第一篇:空间向量课后反思[模版]
课后反思:
这次上课是 2节课连起来上的,是新的一章空间向量的学习,因为平面向量有些知识可以直接类比到空间向量,所以我将原本3节课的内容压缩到2节课里来上,第1节主要是知识点的梳理,第2节则是通过习题来加强对知识点的掌握。
这节课的一开始我让学生先进行回忆,想一下在高一的时候我们学了平面向量的哪些知识。然后我让学生板书写,下面的学生自己写在进行补充和分类。则个还节的设计能够充分调动学生的积极性并让学生能够加深新旧知识之间的联系,形成知识之间的结构体系。但是在具体实行的时候因为学生回忆的知识很杂乱,而且很多的知识没有想起来,就导致了我在这个环节上耗费了太多的时间且效果没有预期的好,这个主要是自己的知识掌握不够宽泛和经验不足,不能够很好的讲放出去的话题收回来,相信在以后的不断实践中能够得到提高。接下来学习共面向量定理和基本定理时也是通过类比平面向量进行的,并且对基本定理进行了证明以加深学生的印象。这个环节上进行的比较流畅但是在定理证明的过程中暴露出了一个问题是我对证明过程的讲解不能和学生进行很好的互动,基本上是我一个人在自说自话,这个也是缺乏经验的体现。
这节课总的来说还可以,教学任务能够完成,但是还有一些不足的地方需要引起我的注意,在以后授课的过程要不断的改进并在课后不断的充实自己的知识面和在每节课后都要进行反思,争取早一天步入成功教师的行列。
第二篇:空间向量的运算反思
教学反思
本节课我讲了选修2-1第二章《空间向量的运算》这一节,这是本章第二节的内容,主要学习的是空间向量的加法、减法、数乘以及数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角等。
本节课在教学设计上,注重与学生已有知识的联系,因为本节知识是向量由二维向三维的推广,所以预习近平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。另外,多媒体演示和传统板书教学有效结合,较好地辅助了教学。本节课的核心理念是体现学生在学习中的主体性。但是我觉得自己在这方面做的不太理想,意图是好的,可是没有完全调动起学生的兴趣和学习积极性,所在老师在课堂上又变成了主角,背离了新课程理念,这是我以后应该注意的问题。在教学过程中,学生的思维活跃,积极讨论问题,自主解决例题。
不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又渐渐变成了主导者。另外,难点突破应该在两个例题上,可是前边耽误了时间,导致重点地方没有足够的时间解决,没达到最初的意图。还有,在课堂上,如果时间充分,让学生自己发现、分析,总结问题的求解方法,更有助于他们掌握解决此类问题方法。
以上是我对《空间向量的运算》的教学反思,还有很多不足之处,恳请各位老师批评、指正。
2013年11月20日
第三篇:向量空间证明
向量空间证明解题的基本方法:
1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的坐标值,求出相关向量的坐标;4)求解给定问题
证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。
证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解:
因为x+y+z=0 x=-y-z y=y+0*z z=0*y+z(x,y,z)=(-1,1,0)*y+(-1,0,1)*z y,z为任意实数
则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2)步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c)=i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0 接着得到正弦定理 其他 步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。
第四篇:向量空间证明
向量空间证明
解题的基本方法:
1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中
2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;
3)计算有关点的坐标值,求出相关向量的坐标;
4)求解给定问题
证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。
证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可
只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法
解:
因为x+y+z=0
x=-y-z
y=y+0*z
z=0*y+z
(x,y,z)=(-1,1,0)*y+(-1,0,1)*z
y,z为任意实数
则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2)
步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(C-90))+b·0+c·cos(90-A)
=-asinC+csinA=0
接着得到正弦定理
其他
步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步骤3.证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R
类似可证其余两个等式.希望对你有所帮助!
设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形
则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c
平方(1)
向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d
平方(2)
(1)+(2)2a平方+2b平方=4d平方+4c平方
c平方=1/2(a+b)-d平方
AM^2=1/2(AB^2+AC^2)-BM^2
已知EF是梯形ABCD的中位线,且AD//BC,用向量法证明梯形的中位线定理
过A做AG‖DC交EF于p点
由三角形中位线定理有:
向量Ep=½向量BG
又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四边形性质)
∴向量pF=½(向量AD+向量GC)
∴向量Ep+向量pF=½(向量BG+向量AD+向量GC)
∴向量EF=½(向量AD+向量BC)
∴EF‖AD‖BC且EF=(AD+BC)
得证
先假设两条中线AD,BE交与p点
连接Cp,取AB中点F连接pF
pA+pC=2pE=Bp
pB+pC=2pD=Ap
pA+pB=2pF
三式相加
2pA+2pB+2pC=Bp+Ap+2pF
3pA+3pB+2pC=2pF
6pF+2pC=2pF
pC=-2pF
所以pC,pF共线,pF就是中线
所以ABC的三条中线交于一点p
连接OD,OE,OF
OA+OB=2OF
OC+OB=2OD
OC+OC=2OE
三式相加
OA+OB+OC=OD+OE+OF
OD=Op+pD
OE=Op+pE
OF=Op+pF
OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp
由第一问结论
2pA+2pB+2pC=Bp+Ap+Cp
2pA+2pB+2pC=0
1/2Ap+1/2Bp+1/2Cp
所以OA+OB+OC=3Op+pD+pE+pF=3Op
向量Op=1/3(向量OA+向量OB+OC向量)
第五篇:空间向量复习
高中数学选修2—1空间向量 期末复习
(基本知识点与典型题举例)
为右手直角坐标系(立体几何中建立的均为右手系)。
2、空间直角坐标系中的坐标运算:
一、空间向量的线性运算:
1、空间向量的概念:
空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等.
