第一篇:空间向量在立体几何中的应用(一) 课时教案
空间向量在立体几何中的应用
(一)——求空间两条直线、直线与平面所成的角
知识与技能:引导学生探索并掌握利用空间向量求线线角、线面角的基本方法。、过程与方法:通过对例题的研究求解,归纳总结,从中体会使用代数方法研究空间图形带来的方便,激发学生对数学学习的热情,提高数学素养,锻炼数学品质,发展数学思维。情感态度价值观:课堂中进行“师生交流”与“生生交流”,有利于提高学生的表达能力和总结概括的能力,让学生获得成功的体验,树立学好数学的信心 教学重点、难点
重点:利用空间向量解决线线角、线面角问题的基本思路。难点:在解题中的灵活应用。
教学方法:课前预习、独立思考、课堂讨论、当堂训练、课后反思相结合。教学过程:
一、创设情境:
引例:(期中考试卷19题)在空间四边形ABCD中,AB=BC=CD=AD=AC=BD=6,点E、F、G分别为BC、CD、AD的中点。(1)证明直线AC直线BD;
(2)求异面直线EF与CG所成的角(结果用反三角表示)。二.探索与发现
1、空间两条直线所成的角
设空间直线a与b所成的角为(02),它们的一个方向向量分别为d1l1,m1,n1和d2l2,m21,n2,d1与d2的夹角为(0).,根据空间两条直线所成角的定义,可知与的关系是
(0)2
()2于是得coscos
当ab时,0,0或,当ab时,0,
2、空间直线与平面所成的角
2。当直线l与平面相交且不垂直时,设它们所成的角为(02),d是直线l的一个方向向量,n是平面的一个法向量,d与n的夹角为,那么与有如下关系:
(0)22 ()22当l或l时0,于是有sincos。三.学习应用
例1:在正方体ABCD-A1B1C1D1中,E、F分别是AD、AB的中点。(1)求异面直线B1E与C1F所成角的大小;(2)求证:异面直线AC1与B1C垂直;(3)求直线BC1与面EFB1D1所成角的大小。例2:讨论完成引例
例3:四面体ABCD中,AB、BC、CD两两互相垂直,AB=BC=2,E是AC的中点,异面直线AD和BE所成角的大小为arccos四.创新发展
例4:在正方体ABCD-A1B1C1D1中,E是棱BC的中点。
(1)在棱BB1上是否存在一点M,使D1M平面B1AE,为什么?
(2)在正方体表面ABB1A1上是否存在点N,使D1N平面B1AE,为什么? 五.课堂小结:
利用空间向量处理立体几何的问题,可以把一些复杂的逻辑推理过程转化为向量运算,有利于克服空间想象力的障碍和空间作图的困难,既直观又容易接受,降低了立体几何学习的难度,有利于丰富我们的思维结构,提高运用数学知识分析和解决问题的能力。
六、课后作业
1、在正方体ABCD-A1B1C1D1中,E、F分别是AD、AB的中点。
D1A1B1C12;,当l时,2,0.1010,求直线DE与平面BCD所成角的大小。
(1)求异面直线B1E与C1F所成角的大小;(2)求证:异面直线AC1与B1C垂直;
D EAFBC(3)求直线BC1与面EFB1D1所成角的大小。
2、在空间四边形ABCD中,AB=BC=CD=AD=AC=BD=6,点E、F、G分别为BC、CD、AD的中点。
(1)证明:直线AC直线BD;(2)求异面直线EF与CG所成的角(结果
反三角表示)。
3、四面体ABCD中,AB、BC、CD两两互相垂直,AB=BC=2,E是AC的中点,异面直线AD和BE所成角的大小为arccos
CBEAD1010,求DE与平面BCD所成角的大小。
4、在正方体ABCD-A1B1C1D1中,E是棱BC的中点。
(1)在棱BB1上是否存在一点M,使D1M平面B1AE,为什么?
