第一篇:2018高考一轮复习 立体几何 空间向量
2017高考一轮复习
空间向量
一.解答题(共12小题)1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求二面角B﹣AD﹣F的余弦值.
2.(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
3.(2016•沈阳校级模拟)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;
(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
第1页(共23页)
4.(2016•天津一模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求值. 的 5.(2016•贵阳一模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC⊥平面PAC;
(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由.
6.(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.
7.(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求平面PAB与平面PCD所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.
第2页(共23页)
8.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
9.(2014•新课标I)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;
(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
10.(2014•新课标II)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.
第3页(共23页)
11.(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
12.(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.
第4页(共23页)
2017高考一轮复习
空间向量
参考答案与试题解析
一.解答题(共12小题)1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求二面角B﹣AD﹣F的余弦值.
【分析】(I)先证明BF⊥AC,再证明BF⊥CK,进而得到BF⊥平面ACFD.
(II)方法一:先找二面角B﹣AD﹣F的平面角,再在Rt△BQF中计算,即可得出; 方法二:通过建立空间直角坐标系,分别计算平面ACK与平面ABK的法向量,进而可得二面角B﹣AD﹣F的平面角的余弦值. 【解答】(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,∴AC⊥平面BCK,∴BF⊥AC.
又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK,∴BF⊥平面ACFD.
(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角. 在Rt△ACK中,AC=3,CK=2,可得FQ=在Rt△BQF中,BF=,FQ=
.
.
.可得:cos∠BQF=
. ∴二面角B﹣AD﹣F的平面角的余弦值为方法二:如图,延长AD,BE,CF相交于点K,则△BCK为等边三角形,取BC的中点,则KO⊥BC,又平面BCFE⊥平面ABC,∴KO⊥平面BAC,以点O为原点,分别以OB,OK的方向为x,z的正方向,建立空间直角坐标系O﹣xyz. 可得:B(1,0,0),C(﹣1,0,0),K(0,0,.
=(0,3,0),=,(2,3,0).),A(﹣1,﹣3,0),第5页(共23页)
设平面ACK的法向量为=(x1,y1,z1),平面ABK的法向量为=(x2,y2,z2),由,可得,取=由,可得.,取=
.
∴==.
∴二面角B﹣AD﹣F的余弦值为.
【点评】本题考查了空间位置关系、法向量的应用、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题. 2.(2016•天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
第6页(共23页)
【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG∥FI,利用线面平行的判定定理证明:EG∥平面ADF;
(2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值;(3)求出=(﹣,),利用向量的夹角公式求出直线BH和平面CEF所成角的正弦值.
【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD. ∵O是正方形ABCD的中心,∴OB=BD.
∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;
(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=
=
;,0),C(,0,0),E(0,取=(,0,1)
∴二面角O﹣EF﹣C的正弦值为
第7页(共23页)
(3)解:AH=HF,∴设H(a,b,c),则∴a=﹣∴=(﹣
==(,0,).,0,). =(a+,b,c)=(,b=0,c=,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.
【点评】本题考查证明线面平行的判定定理,考查二面角O﹣EF﹣C的正弦值,直线BH和平面CEF所成角的正弦值,考查学生分析解决问题的能力,属于中档题.
3.(2016•沈阳校级模拟)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;
(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.
【分析】(I)证明BP⊥平面ABCD,以B为原点建立坐标系,则量,求出,的坐标,通过计算
=0得出
为平面ABCD的法向,从而有EM∥平面ABCD;
第8页(共23页)
(II)假设存在点N符合条件,设<,求出和平面PCD的法向量的坐标,令|cos>|=解出λ,根据λ的值得出结论.
【解答】证明:(Ⅰ)∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP⊥AB,∴BP⊥平面ABCD,又AB⊥BC,∴直线BA,BP,BC两两垂直,以B为原点,分别以BA,BP,BC为x轴,y轴,z轴建立如图所示的空间直角坐标系. 则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,),∴=(﹣1,0,),=(0,2,0).