2、空间向量的加法、减法和数乘运算:
平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算. 三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.
3、加法和数乘运算满足运算律:
①交换律,即a+b=b+a;②结合律,即(a(a+b)ca(b+c);
③分配律,即()a=a+a及(a+b)ab(其中,均为实数).
4、空间向量的基本定理:
(1)共线向量定理:对空间向量a,b(b0),a∥b的充要条件是存在实数,使a=b.(2)共面向量定理:如果空间向量a,b不共线,则向量c与向量a,b共面的充要条件是,存在惟一的一对实数x,y,使c=xa+yb。
推论:①空间一点位于平面C内的充要条件是存在有序实数对x,y,使xyC;
②空间一点位于平面C内的充要条件是存在有序实数对x,y或对空间任一定点,有xyC;
③若四点,,,C共面,则xyzC
xyz1。
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组
x,y,z,使p=xa+yb+zc.其中{a,b,c}是空间的一个基底,a,b,c都叫做基向量,该定理可简述为:空间任一向量p都可以用一个基底{a,b,c}惟一线性表示(线性组合)。
5、两个向量的数量积:
(1)两个向量的数量积是a
b=abcosa,b,数量积有如下性质:①ae=acosa,e(e为单位向量);②a⊥bab=0;③aa=a
2;④ab≤ab。
(2)数量积运算满足运算律:①交换律,即ab=ba;②与数乘的结合律,即(a)
b=(ab);③分配律,即(a+b)c=ac+bc.
二、空间向量的直角坐标运算:
1、空间直角坐标系:
若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用{i,jk}表示;在空间
选定一点O和一个单位正交基底{i,jk},可建立一个空间直角坐标系Oxyz,作空间直角 坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°;在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,称这个坐标系
(1)定义:给定空间直角坐标系O-xyz和向量a,存在惟一的有序实数组使a=a1i+a2j+a3k,则(a1,a2,a3)叫作向量a在空间的坐标,记作a=(a1,a2,a对空间任一点A,存在惟一的3)。
OA
xi+yj+zk,点A的坐标,记作A(x,y,z),x,y,z 分别叫A的横坐标、纵坐标、竖坐标。
(2)若A(x
1,y1,z1),B(x2,y2,z2),则AB(x2x1,y2y1,z2z1);
(3)空间两点的距离公式:
d
3、空间向量的直角坐标运算律:已知a=(a1,a2,a3),b=(b1,b2,b3),则:a+b(a1b1,a2b2,a3b3),ab(a1b1,a2b2,a3b3);
a(a1,a2,a3),ab=(a1b1,a2b
2,a3b3);
a∥ba1b1,a
2bcosab
ab2,a3a,bb3|a||b|1212a2b2a3b32220;
空间两个向量的夹角公式:
a1a2a3b12b2b
3。
4、直线的方向向量与向量方程:
(1)位置向量:已知向量a,在空间固定一个基点O,作向量OA
a,则点A在空间的位置被a
所
惟一确定,a称为位置向量。
(2)方向向量与向量方程:给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量
AP
ta,则此方程为直线l上点P对应的向量方程,向量a称为直线l的方向向量。
5、平面的法向量:
(1)如果表示向量a的有向线段所在直线垂直于平面,则称这个向量垂直于平面
(记作a⊥),向量a叫做平面的法向量。法向量有两个相反的方向。
三、空间向量在立体几何中的应用:
1、空间向量在位置关系证明中的具体应用:
1)空间的线线、线面、面面垂直关系,都可以转化为空间两个向量的垂直问题来解决:①设a、b分别为直线a,b的一个方向向量,那么a⊥ba⊥bab=0;②设a、b分别为平面,的一个法向量,那么⊥a⊥bab=0;③设直线l的方向向量为a,平面的法向量为b,那么l⊥a∥b。
2)空间直线与直线平行,直线与平面平行,平面与平面平行,都可以用向量方法来研究:①设a、b是两条不重合的直线,它们的方向向量分别为a、b,那么a∥ba∥b;②直线与平面平行可转化为直线的方向向量与平面的法向量垂直,也可用共面向量定理来
证明线面平行问题;
③平面与平面平行可转化为两个平面的法向量平行。
2、空间向量在立体几何的计算问题中的应用:
1)空间角的计算:
①线线角:异面直线所成角转化为两条直线所在向量的夹角;
②线面角:直线AB与平面所成角为,其中n是平面的法向量;
③面面角:二面角的大小为,其中m,n是两个半平面的法向量。2)距离的计算:
