解决平面几何问题的基本思路吗?

图1

图2

证明:方法一:如图2.作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴AD=BC,AF=BE.由于AC AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).方法二:如图3.以AB所在直线为x轴,A为坐标原点建立直角坐标系.设B(a,0),D(b,c),则C(a+b,c).∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2, |BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).用向量方法解决平面几何问题的“三步曲”,即

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.应用示例

图3

例1 如图4, 解:如图4, ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗? 设AB=a,AD=b,AR=r,AT=t,则AC=a+b.由于AR与AC共线,所以我们设r=n(a+b),n∈R.又因为EB=AB-AE=a-图4

1b, 21b).2ER与EB共线,所以我们设ER=mEB=m(a-因为ARAEER,所以r=即(n-m)a+(n+

111b+m(a-b).因此n(a+b)=b+m(a-b), 222m1)b=0.由于向量a、b不共线,要使上式为0,必须 2nm0,1解得n=m=.m13n0.2所以AR=变式训练 111AC,同理TC=AC.于是RT=AC.所以AR=RT=TC.333

图5

如图5,AD、BE、CF是△ABC的三条高.求证:AD、BE、CF相交于一点.证明:设BE、CF相交于H,并设AB=b,AC=c,AH=h,则BH=h-b,CH=h-c,BC=c-b.因为BH⊥AC,CH⊥AB, 所以(h-b)·c=0,(h-c)·b=0, 即(h-b)·c=(h-c)·b.化简得h·(c-b)=0.所以AH⊥BC.所以AH与AD共线, 即AD、BE、CF相交于一点H.课堂小结:用向量解决平面问题的三步曲:

课后作业:

1.有一边长为1的正方形ABCD,设AB=a,BC=b,AC=c,则|a-b+c|=_______________.2.已知|a|=2,|b|=,则使λb-a与a垂直的λ=____________.2,a与b的夹角为45°3.在等边△ABC中,AB=a,BC=b,CA=c,且|a|=1,则a·b+b·c+c·a=____________.4.已知四边形ABCD满足|AB|2+|BC|2=|AD|2+|DC|2,M为对角线AC的中点.求证:|MB|=|MD|.5.如图6,已知AC为⊙O的一条直径,∠ABC是圆周角.求证:∠ABC=90°.图6

第三篇:2.5.1平面几何中的向量方法(教学设计)

SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

2.5.1平面几何中的向量方法(教学设计)

[教学目标]

一、知识与能力:

1.运用向量方法解决某些简单的平面几何问题.二、过程与方法:

经历用向量方法解决某些简单的平面几何问题;体会向量是一种处理几何问题的工具;发展运算能力和解决实际问题的能力.三、情感、态度与价值观:

培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点.[教学重点] 运用向量方法解决某些简单的平面几何问题.[教学难点]

运用向量方法解决某些简单的平面几何问题

一、复习回顾 1. 向量的概念;

2. 向量的表示方法:几何表示、字母表示; 3. 零向量、单位向量、平行向量的概念;

4. 在不改变长度和方向的前提下,向量可以在空间自由移动; 5. 相等向量:长度(模)相等且方向相同的向量; 6. 共线向量:方向相同或相反的向量,也叫平行向量.7. 要熟练地掌握向量加法的平行四边形法则和三角形法则,并能做出已知两个向量的和向量; 8. 要理解向量加法的交换律和结合律,能说出这两个向量运算律的几何意义; 9. 理解向量减法的意义;能作出两个向量的差向量.10. 理解实数与向量的积的意义,能说出实数与一个向量的积这与个向量的模及方向间的关系; 11. 能说出实数与向量的积的三条运算律,并会运用它们进行计算; 12. 能表述一个向量与非零向量共线的充要条件; 13. 会表示与非零向量共线的向量,会判断两个向量共线.二、师生互动,新课讲解

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图像的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.因此可用向量方法解决平面几何中的一些问题.例1: 证明:对角线互相平分的四边形是平行四边形.SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

证明:设四边形ABCD的对角线AC、BD交于点O,且AOOC,BOOD.AB12AC1112DB,DC2DB2AC,ABDC, 即ABDC且AB//DC所以四边形ABCD是平行四边形,即对角线互相平分的四边形是平行四边形.变式训练1:已知DE是ABC的中位线,用向量的方法证明:DE12BC,且DE//BC.证明:易知AD12AB,AE12AC,所以DEAEAD12ACAB12BC.即DE12BC,又D不在BC上,所以DE//BC.例2: 用向量方法证明:三角形三条高线交于一点.证明:设H是高线BE、CF的交点,且设ABa,ACb,AHh则有BHha,CHhb,BCba,BHAC,CHAB,ha·bhb·a0