为平面ABCD的一个法向量,=0,∵BP⊥平面ABCD,∴∵∴⊥=﹣1×0+0×2+.又EM⊄平面ABCD,∴EM∥平面ABCD.
(Ⅱ)解:当点N与点D重合时,直线BN与平面PCD所成角的正弦值为. 理由如下: ∵=(2,﹣2,1),=(2,0,0),. 设平面PCD的法向量为=(x,y,z),则∴.令y=1,得=(0,1,2).
假设线段PD上存在一点N,使得直线BN与平面PCD所成角α的正弦值等于. 设=λ=(2λ,﹣2λ,λ)(0≤λ≤1),∴>=
=
=
=(2λ,2﹣2λ,λ). =. ∴cos<2∴9λ﹣8λ﹣1=0,解得λ=1或(舍去).
∴当N点与D点重合时,直线BN与平面PCD所成角的正弦值等于.
第9页(共23页)
【点评】本题考查了线面平行的判断,空间向量的应用与线面角的计算,属于中档题. 4.(2016•天津一模)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.
(Ⅰ)求证:EF⊥平面PAC;
(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;
(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求值. 的 【分析】(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD,即可说明PA⊥EF,然后证明EF⊥平面PAC.
(Ⅱ)证明MF∥PA,然后证明MF∥平面PAB,EF∥平面PAB.即可阿门平面MEF∥平面PAB,从而证明ME∥平面PAB.
(Ⅲ)以AB,AC,AP分别为x轴、y轴和z轴,如上图建立空间直角坐标系,求出相关点的坐标,平面ABCD的法向量,平面PBC的法向量,利用直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,列出方程求解即可 【解答】(本小题满分14分)
(Ⅰ)证明:在平行四边形ABCD中,因为AB=AC,∠BCD=135°,∠ABC=45°. 所以AB⊥AC.
由E,F分别为BC,AD的中点,得EF∥AB,所以EF⊥AC.…(1分)
因为侧面PAB⊥底面ABCD,且∠BAP=90°,所以PA⊥底面ABCD.…(2分)又因为EF⊂底面ABCD,所以PA⊥EF.…(3分)
又因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以EF⊥平面PAC.…(4分)
第10页(共23页)
(Ⅱ)证明:因为M为PD的中点,F分别为AD的中点,所以MF∥PA,又因为MF⊄平面PAB,PA⊂平面PAB,所以MF∥平面PAB.…(5分)同理,得EF∥平面PAB.
又因为MF∩EF=F,MF⊂平面MEF,EF⊂平面MEF,所以平面MEF∥平面PAB.…(7分)又因为ME⊂平面MEF,所以ME∥平面PAB.…(9分)
(Ⅲ)解:因为PA⊥底面ABCD,AB⊥AC,所以AP,AB,AC两两垂直,故以AB,AC,AP 分别为x轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),所以设,则,,…(10分)
所以M(﹣2λ,2λ,2﹣2λ),易得平面ABCD的法向量=(0,0,1).…(11分)设平面PBC的法向量为=(x,y,z),由,得
令x=1,得=(1,1,1).…(12分)
因为直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,所以,即,…(13分)
所以解得,或,(舍).…(14分)
第11页(共23页)
【点评】本题考查直线与平面所成角的求法,直线与平面平行的判定定理以及性质定理的应用,平面与平面平行的判定定理的应用,考查转化思想以及空间想象能力逻辑推理能力的应用. 5.(2016•贵阳一模)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC⊥平面PAC;
(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由.
【分析】(1)推导出PA⊥平面ABC,从而BC⊥PA,又BC⊥CA,从而BC⊥平面PAC,由此能证明平面PBC⊥平面PAC.
