用空间向量处理立体几何的问题

时间:2019-05-12 17:22:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用空间向量处理立体几何的问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用空间向量处理立体几何的问题》。

第一篇:用空间向量处理立体几何的问题

【专题】用空间向量处理立体几何的问题

一、用向量处理角的问题

例1在直三棱柱ABOA1B1O1中,OO14,OA4,OB3,AOB90,P是侧棱

BB1上的一点,D为A1B1的中点,若OPBD,求OP与底面AOB所成角的正切值。

B

1A1 P

B

A

平面OAB,OOB例2如图,三棱柱OABO1A1B1,平面OBBO60,AOB90,111

且OBOO1

2,OA 求:(1)二面角O1ABO的余弦值;(2)异面直线A与AO1所成角的余弦值。1B

B1

A

例3如图,已知ABCD是连长为4的正方形,E、F分别是AD、AB的中点,GC垂直于ABCD所在的平面,且GC=2,求点B到平面EFG的距离。

D

E

AB

AB4,AD3,AA12,M、N分别为DC、BB1例4在长方体ABCDA1BC11D1,的中点,求异面直线MN与A1B的距离。

三、用向量处理平行问题 例5如图,已知四边形ABCD,ABEF为两个正方形,MN分别在其对角线BF、AC上,且FM=AN。

求证:MN//平面EBC。

E

F

M

B A

D

C

例6 在正方体ABCDA1BC11D1中,求证:平面A1BD//平面CB1D1。

EFBD的中点,例7在正方体ABCDA求证: A1F平面BDE。1BC11D1中,、分别是CC1、例8如图,直三棱柱ABCA1B1C1中,底面是以ABC为直角的等腰三角形,AC2,E为B1C的中点。BB12,D为AC11的中点,(1)求直线BE与DC所成的角;

(2)在线段AA1上是否存在点F,使CF平面B1DF,若存在,求出AF的长;若不存在,请说明理由;

(3)若F为AA1的中点,求C到平面B1DF的距离。

C

1A1

A

C

五、高考题回顾

1.(2003年全国高考题)如图在直三棱柱ABCA1B1C1,底面是等腰直角三角形,ACB900,侧棱AA12,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是ABD的重心G.()求A1B与平面ABD所成角的余弦值;()求点A1到平面AED的距离.A2.(2004年高考题)如图,直三棱柱ABCA1B1C1中,ACB900,AA11,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.()求证CD平面BDM;

()求面B1BD与面CBD所成二面角的余弦值.B

六、方法小结

1、求点到平面的距离

如图,已知点P(x0,y0,z0),A(x1,y1,z1),平面一个法向量n。

B

A

1C1

nAP由nAP|n||AP|cos,其中n,AP,可知|AP|cos

|n|



而|AP|cos的绝对值就是点P到平面的距离。

2、求异面直线的距离、夹角

ab|EFn|d;cosa,b

|n||a||b|

3、求二面角



如图:二面角l,平面的法向量为n1,平面的法向量为n2,若n1,n2,则二面角l为或.4、用空间向量证明“平行”,包括线面平行和面面平行。

nm0

nm

第二篇:《立体几何VS空间向量》教学反思

我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。那么这节课我最满意的有以下几个地方(1)学生的参与这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。(2)学生的创新这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。(3)学生的置疑林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.我不满意的地方有以下几点(1)题量的安排 5道题虽然代表不同的类型.但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.(2)课件的制作 立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.(3)总结时间短 这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.

第三篇:空间向量方法解立体几何教案

空间向量方法解立体几何

【空间向量基本定理】

例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分

数x、y、z的值。成定比2,N分PD成定比1,求满足的实

分析;结合图形,从向量

用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。

如图所示,取PC的中点E,连接NE,则

点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。

【利用空间向量证明平行、垂直问题】

例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。

(1)证明:PA//平面EDB;

(2)证明:PB⊥平面EFD;

(3)求二面角C—PB—D的大小。

点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.

(2)证明线面平行的方法:

①证明直线的方向向量与平面的法向量垂直;

②证明能够在平面内找到一个向量与已知直线的方向向量共线;

③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.

(3)证明面面平行的方法:

①转化为线线平行、线面平行处理;

②证明这两个平面的法向量是共线向量.

(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.