(2)在正方体表面ABB1A1上是否存在点N,使D1N平面B1AE,为什么?
A1D1B1C1DABC
第二篇:空间向量在立体几何中的应用
【利用空间向量证明平行、垂直问题】
例.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二面角C—PB—D的大小。
如图所示建立空间直角坐标系,D为坐标原点。设DC=a。
(1)证明:连接AC,AC交BD于G,连接EG。依题意得。
∵底面ABCD是正方形。∴G是此正方形的中心,故点G的坐标为,∴则而,∴PA//平面EDB。
(2)依题意得B(a,a,0),∴PB⊥DE由已知EF⊥PB,且
(3)解析:设点F的坐标为又,故,所以PB⊥平面EFD。,则
从而所以
由条件EF⊥PB知,即,解得
∴点F的坐标为,且∴
即PB⊥FD,故∠EFD是二面角C—PB—D的平面角。
∵,且
∴∴∠EFD=60°所以,二面角C—PB—D的大小为60°。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:①证明直线的方向向量与平面的法向量垂直;②证明能够在平面内找到一个向量与已知直线的方向向量共线;③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:①转化为线线平行、线面平行处理;②证明这两个平面的法向量是共线向量.(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:①证明直线的方向向量与平面的法向量是共线向量;②证明直线与平面内的两个不共线的向量互相垂直.
(6)证明面面垂直的方法:①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直.【用空间向量求空间角】例.正方形ABCD—
中,E、F分别是,的中点,求:
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。
解析:不妨设正方体棱长为2,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立如图所示空间直角坐标系,则 A(2,0,0),C(0,2,0),E(1,0,2),F(1,1,2)(1)由,得
又,∴,即所求值为。
(2)∵
∴
∴,过C作CM⊥AE于M,则二面角C—AE—F的大小等于,∵M在AE上,∴设则,∵
∴
又∴
∴二面角C—AE—F的余弦值的大小为点评:(1)两条异面直线所成的角(2)直线与平面所成的角
求得,即
求得,即。
或
可以借助这两条直线的方向向量的夹角
主要可以通过直线的方向向量与平面的法向量的夹角
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。【用空间向量求距离】例.长方体ABCD—求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。解析:(1)方法一:
如图,建立空间直角坐标系B—xyz,则A(4,0,0),M(2,3,4),P(0,4,0),Q(4,6,2),∴,中,AB=4,AD=6,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点,故异面直线AM与PQ所成角的余弦值为
方法二:,∴
故异面直线AM与PQ所成角的余弦值为
(2)∵,∴上的射影的模
故M到PQ的距离为(3)设
是平面的某一法向量,则,∵因此可取,由于
∴,那么点M到平面的距离为,故M到平面的距离为。
点评:本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法,供大家参考。
(1)平面的法向量的求法:设联立后取其一组解。,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,(2)线面角的求法:设n是平面的法向量,是直线l的方向向量,则直线l与平面所成角的正弦值为。
(3)二面角的求法:①AB,CD分别是二面角的两个面内与棱l垂直的异面直线,则二面角的大小为。
②设或其补角。
分别是二面角的两个平面的法向量,则就是二面角的平面角
(4)异面直线间距离的求法:
是两条异面直线,n是的公垂线段AB的方向向量,又C、D分别是
上的任意
两点,则。
(5)点面距离的求法:设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为。
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
第三篇:28.空间向量在立体几何中的应用
高三数学一轮复习材料命题:王晓于杰审题:刘臻祥2007-8-2
2§5.3空间向量在立体几何中的应用
NO.28
【基础知识梳理】
1.直线的方向向量与直线的向量方程
⑴ 用向量表示直线或点在直线上的位置
① 给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量AP=_________(Ⅰ),这时点P的位置被完全确定.向量方程通常称作直线l的____________,向量a称为该直线的____________.② 对空间任一个确定的点O,点P在直线l上的充要条件是存在惟一的实数t,满足等式,如果在l上取,则(Ⅱ)式可化为 O=_________(Ⅱ)