化简得,h·ba0AHBC所以,三角形三条高线交于一点.变式训练2:证明勾股定理,在RtABC中,ACBC,BCa,ACb,ABc,则c2b2a2.证明:由ABACCB,得BAB·ABAC·AC2AC CBCBCB即|AB|2|AC|20|CB|2,故c2b2a2.CA

例3:(课本P109例1)已知平行四边形ABCD的对角线为AC、BD.求证:|AC|2|DB|22|AB|2|AD|2 2

SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

证明:由|AC|2ACABAD22|AB|2|AD|22AB AD|DB|2DBABAD2,2

|AB|2|AD|22AB AD得|AC|2|DB|22|AB|2|AD|2.变式训练3:用向量方法证明:对角线相等的平行四边形是矩形.解:如图,四边形ABCD对角线AC、BD交于点O,ABAOOB,ADAOOD,AB·ADAOOB·AOOD2DOC

AAOAO·ODOB·AOOB·OD0ABAD,即ABAD,四边形ABCD是矩形.B

三、课堂小结,巩固反思:

向量是沟通数与形的十分有效的工具,利用向量处理平面几何问题,最重要的是要先在平面图形中寻找向量的“影子”,然后合理引入向量,并通过向量的运算,达到快捷解题的效果.四、课时必记:

五、分层作业: A组:

1、(课本P118复习参考题 A组:NO:5)

2、(课本P118复习参考题 A组:NO:6)

3、(课本P118复习参考题 A组:NO:7)

4、(课本P118复习参考题 A组:NO:8)

5、(课本P118复习参考题 A组:NO:9)B组:

1、(课本P113习题2.5 A组NO:1)

2、(课本P113习题2.5 A组NO:2)SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

3、用向量方法证明:对角线互相垂直的平行四边形是菱形.证明:如图平行四边形ABCD,对角线AC、BD交于点O,ABAOOB,BCBOOC|AB|2AOOB2|AO|22AO OBOB2|AO2OB2

|BC|2BOOC2|BO|22BO OC|OC|2|BO|2|OC|2,|AB||BC|,四边形ABCD是菱形.C组:

DCOAB4

第四篇:高中数学必修4人教A教案第二章平面向量复习

第二章

平面向量复习课

(一)一、教学目标

1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法

7.向量的坐标运算(加.减.实数和向量的乘法.数量积)

8.数量积(点乘或内积)的概念,a·b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”

二、知识与方法

向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直

三、教学过程

(一)重点知识:

1.实数与向量的积的运算律:

(1)(a)()a(2)()a aa(3)(ab)ab

2.平面向量数量积的运算律:

(1)abba

(2)(a)b(ab)a(b)

(3)(ab)c acbc

3.向量运算及平行与垂直的判定: 设a(x1,y1),b(x2,y2),(b0).则ab(x1x2,y1y2)

ab(x1x2,y1y2)

abx1x2y1y2

a//bx1y2x2y10.abx1x2y1y20.4.两点间的距离:

|AB|(x1x2)2(y1y2)2

5.夹角公式: cosab a bx1x2y1y2 x1y1x2y22222

6.求模:

aaa

ax2ya(x1x2)2(y1y2)2

(二)习题讲解:第二章 复习参考题

(三)典型例题

例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c

解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b

(四)基础练习:

(五)、小结:掌握向量的相关知识。

(六)、作业:

第二章

平面向量复习课

(二)一、教学过程

(一)习题讲解:

(二)典型例题

例1.已知圆C:(x3)(y3)4及点A(1,1),M是圆上任意一点,点N在线

22段MA的延长线上,且MA2AN,求点N的轨迹方程。

练习:1.已知O为坐标原点,OA=(2,1),OB=(1,7),OC=(5,1),OD=xOA,y=DB·DC(x,y∈R)

求点P(x,y)的轨迹方程;

2.已知常数a>0,向量m(0,a),n(1,0),经过定点A(0,-a)以mn为方向向量的直线与经过定点B(0,a)以n2m为方向向量的直线相交于点P,其中R.求点P的轨迹C的方程;

例2.设平面内的向量OA(1,7), OB(5,1), OM(2,1),点P是直线OM上的一个动点,求当PAPB取最小值时,OP的坐标及APB的余弦值.