(2)以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出在直线AC上存在点,使得直线BD与平面PBC所成角为30°. 【解答】证明:(1)∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC. ∵AB∩AC=A,∴PA⊥平面ABC.…(1分)∵BC⊂平面ABC,∴BC⊥PA.…(3分)
∵∠ACB=90°,∴BC⊥CA.∵PA∩CA=A,∴BC⊥平面PAC.…(5分)∵BC⊂平面PBC,∴平面PBC⊥平面PAC.…6分 解:(2)由已知及(1)所证可知,PA⊥平面ABC,BC⊥CA,∵PA=1,AB=2,BC=.
∴以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立如图的空间直角坐标系C﹣xyz,则C(0,0,0),B(0,0),P(,设=(x,y,z)是平面PBC的法向量,则,则取x=1,得=(1,0,﹣
第12页(共23页)),),…(9分)
设直线AC上的点D满足∴,则,∵直线BD与平面PBC所成角为30°,∴解得,…(11分)∴在直线AC上存在点,使得直线BD与平面PBC所成角为30°.…(12分),【点评】本题考查面面垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.
6.(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.
【分析】(I)连接AO,A1D,根据几何体的性质得出A1O⊥A1D,A1D⊥BC,利用直线平面的垂直定理判断.
(II)利用空间向量的垂直得出平面BB1C1C的法向量=(,0,1),|根据与
数量积求解余弦值,即可得出直线A1B和平面BB1C1C所成的角的正弦值.
【解答】证明:(I)∵AB=AC=2,D是B1C1的中点. ∴A1D⊥B1C1,∵BC∥B1C1,∴A1D⊥BC,∵A1O⊥面ABC,A1D∥AO,∴A1O⊥AO,A1O⊥BC ∵BC∩AO=O,A1O⊥A1D,A1D⊥BC ∴A1D⊥平面A1BC
第13页(共23页)
解:(II)
建立坐标系如图
∵在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4 ∴O(0,0,0),B(0,0),B1(﹣,),A1(0,0即=(0,﹣),=(0,0),=(,0,)),设平面BB1C1C的法向量为=(x,y,z),即得出
得出=(∵=,0,1),|,>=
|=4,||=
∴cos<,=,可得出直线A1B和平面BB1C1C所成的角的正弦值为
【点评】本题考查了空间几何体的性质,直线平面的垂直问题,空间向量的运用,空间想象能力,计算能力,属于中档题.
7.(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求平面PAB与平面PCD所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.
第14页(共23页)
【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;
(2)利用换元法可得cos<
2,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.
【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴∵=(1,1,﹣2),=(0,2,0),是平面PAB的一个法向量,=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>=
=,∴平面PAB与平面PCD所成两面角的余弦值为(2)∵又又=(﹣1,0,2),设
=
+=λ
;
=(﹣λ,0,2λ)(0≤λ≤1),=(﹣λ,﹣1,2λ),>=
=,=(0,﹣1,0),则=(0,﹣2,2),从而cos<设1+2λ=t,t∈[1,3],则cos<2,>==≤,第15页(共23页)
当且仅当t=,即λ=时,|cos<因为y=cosx在(0,又∵BP==,>|的最大值为,)上是减函数,此时直线CQ与DP所成角取得最小值.,∴BQ=BP=
.
【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.
8.(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC;
(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD所成角的正弦值;
(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值. 【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,第16页(共23页)
∵AD=DC=AP=2,AB=1,点E为棱PC的中点. ∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴∵=(0,1,1),•=0,=(2,0,0)
∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足: sinθ==
=,故直线BE与平面PBD所成角的正弦值为(Ⅲ)∵=(1,2,0),=λ
.
=(2,2,0),=(﹣2,﹣2,2),由F点在棱PC上,设故=+
=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),•=2(1﹣2λ)+2(2﹣2λ)=0,由BF⊥AC,得解得λ=,即=(﹣,),设平面FBA的法向量为=(a,b,c),第17页(共23页)
由,得
令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足: cosα===,故二面角F﹣AB﹣P的余弦值为:
【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.