OPOAtABOAt(OBOA),即O=_________(Ⅲ).(Ⅰ)或(Ⅱ)或(Ⅲ)都叫做空间直线的向量参数方程,它们都与平面的直线向量参数方程相同.③ 设点M是线段AB的中点,则O=_________.⑵ 用向量方法证明直线与直线平行,直线与平面平行,平面与平面平行
① 设直线l1和l2的方向向量分别为v1和v2,则l1∥l2或l1和l2重合__________.② 已知两个非零向量v1,v2与平面α共面,一条直线l的一个方向向量为v,则l∥α或 l在α内存在两个实数x,y,使v=__________.⑶ 用向量运算证明两条直线垂直或求两条直线所成的角
设直线l1和l2成的角为θ(锐角),方向向量分别为v1和v2,则有l1⊥l2__________,cosθ=__________.2.平面的法向量与平面的向量表示
⑴ 已知平面α,如果向量n的基线与平面α垂直,则向量n叫做平面α的________或说向量n与平面α________.⑵设A是空间任一点,n为空间任一非零向量,适合条件AMn0----①的点M的集合构成的图形是________.如果任取两点M1、M2(M1、M2和A三点不共线),且AM10,AM20,则n⊥平面AM1M2.在平面AM1M2内的任一点M都满足条件①式.满足条件①的所有
点M都在平面AM1M2内.①式称为一个平面的_____________.⑶ 共面向量定理的推论:如果A、B、C三点_____________,则点M在平面ABC内的充要条件是,存在一对实数x,y,使向量表达式=_________.⑷ 设n1,n2分别是平面α,β的法向量,则α∥β或α,β重合_____,α⊥β______________
⑸ 三垂线定理:如果在平面___的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和____________垂直.三垂线定理的逆定理:如果在平面___的一条直线与平面的一条斜线垂直,则它也和
____________垂直.【基础知识检测】
1.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1与l2的位置关系是()
A.平行B.相交C.垂直D.不确定
2.在下列四个正方体中,能得出AB⊥CD的是()
ABCD
3.已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为(1,-1m,2),则m=______.24.已知平面α和β的法向量分别为u1=(-1,x,4)和u2=(y,1,-2),若α∥β,则x+y=______.5.已知正方体ABCD-A1B1C1D1,则直线AC1与直线BC所成的角为_______.【典型例题探究】
题型1.(异面直线所成的角)在棱长均为a的正四面体ABCD中,M、N分别为边AB、CD的中点,求异面直线AN、CM所成的角的余弦值.D
变式训练:已知直三棱柱ABD-A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1和A1A的中点,(1)求异面直线BA1和CB1所成的角;(2)求证:A1B⊥C1M.题型2.(利用空间向量证明平行、垂直问题)已知正方体ABCD-A1B1C1D1中,点M、N
分别是对角线A1B与面对角线A1C1的中点.求证:MN∥侧面AD1.变式训练:在正方体ABCD-A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=2a,则MN与平面BB1C1C的位置关系是()
3A.相交B.平行C.垂直D.不能确定
题型3(空间中点共线、点共面问题)已知平行四边形ABCD,从平面ABCD外一点O引射线OA,OB,OC,OD,在其上分别取E,F,G,H,并且使OEOFOGOHk(k OAOBOCOD
为常数).求证:E,F,G,H四点共面.变式训练:求证:四点A(3,0,5),B(2,3,0),C(0,5,0),D(1,2,5)共面.【限时过关检测】班级学号姓名分数
选择、填空题每小题10分
1.对空间任意一点O,若311,则A、B、C、P四点()488
A.一定不共面B.一定共面C.不一定共面D.无法判断
2.设P是△ABC所在平面外一点,且PA⊥BC,PB⊥AC,则 P在该平面内的射影是△ABC的()
A.内心B.外心C.垂心D.重心
3.设l1的方向向量为=(1,2,-2),l2的方向向量为=(-2,3,m),若l1⊥l2,则m= ____.4.已知=(2,2,1),=(4,5,3),则平面ABC的单位法向量是_________.5.(20分)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1AB=1,2
M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角.6.(20分)直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点,⑴ 求直线BE与A1C所成的角;⑵ 在线段AA1上是否存在点F,使CF⊥平面B1DF,若存在,求出AF;若不存在,说明理由.【体验高考】(每小题10分)
1.(2007全国Ⅰ)正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为
()
A.1234B.C.D. 5555
2.(2007四川)ABCD-A1B1C1D1为正方体,下面结论错误的是()..