(5)证明线面垂直的方法:

①证明直线的方向向量与平面的法向量是共线向量;

②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:

①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】

例3.正方形ABCD—中,E、F分别是

(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角

求得,即。

(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或

(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。

【用空间向量求距离】

例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:

(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线

本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。

(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。

(2)线面角的求法:设n是平面

向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向

所成角为则sin

(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异

②设分别是二面角的两个平面的法向量,则

就是二面角的平面角或其补角。

(4)异面直线间距离的求法:向量,又C、D分别是

是两条异面直线,n是。的公垂线段AB的方向

上的任意两点,则

(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到

(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。

练习:

12

1.若等边ABC的边长

为,平面内一点M满足CMCBCA,则

MAMB_________

2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)

如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=

AD 2

(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。

4.(本题满分15分)如图,平面PAC平面ABC,ABC

是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.

(I)设G是OC的中点,证明:FG//平面BOE;

(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.

5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;

(Ⅱ)当PD且E为PB的中点时,求AE与

平面PDB所成的角的大小.

第四篇:空间向量在立体几何中的应用

【利用空间向量证明平行、垂直问题】

例.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。

(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二面角C—PB—D的大小。

如图所示建立空间直角坐标系,D为坐标原点。设DC=a。

(1)证明:连接AC,AC交BD于G,连接EG。依题意得。

∵底面ABCD是正方形。∴G是此正方形的中心,故点G的坐标为,∴则而,∴PA//平面EDB。

(2)依题意得B(a,a,0),∴PB⊥DE由已知EF⊥PB,且

(3)解析:设点F的坐标为又,故,所以PB⊥平面EFD。,则

从而所以

由条件EF⊥PB知,即,解得

∴点F的坐标为,且∴

即PB⊥FD,故∠EFD是二面角C—PB—D的平面角。

∵,且

∴∴∠EFD=60°所以,二面角C—PB—D的大小为60°。

点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.

(2)证明线面平行的方法:①证明直线的方向向量与平面的法向量垂直;②证明能够在平面内找到一个向量与已知直线的方向向量共线;③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.

(3)证明面面平行的方法:①转化为线线平行、线面平行处理;②证明这两个平面的法向量是共线向量.(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.

(5)证明线面垂直的方法:①证明直线的方向向量与平面的法向量是共线向量;②证明直线与平面内的两个不共线的向量互相垂直.

(6)证明面面垂直的方法:①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直.【用空间向量求空间角】例.正方形ABCD—

中,E、F分别是,的中点,求:

(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。

解析:不妨设正方体棱长为2,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立如图所示空间直角坐标系,则 A(2,0,0),C(0,2,0),E(1,0,2),F(1,1,2)(1)由,得

又,∴,即所求值为。

(2)∵

∴,过C作CM⊥AE于M,则二面角C—AE—F的大小等于,∵M在AE上,∴设则,∵

又∴

∴二面角C—AE—F的余弦值的大小为点评:(1)两条异面直线所成的角(2)直线与平面所成的角

求得,即

求得,即。

可以借助这两条直线的方向向量的夹角

主要可以通过直线的方向向量与平面的法向量的夹角

(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。【用空间向量求距离】例.长方体ABCD—求:

(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。解析:(1)方法一:

如图,建立空间直角坐标系B—xyz,则A(4,0,0),M(2,3,4),P(0,4,0),Q(4,6,2),∴,中,AB=4,AD=6,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点,故异面直线AM与PQ所成角的余弦值为

方法二:,∴

故异面直线AM与PQ所成角的余弦值为

(2)∵,∴上的射影的模

故M到PQ的距离为(3)设

是平面的某一法向量,则,∵因此可取,由于

∴,那么点M到平面的距离为,故M到平面的距离为。

点评:本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法,供大家参考。

(1)平面的法向量的求法:设联立后取其一组解。,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,(2)线面角的求法:设n是平面的法向量,是直线l的方向向量,则直线l与平面所成角的正弦值为。

(3)二面角的求法:①AB,CD分别是二面角的两个面内与棱l垂直的异面直线,则二面角的大小为。

②设或其补角。

分别是二面角的两个平面的法向量,则就是二面角的平面角

(4)异面直线间距离的求法:

是两条异面直线,n是的公垂线段AB的方向向量,又C、D分别是

上的任意

两点,则。

(5)点面距离的求法:设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为。

(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。

第五篇:2015年高考空间向量和立体几何空间几何体知识汇总

1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

2.空间向量的运算:OBOAABab;BAOAOBab;OPa(R)

运算律:⑴加法交换律:abba⑵加法结合律:(ab)ca(bc)

⑶数乘分配律:(ab)ab

3.共线向量

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量

或平行向量,a平行于b,记作a//b。

(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

(2)①共面向量定理:如果两个向量,不共线,则向量与向量,共面的充要条件是存在实数对x、y使.Pxayb

②空间任一点、B、C,则OPxOAyOBzOC(xyz1)是...O.和不共线三点......A.....