9.(2014•新课标I)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;
(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的正方向,的方向为x轴的正方向,|
|为单位长度,的方向为y轴的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值. 【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,|
|为单位长度,第18页(共23页)的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,∴=(0,),B(1,0,0,),B1(0,),=,0),C(0,),=,0)=(﹣1,0),=(1,0,设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,),同理可得平面A1B1C1的一个法向量=(1,﹣∴cos<,>=
=,),∴二面角A﹣A1B1﹣C1的余弦值为
【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.
10.(2014•新课标II)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.
【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点
第19页(共23页)
∵E为PD的中点,∴EO∥PB.
EO⊂平面AEC,PB⊄平面AEC ∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=∴V=,三棱锥P﹣ABD的体积V==,∴AB=,PB==.
作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.
又在三角形PAB中,由射影定理可得:A到平面PBC的距离
.
【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.
11.(2013•北京)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
第20页(共23页)
【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.
【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
222∴AC+AB=BC,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,.
=(x2,y2,z2). 设平面A1BC1的法向量为,平面B1BC1的法向量为则,令y1=4,解得x1=0,z1=3,∴
.,令x2=3,解得y2=4,z2=0,∴
.
===.
∴二面角A1﹣BC1﹣B1的余弦值为
.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴∵∴∴. =,∴,,解得t=
.
=(0,3,﹣4),第21页(共23页)
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
12.(2013•新课标Ⅱ)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.
【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可. 【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.
(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,第22页(共23页)
CD=,A1D=,DE=,A1E=3 222故A1D+DE=A1E,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF=
=,EF=
=,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=
.
【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.
第23页(共23页)
第二篇:空间向量复习
高中数学选修2—1空间向量 期末复习
(基本知识点与典型题举例)
为右手直角坐标系(立体几何中建立的均为右手系)。
2、空间直角坐标系中的坐标运算:
一、空间向量的线性运算:
1、空间向量的概念:
空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等.
2、空间向量的加法、减法和数乘运算:
平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算. 三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.
3、加法和数乘运算满足运算律:
①交换律,即a+b=b+a;②结合律,即(a(a+b)ca(b+c);
③分配律,即()a=a+a及(a+b)ab(其中,均为实数).
4、空间向量的基本定理:
(1)共线向量定理:对空间向量a,b(b0),a∥b的充要条件是存在实数,使a=b.(2)共面向量定理:如果空间向量a,b不共线,则向量c与向量a,b共面的充要条件是,存在惟一的一对实数x,y,使c=xa+yb。
推论:①空间一点位于平面C内的充要条件是存在有序实数对x,y,使xyC;
②空间一点位于平面C内的充要条件是存在有序实数对x,y或对空间任一定点,有xyC;
③若四点,,,C共面,则xyzC
xyz1。
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组
x,y,z,使p=xa+yb+zc.其中{a,b,c}是空间的一个基底,a,b,c都叫做基向量,该定理可简述为:空间任一向量p都可以用一个基底{a,b,c}惟一线性表示(线性组合)。
5、两个向量的数量积:
(1)两个向量的数量积是a
b=abcosa,b,数量积有如下性质:①ae=acosa,e(e为单位向量);②a⊥bab=0;③aa=a
2;④ab≤ab。
(2)数量积运算满足运算律:①交换律,即ab=ba;②与数乘的结合律,即(a)
b=(ab);③分配律,即(a+b)c=ac+bc.