A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°
第四篇:空间向量方法解立体几何教案
空间向量方法解立体几何
【空间向量基本定理】
例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分
数x、y、z的值。成定比2,N分PD成定比1,求满足的实
分析;结合图形,从向量
用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。
如图所示,取PC的中点E,连接NE,则
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;
(2)证明:PB⊥平面EFD;
(3)求二面角C—PB—D的大小。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:
①证明直线的方向向量与平面的法向量垂直;
②证明能够在平面内找到一个向量与已知直线的方向向量共线;
③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:
①转化为线线平行、线面平行处理;
②证明这两个平面的法向量是共线向量.
(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:
①证明直线的方向向量与平面的法向量是共线向量;
②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:
①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】
例3.正方形ABCD—中,E、F分别是
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角
求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。
(2)线面角的求法:设n是平面
向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向
所成角为则sin
(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异
②设分别是二面角的两个平面的法向量,则
就是二面角的平面角或其补角。
(4)异面直线间距离的求法:向量,又C、D分别是
是两条异面直线,n是。的公垂线段AB的方向
上的任意两点,则
(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
12
1.若等边ABC的边长
为,平面内一点M满足CMCBCA,则
MAMB_________
2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=
AD 2
(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。
4.(本题满分15分)如图,平面PAC平面ABC,ABC
是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.
(I)设G是OC的中点,证明:FG//平面BOE;
(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.
5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;
(Ⅱ)当PD且E为PB的中点时,求AE与
平面PDB所成的角的大小.
第五篇:向量方法在立体几何教学中的应用
转自论文部落论文范文发表论文发表
向量方法在立体几何教学中的应用
作者:王龙生
摘 要: 在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都作为重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,能避免构图和推理的复杂过程,有利于降低解题难度.关键词: 向量 立体几何教学 数形结合在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都是重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,避免构图和推理的复杂过程,有利于降低解题难度.一、将立体几何中的平行问题转化为向量平行来证明
二、将立体几何中的垂直问题转化为向量垂直来证明
由于立体几何中的垂直问题图形比较复杂,加上学生的空间感比较薄弱,因此学生很难解决.把立体几何中的垂直问题转化为向量垂直,其优越性非常明显,具体体现在:两个向量垂直的充要条件可以把“垂直”体现在一个等式中变为纯粹的运算,所涉及的向量易于用坐标表示就足够了.立体几何中的线线、线面、面面垂直,都可以转化为空间两个向量的垂直问题解决.1.“线线垂直”化为“向量垂直”
华罗庚关于“数形结合”有一句名言:“数缺形时少直观,形离数时难入微.”向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.因此,充分掌握、运用好向量知识,可以提高学生的数形结合能力,培养学生发现问题的能力,帮助学生理清数形结合呈现的内在关系,把无形的解题思路形象化,有利于学生顺利地、高效率地解决数学问题.利用向量方法研究立体几何问题,能避免传统几何方法中繁琐的推理及论证,有效提高学生解决立体几何问题的能力.参考文献:
[1]单招生—相约在高校,数学:基础知识梳理.[2]单招零距离—数学:总复习方案.[3]吕林根,张紫霞,孙存金.立体几何学习指导书.