①点面距:设n是平面的法向量,A,则B到的距离为;
②线线距:设n是两条异面直线l1,l2的公垂线的向量,若A,B分别是在l1,l2上的任意一点,则l1,l2的距离为;
③线面距、面面距,与前面求法相同。
四、例题分析:
例
1、如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD
为正方形,PD=DC,E、F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.(3)求DB与平面DEF所成角的大小。
例
2、如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截面而得到的,其中
AB4,BC2,CC13,BE1,(1)求BF的长;(2)求点C到平面AEC1F的距离。
例
3、已知四棱锥PABCD的底面为直角梯形,AB//DC,DAB90,PA底面ABCD,且PAADD
1,AB1,M是PB的中点。
(1)证明:面PAD面PCD;(2)求AC与PB所成的角;
(3)求面AMC与面BMC所成二面角的大小。
例
4、如图,在四棱锥PABCD中,底面ABCD为矩形,PD底面ABCD,E是AB上
一点,PFEC.已知PD
2,CD2,AE
2, 求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角EPCD的大小。
例
2、如图4,在长方体ABCDA1B1C1D1中,ADAA11,AB2,点E在棱AB上移动,问AE等于何值时,二面角D1ECD的大小为
π
4.19.(本小题满分12分)
如图,在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD 为正方形,PD=DC,E、F分别 是AB,PB的中点.(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.(3)求DB与平面DEF所成角的大小.19.以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,如图,设AD=a,则
D(0•,•0•,•0)•,•A(a•,•0•,•0),B(a•,a•,•0)•,C•
(0•,•a•,•0)•,E•
(a•,a
•,•0)•,F•(a2
2•,a2•,a2)•,P•(0•,•0•,a)
(1)a
a2•,•0•,2
•,•(0•,•a•,•0)0•,•
∴EF
DC•.(2)设G(x•,•0•,•z),则G∈平面PAD.FG
aaa
x2•,•2•,•z2,ax2,••a2•,•za2(a•,•0•,•0)aaa
x20,则x2;
a
x2•,•a2•,•za2(0•,•a•,•a)a2a2a(z2)0,则z=0.∴G是坐标为(a,0,0),即G为AD的中点.(3)(只理科做)设平面DEF的法向量为n(x•,y•,z)•.由n0•,(x,•y,•z)a,•a•,a
0•,得DE0•222n.(x•,y,•z)(a,•a,••0)0•.a
(xyz)即0•,2取x=1,则y=-2,z=1, axa2
y0•.∴ n=(1,-2,1).cos〈BD•,•n〉a3
2a6
•, ∴DB与平面DEF所成角大小为
2arccos3
(即arcsin3
6).19.如图4,在长方体ABCDA1B1C1D1中,ADAA11,AB2,点E在棱AB上移动,问AE等于何值时,二面角D1ECD的大小为
π4
. 解:设AEx,以D为原点,直线DA,DC,DD1所在直线
分别为
x,y,z轴建立空间直角坐标系,则A1(1,01),D1(0,01),E(1,x,0)A(1,0,0)C(0,2,0). ∴CE(1,x2,0)D1),DD1C(0,2,1(0,0,1).
设平面D1EC的法向量为n(a,b,c),·D1C0,2bc0,n
由
ab(x2)0,·CE0n
又CC1(0,0,3),设CC1与n1的夹角为,
CC1·n则cos. 1
CC1n
令b1,∴c2,a2x.
∴n(2x,1,2).
n·DD1π依题意cos.
4nDD1.
∴
x2x2∴AE2.
∴C到平面AEC1F的距离dCC1cos
20.如图5所示的多面体是由底面为ABCD的长方体被截面AEC1F所截而得到的,其中AB4,BC2,CC13,BE1.
(1)求BF;
(2)求点C到平面AEC1F的距离.
解:(1)以D为原点,DAF,DC,DF所在直线为x轴,y轴,z轴建立空间直角坐标系Dxyz,D(0,0,0)B(2,4,0)A(2,0,0)C(0,4,0)E(2,41),C1(0,4,3),设F(0,0,z).
由AFEC1,得(2,0,z)(2,0,2),∴z2.
∴F(0,0,2)BF(2,4,2).
∴BF
·AE0,n1
(2)设n1为平面AEC1F的法向量,n1(x,y,1),由
·AF0,n1,x1
4y10,得∴1
2x20.y.4