二、空间向量的直角坐标运算:
1、空间直角坐标系:
若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用{i,jk}表示;在空间
选定一点O和一个单位正交基底{i,jk},可建立一个空间直角坐标系Oxyz,作空间直角 坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°;在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,称这个坐标系
(1)定义:给定空间直角坐标系O-xyz和向量a,存在惟一的有序实数组使a=a1i+a2j+a3k,则(a1,a2,a3)叫作向量a在空间的坐标,记作a=(a1,a2,a对空间任一点A,存在惟一的3)。
OA
xi+yj+zk,点A的坐标,记作A(x,y,z),x,y,z 分别叫A的横坐标、纵坐标、竖坐标。
(2)若A(x
1,y1,z1),B(x2,y2,z2),则AB(x2x1,y2y1,z2z1);
(3)空间两点的距离公式:
d
3、空间向量的直角坐标运算律:已知a=(a1,a2,a3),b=(b1,b2,b3),则:a+b(a1b1,a2b2,a3b3),ab(a1b1,a2b2,a3b3);
a(a1,a2,a3),ab=(a1b1,a2b
2,a3b3);
a∥ba1b1,a
2bcosab
ab2,a3a,bb3|a||b|1212a2b2a3b32220;
空间两个向量的夹角公式:
a1a2a3b12b2b
3。
4、直线的方向向量与向量方程:
(1)位置向量:已知向量a,在空间固定一个基点O,作向量OA
a,则点A在空间的位置被a
所
惟一确定,a称为位置向量。
(2)方向向量与向量方程:给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量
AP
ta,则此方程为直线l上点P对应的向量方程,向量a称为直线l的方向向量。
5、平面的法向量:
(1)如果表示向量a的有向线段所在直线垂直于平面,则称这个向量垂直于平面
(记作a⊥),向量a叫做平面的法向量。法向量有两个相反的方向。
三、空间向量在立体几何中的应用:
1、空间向量在位置关系证明中的具体应用:
1)空间的线线、线面、面面垂直关系,都可以转化为空间两个向量的垂直问题来解决:①设a、b分别为直线a,b的一个方向向量,那么a⊥ba⊥bab=0;②设a、b分别为平面,的一个法向量,那么⊥a⊥bab=0;③设直线l的方向向量为a,平面的法向量为b,那么l⊥a∥b。
2)空间直线与直线平行,直线与平面平行,平面与平面平行,都可以用向量方法来研究:①设a、b是两条不重合的直线,它们的方向向量分别为a、b,那么a∥ba∥b;②直线与平面平行可转化为直线的方向向量与平面的法向量垂直,也可用共面向量定理来
证明线面平行问题;
③平面与平面平行可转化为两个平面的法向量平行。
2、空间向量在立体几何的计算问题中的应用:
1)空间角的计算:
①线线角:异面直线所成角转化为两条直线所在向量的夹角;
②线面角:直线AB与平面所成角为,其中n是平面的法向量;
③面面角:二面角的大小为,其中m,n是两个半平面的法向量。2)距离的计算:
①点面距:设n是平面的法向量,A,则B到的距离为;
②线线距:设n是两条异面直线l1,l2的公垂线的向量,若A,B分别是在l1,l2上的任意一点,则l1,l2的距离为;
③线面距、面面距,与前面求法相同。
四、例题分析:
例
1、如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD
为正方形,PD=DC,E、F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.(3)求DB与平面DEF所成角的大小。
例
2、如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中
AB4,BC2,CC13,BE1,(1)求BF的长;(2)求点C到平面AEC1F的距离。
例
3、已知四棱锥PABCD的底面为直角梯形,AB//DC,DAB90,PA底面ABCD,且PAADD
1,AB1,M是PB的中点。
(1)证明:面PAD面PCD;(2)求AC与PB所成的角;
(3)求面AMC与面BMC所成二面角的大小。
例
4、如图,在四棱锥PABCD中,底面ABCD为矩形,PD底面ABCD,E是AB上
一点,PFEC.已知PD
2,CD2,AE