PABC四点共面的充要条件.注:①②是证明四点共面的常用方法.5.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使pxaybzc。

若三向量a,b,c不共面,我们把{a,b,c}叫做空间的一个基底,a,b,c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使OPxOAyOBzOC。

6.空间向量的直角坐标系:

(1)空间直角坐标系中的坐标:在空间直角坐标系Oxyz中,对空间任一点A,存在唯一的有序实数组(x,y,z),使,有序实数组(x,y,z)叫作向量A在空间直角坐标系Oxyz中的坐标,记作A(x,y,z)。

(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,i,jk}表示。

(3)空间向量的直角坐标运算律:

①若a(a1,a2,a3),b(b1,b2,b3),则ab(a1b1,a2b2,a3b3),ab(a1b1,a2b2,a3b3),a(a1,a2,a3)(R),aba1b1a2b2a3b3,a//ba1b1,a2b2,a3b3(R)aba1b1a2b2a3b30。

a1a2a

3,b1b2b3

②若A(x1,y1,z1),B(x2,y2,z2),则AB(x2x1,y2y1,z2z1)。③定比分点公式:若

A(x1,y1,z1),B(x2,y2,z2),APPB,则点P坐标为

(x1x2y1y2z1z

2,)111。

推导:设P(x,y,z)则

(xx1,yy1,zz1)(x2x,y2y,z2z),显然,当P为AB

P(中点时,④

x1x2y1y2z1z2,)222。

ABC中,A(x,y1,z1),B(x2,y2,z2),C(x3,y3,z3),三角形重心P坐标为

P(x1x2x3y1y2y3z1z2z3,)

333

⑤ΔABC的五心:

内心P

:内切圆的圆心,角平分线的交点。外心P

(单位向量)

垂心P:高的交点:(移项,内积为0,则垂直)

1AP()

3重心P:中线的交点,三等分点(中位线比)

中心:正三角形的所有心的合一。(4)模长公式:若a

(a1,a2,a3),则|a|(5)夹角公式:cosab

,ab

|a||b|(6)两点间的距离公式:若A(x1,y1,z1),B(x2,y2,z2),则|AB|或dA,B

,(7)法向量:若向量a所在直线垂直于平面,则称这个向量垂直于平面,记作a,如果a那么向量a叫做平面的法向量.(8)向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一

条射线,其中A,则点B到平面②.异面直线间的距离 d

(l1,l2是两异面直线,其公垂向量为n,C、D分

别是l1,l2上任一点,d为l1,l2间的距离).③.直线AB与平面所成角arcsin

ABm

(m为平面的法向量).|AB||m|

④.利用法向量求二面角的平面角定理:设1,n2分别是二面角l中平面,的法向量,则n1,n2所成的角就是所求二面角的平面角或其补角大小(n1,n2方向相同,则为补角,n1,n2反方,则为其夹角).二面角l的平面角arccos

mn

|m||n|

arccos

mn

(m,n为平面,的法向量).|m||n|

⑤.证直线和平面平行定理:已知直线a平面,A,Ba,C,D,且C、D、E三点不共线,则a∥的充要条件是存在有序实数对,使AB

CDCE..7.空间向量的数量积:若OAa,OBb,则AOB叫做向量a与b的夹角,记作

a,b;且规定0a,b,|a||b|cosa,b叫做a,b的数量积,记作ab.1.平面的基本性质

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理

2(3)公理3:如果两个平面(不重合的两个平面)所有这些公共点的集合是一条过这个公共点的直线.

推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.

三个作用:(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.

(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.

平行

共面直线

相交2.直线与直线的位置关系(1)位置关系的分类 

异面直线:不同在任何一个平面内

(2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a,b所成的角(或夹角).