设OP(x,y).∵

点P在直线OM上,∴ OP与OM共线,而OM(2,1),∴

x-2y=0即x=2y,有OP(2y,y).∵ PAOAOP(12y,7y),PBOBOP(52y,1y),∴ PAPB(12y)(52y)(7y)(1y)

= 5y2-20y+12 = 5(y-2)2-8.

从而,当且仅当y=2,x=4时,PAPB取得最小值-8,此时OP(4,2),PA(3,5),PB(1,1).

于是|PA|34,|PB|2,PAPB(3)15(1)8,∴ cosAPBPAPB|PA||PB|8342417 17小结:利用平面向量求点的轨迹及最值。

作业:

第五篇:向量方法在立体几何教学中的应用

转自论文部落论文范文发表论文发表

向量方法在立体几何教学中的应用

作者:王龙生

摘 要: 在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都作为重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,能避免构图和推理的复杂过程,有利于降低解题难度.关键词: 向量 立体几何教学 数形结合在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都是重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,避免构图和推理的复杂过程,有利于降低解题难度.一、将立体几何中的平行问题转化为向量平行来证明

二、将立体几何中的垂直问题转化为向量垂直来证明

由于立体几何中的垂直问题图形比较复杂,加上学生的空间感比较薄弱,因此学生很难解决.把立体几何中的垂直问题转化为向量垂直,其优越性非常明显,具体体现在:两个向量垂直的充要条件可以把“垂直”体现在一个等式中变为纯粹的运算,所涉及的向量易于用坐标表示就足够了.立体几何中的线线、线面、面面垂直,都可以转化为空间两个向量的垂直问题解决.1.“线线垂直”化为“向量垂直”

华罗庚关于“数形结合”有一句名言:“数缺形时少直观,形离数时难入微.”向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.因此,充分掌握、运用好向量知识,可以提高学生的数形结合能力,培养学生发现问题的能力,帮助学生理清数形结合呈现的内在关系,把无形的解题思路形象化,有利于学生顺利地、高效率地解决数学问题.利用向量方法研究立体几何问题,能避免传统几何方法中繁琐的推理及论证,有效提高学生解决立体几何问题的能力.参考文献:

[1]单招生—相约在高校,数学:基础知识梳理.[2]单招零距离—数学:总复习方案.[3]吕林根,张紫霞,孙存金.立体几何学习指导书.

下载高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例word格式文档
下载高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量在数学中的应用

    向量在数学中的应用 一、向量知识 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 向量的加法 OB+OA=OC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向......

    向量在解析几何中的应用

    向量在解析几何中的应用嵩明县第一中学:吴学伟2006年12月5日星期二解析几何是历年数学高考舞台上必唱“主角”之一。近年来命题人往往以解析几何的传统内容为载体,融合向量等......

    向量在解析几何中的应用

    向量在解析几何中的应用第一章引言1.1研究背景向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著......

    高中数学必修4 第二章课例:平面向量的应用举例

    金太阳新课标资源网wx.jtyjy.com回味平面向量的章节导言——课例:平面向量的应用举例 1 说明[1]《普通高中数学课程标准(实验)》指出:“高中数学课程是以模块和专题的形式呈现的.......

    空间向量在几何中的应用

    空间向量在立体几何中的应用一.平行问题(一)证明两直线平行A,Ba;C,Db,a|| b若知AB(x1,y1),CD(x2,y2),则有x1y2x2y1a||b方法思路:在两直线上分别取不同的两点,得到两向量,转化为证......

    浅谈向量在几何中的应用

    浅谈向量在几何中的应用宁阳四中 271400 吕厚杰解决立体几何问题“平移是手段,垂直是关键”,空间向量的方法是使用向量的代数方法去解决立体几何问题。两向量共线易解决平行,两......

    空间向量在立体几何中的应用

    【利用空间向量证明平行、垂直问题】例. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二......

    平面向量在高中数学教学中的作用

    平面向量在高中数学教学中的作用 平面向量是高中数学引入的一个新概念.利用平面向量的定义、定理、性质及有关公式,可以简化解题过程,便于学生的理解和掌握. 向量运算主要作......