2, 求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角EPCD的大小。
例
2、如图4,在长方体ABCDA1B1C1D1中,ADAA11,AB2,点E在棱AB上移动,问AE等于何值时,二面角D1ECD的大小为
π
4.19.(本小题满分12分)
如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD 为正方形,PD=DC,E、F分别 是AB,PB的中点.(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.(3)求DB与平面DEF所成角的大小.19.以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,如图,设AD=a,则
D(0•,•0•,•0)•,•A(a•,•0•,•0),B(a•,a•,•0)•,C•
(0•,•a•,•0)•,E•
(a•,a
•,•0)•,F•(a2
2•,a2•,a2)•,P•(0•,•0•,a)
(1)a
a2•,•0•,2
•,•(0•,•a•,•0)0•,•
∴EF
DC•.(2)设G(x•,•0•,•z),则G∈平面PAD.FG
aaa
x2•,•2•,•z2,ax2,••a2•,•za2(a•,•0•,•0)aaa
x20,则x2;
a
x2•,•a2•,•za2(0•,•a•,•a)a2a2a(z2)0,则z=0.∴G是坐标为(a,0,0),即G为AD的中点.(3)(只理科做)设平面DEF的法向量为n(x•,y•,z)•.由n0•,(x,•y,•z)a,•a•,a
0•,得DE0•222n.(x•,y,•z)(a,•a,••0)0•.a
(xyz)即0•,2取x=1,则y=-2,z=1, axa2
y0•.∴ n=(1,-2,1).cos〈BD•,•n〉a3
2a6
•, ∴DB与平面DEF所成角大小为
2arccos3
(即arcsin3
6).19.如图4,在长方体ABCDA1B1C1D1中,ADAA11,AB2,点E在棱AB上移动,问AE等于何值时,二面角D1ECD的大小为
π4
. 解:设AEx,以D为原点,直线DA,DC,DD1所在直线
分别为
x,y,z轴建立空间直角坐标系,则A1(1,01),D1(0,01),E(1,x,0)A(1,0,0)C(0,2,0). ∴CE(1,x2,0)D1),DD1C(0,2,1(0,0,1).
设平面D1EC的法向量为n(a,b,c),·D1C0,2bc0,n
由
ab(x2)0,·CE0n
又CC1(0,0,3),设CC1与n1的夹角为,
CC1·n则cos. 1
CC1n
令b1,∴c2,a2x.
∴n(2x,1,2).
n·DD1π依题意cos.
4nDD1.
∴
x2x2∴AE2.
∴C到平面AEC1F的距离dCC1cos
20.如图5所示的多面体是由底面为ABCD的长方体被截面AEC1F所截而得到的,其中AB4,BC2,CC13,BE1.
(1)求BF;
(2)求点C到平面AEC1F的距离.
解:(1)以D为原点,DAF,DC,DF所在直线为x轴,y轴,z轴建立空间直角坐标系Dxyz,D(0,0,0)B(2,4,0)A(2,0,0)C(0,4,0)E(2,41),C1(0,4,3),设F(0,0,z).
由AFEC1,得(2,0,z)(2,0,2),∴z2.
∴F(0,0,2)BF(2,4,2).
∴BF
·AE0,n1
(2)设n1为平面AEC1F的法向量,n1(x,y,1),由
·AF0,n1,x1
4y10,得∴1
2x20.y.4
第三篇:2015年高考空间向量和立体几何空间几何体知识汇总
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
2.空间向量的运算:OBOAABab;BAOAOBab;OPa(R)
运算律:⑴加法交换律:abba⑵加法结合律:(ab)ca(bc)
⑶数乘分配律:(ab)ab
3.共线向量
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量
或平行向量,a平行于b,记作a//b。
(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
(2)①共面向量定理:如果两个向量,不共线,则向量与向量,共面的充要条件是存在实数对x、y使.Pxayb
②空间任一点、B、C,则OPxOAyOBzOC(xyz1)是...O.和不共线三点......A.....