π[0,180])0,.(直线与直线所成角[0,90])②范围:(向量与向量所成角23.a,b是夹在两平行平面间的线段,若ab,则a,b的位置关系为相交或平行或异面.4.直线与平面的位置关系 5.平面与平面的位置关系有平行、相交两种情况. 6.平行公理:

7.等角定理:

8、异面直线的判定方法:

(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 9.两异面直线的距离:公垂线段的长度.10.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:l1,l2是异面直线,则过l1,l2外一点P,过点P且与l1,l2都平行平面有一个或没有,但与l1,l2距离相等的点在同一平面内.(L1或L2在这个做出的平面内不能叫L1与L2平行的平面)11.直线与平面平行、直线与平面垂直.(1)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这

条直线和这个平面平行.(“线线平行线面平行”)

(2)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行线线平行”)

(3)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个

P

平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥,a⊥AO,得a⊥PO(三垂线定理) 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直线面垂直”)

直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.12.平面平行与平面垂直.(1)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行面面平行”)

推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(2)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行线线平行”)

(3)两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直面面垂直”)

(4)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.(5)两异面直线任意两点间的距离公式:l

O

A

m2n2d22mncos(为锐角取减,为钝角取加,综上,都取减则必有0,)

13.棱柱.棱锥.球

(1)棱柱:有两个面相互平行,其余各个侧面都是平行四边形

①{四棱柱}{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体}.{直四棱柱}{平行六面体}={直平行六面体}.②.棱柱具有的性质:棱柱所有的侧棱都相等为平行四边形;直棱柱的各个侧面都是矩形........(直棱柱定义)棱柱有一条侧棱和底面垂直.;正棱柱的各个侧面都是全等的矩形......③.平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分..............定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为,,,则co2sco2sco2s1.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为,,,则

co2sco2sco2s2.(2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.②正棱锥的侧面积:S

1Ch'(底面周长为C,斜高为h')体积:V2

3S底h

③棱锥的侧面积与底面积的射影公式:S侧

S底cos

(侧面与底面成的二面角为)

b.棱锥具有的性质:正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.(3)球:a.①球的表面积公式:S4R.②球的体积公式:V

R.3

b.①圆柱体积:Vrh②圆锥体积:Vr2h(r为半径,h为高)

③锥体体积:V

Sh(S为底面积,h为高)3

2326

a,a,S侧a,S底

443

c.①内切球:当四面体为正四面体时,设边长为a,h

26321322426

aaaRaRRa/3a3a.434344344

R

O

下载用空间向量处理立体几何的问题word格式文档
下载用空间向量处理立体几何的问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018高考一轮复习 立体几何 空间向量(共五则范文)

    2017高考一轮复习空间向量 一.解答题(共12小题) 1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3, (Ⅰ)求证:BF⊥平面ACFD; (Ⅱ)求二面角B﹣AD﹣F的......

    28.空间向量在立体几何中的应用

    高三数学一轮复习材料命题:王晓于杰审题:刘臻祥2007-8-22§5.3空间向量在立体几何中的应用NO.28【基础知识梳理】1. 直线的方向向量与直线的向量方程⑴ 用向量表示直线或点在......

    2018届二轮数学 空间向量与立体几何 专题 专题卷(全国通用)(范文大全)

    空间向量与立体几何 一、选择题 1. 已知A∈α,P∉α,=,平面α的一个法向量n=,则直线PA与平面α所成的角为 ( ) A. 30°B. 45°C. 60°D. 150° 【答案】C 【解析】设PA与平面α所......

    新课标选修2-1空间向量与立体几何检测题(

    空间向量第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a、b共线,则a、b所在的直线平行......

    浅谈用向量法证明立体几何中的几个定理

    浅谈用向量法证明立体几何中的几个定理15号海南华侨中学(570206)王亚顺摘要:向量是既有代数运算又有几何特征的工具,在高中数学的解题中起着很重要的作用。在立体几何中像直线与......

    向量空间证明

    向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关......

    向量空间证明

    向量空间证明解题的基本方法:1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的......

    空间向量复习

    高中数学选修2—1空间向量 期末复习(基本知识点与典型题举例)为右手直角坐标系(立体几何中建立的均为右手系)。2、空间直角坐标系中的坐标运算:一、空间向量的线性运算:1、空间向......