PABC四点共面的充要条件.注:①②是证明四点共面的常用方法.5.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使pxaybzc。
若三向量a,b,c不共面,我们把{a,b,c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使OPxOAyOBzOC。
6.空间向量的直角坐标系:
(1)空间直角坐标系中的坐标:在空间直角坐标系Oxyz中,对空间任一点A,存在唯一的有序实数组(x,y,z),使,有序实数组(x,y,z)叫作向量A在空间直角坐标系Oxyz中的坐标,记作A(x,y,z)。
(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,i,jk}表示。
(3)空间向量的直角坐标运算律:
①若a(a1,a2,a3),b(b1,b2,b3),则ab(a1b1,a2b2,a3b3),ab(a1b1,a2b2,a3b3),a(a1,a2,a3)(R),aba1b1a2b2a3b3,a//ba1b1,a2b2,a3b3(R)aba1b1a2b2a3b30。
a1a2a
3,b1b2b3
②若A(x1,y1,z1),B(x2,y2,z2),则AB(x2x1,y2y1,z2z1)。③定比分点公式:若
A(x1,y1,z1),B(x2,y2,z2),APPB,则点P坐标为
(x1x2y1y2z1z
2,)111。
推导:设P(x,y,z)则
(xx1,yy1,zz1)(x2x,y2y,z2z),显然,当P为AB
P(中点时,④
x1x2y1y2z1z2,)222。
ABC中,A(x,y1,z1),B(x2,y2,z2),C(x3,y3,z3),三角形重心P坐标为
P(x1x2x3y1y2y3z1z2z3,)
333
⑤ΔABC的五心:
内心P
:内切圆的圆心,角平分线的交点。外心P
(单位向量)
垂心P:高的交点:(移项,内积为0,则垂直)
1AP()
3重心P:中线的交点,三等分点(中位线比)
中心:正三角形的所有心的合一。(4)模长公式:若a
(a1,a2,a3),则|a|(5)夹角公式:cosab
,ab
|a||b|(6)两点间的距离公式:若A(x1,y1,z1),B(x2,y2,z2),则|AB|或dA,B
,(7)法向量:若向量a所在直线垂直于平面,则称这个向量垂直于平面,记作a,如果a那么向量a叫做平面的法向量.(8)向量的常用方法:
①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一
条射线,其中A,则点B到平面②.异面直线间的距离 d
(l1,l2是两异面直线,其公垂向量为n,C、D分
别是l1,l2上任一点,d为l1,l2间的距离).③.直线AB与平面所成角arcsin
ABm
(m为平面的法向量).|AB||m|
④.利用法向量求二面角的平面角定理:设1,n2分别是二面角l中平面,的法向量,则n1,n2所成的角就是所求二面角的平面角或其补角大小(n1,n2方向相同,则为补角,n1,n2反方,则为其夹角).二面角l的平面角arccos
mn
或
|m||n|
arccos
mn
(m,n为平面,的法向量).|m||n|
⑤.证直线和平面平行定理:已知直线a平面,A,Ba,C,D,且C、D、E三点不共线,则a∥的充要条件是存在有序实数对,使AB
CDCE..7.空间向量的数量积:若OAa,OBb,则AOB叫做向量a与b的夹角,记作
a,b;且规定0a,b,|a||b|cosa,b叫做a,b的数量积,记作ab.1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理
2(3)公理3:如果两个平面(不重合的两个平面)所有这些公共点的集合是一条过这个公共点的直线.
推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.
三个作用:(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.
(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.
平行
共面直线
相交2.直线与直线的位置关系(1)位置关系的分类
异面直线:不同在任何一个平面内
(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a,b所成的角(或夹角).
π[0,180])0,.(直线与直线所成角[0,90])②范围:(向量与向量所成角23.a,b是夹在两平行平面间的线段,若ab,则a,b的位置关系为相交或平行或异面.4.直线与平面的位置关系 5.平面与平面的位置关系有平行、相交两种情况. 6.平行公理:
7.等角定理:
8、异面直线的判定方法:
(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 9.两异面直线的距离:公垂线段的长度.10.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:l1,l2是异面直线,则过l1,l2外一点P,过点P且与l1,l2都平行平面有一个或没有,但与l1,l2距离相等的点在同一平面内.(L1或L2在这个做出的平面内不能叫L1与L2平行的平面)11.直线与平面平行、直线与平面垂直.(1)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这
条直线和这个平面平行.(“线线平行线面平行”)
(2)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行线线平行”)
(3)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个
P
平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥,a⊥AO,得a⊥PO(三垂线定理) 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.12.平面平行与平面垂直.(1)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(2)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行线线平行”)
(3)两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直面面垂直”)
(4)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.(5)两异面直线任意两点间的距离公式:l
O
A
m2n2d22mncos(为锐角取减,为钝角取加,综上,都取减则必有0,)
13.棱柱.棱锥.球
(1)棱柱:有两个面相互平行,其余各个侧面都是平行四边形
①{四棱柱}{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体}.{直四棱柱}{平行六面体}={直平行六面体}.②.棱柱具有的性质:棱柱所有的侧棱都相等为平行四边形;直棱柱的各个侧面都是矩形........(直棱柱定义)棱柱有一条侧棱和底面垂直.;正棱柱的各个侧面都是全等的矩形......③.平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分..............定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为,,,则co2sco2sco2s1.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为,,,则
co2sco2sco2s2.(2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.②正棱锥的侧面积:S
1Ch'(底面周长为C,斜高为h')体积:V2
3S底h
③棱锥的侧面积与底面积的射影公式:S侧
S底cos
(侧面与底面成的二面角为)
b.棱锥具有的性质:正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.(3)球:a.①球的表面积公式:S4R.②球的体积公式:V
R.3
b.①圆柱体积:Vrh②圆锥体积:Vr2h(r为半径,h为高)
③锥体体积:V
Sh(S为底面积,h为高)3
2326
a,a,S侧a,S底
443
c.①内切球:当四面体为正四面体时,设边长为a,h
得
26321322426
aaaRaRRa/3a3a.434344344
R
O
第四篇:《立体几何VS空间向量》教学反思
我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。那么这节课我最满意的有以下几个地方(1)学生的参与这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。(2)学生的创新这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。(3)学生的置疑林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.我不满意的地方有以下几点(1)题量的安排 5道题虽然代表不同的类型.但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.(2)课件的制作 立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.(3)总结时间短 这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.
第五篇:空间向量方法解立体几何教案
空间向量方法解立体几何
【空间向量基本定理】
例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分
数x、y、z的值。成定比2,N分PD成定比1,求满足的实
分析;结合图形,从向量
用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。
如图所示,取PC的中点E,连接NE,则
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;
(2)证明:PB⊥平面EFD;
(3)求二面角C—PB—D的大小。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:
①证明直线的方向向量与平面的法向量垂直;
②证明能够在平面内找到一个向量与已知直线的方向向量共线;
③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:
①转化为线线平行、线面平行处理;
②证明这两个平面的法向量是共线向量.
(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:
①证明直线的方向向量与平面的法向量是共线向量;
②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:
①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】
例3.正方形ABCD—中,E、F分别是
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角
求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。
(2)线面角的求法:设n是平面
向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向
所成角为则sin
(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异
②设分别是二面角的两个平面的法向量,则
就是二面角的平面角或其补角。
(4)异面直线间距离的求法:向量,又C、D分别是
是两条异面直线,n是。的公垂线段AB的方向
上的任意两点,则
(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
12
1.若等边ABC的边长
为,平面内一点M满足CMCBCA,则
MAMB_________
2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=
AD 2
(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。
4.(本题满分15分)如图,平面PAC平面ABC,ABC
是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.
(I)设G是OC的中点,证明:FG//平面BOE;
(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.
5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;
(Ⅱ)当PD且E为PB的中点时,求AE与
平面PDB所成的角的大小.