空间向量方法解立体几何教案

时间:2019-05-13 06:37:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《空间向量方法解立体几何教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《空间向量方法解立体几何教案》。

第一篇:空间向量方法解立体几何教案

空间向量方法解立体几何

【空间向量基本定理】

例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分

数x、y、z的值。成定比2,N分PD成定比1,求满足的实

分析;结合图形,从向量

用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。

如图所示,取PC的中点E,连接NE,则

点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。

【利用空间向量证明平行、垂直问题】

例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。

(1)证明:PA//平面EDB;

(2)证明:PB⊥平面EFD;

(3)求二面角C—PB—D的大小。

点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.

(2)证明线面平行的方法:

①证明直线的方向向量与平面的法向量垂直;

②证明能够在平面内找到一个向量与已知直线的方向向量共线;

③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.

(3)证明面面平行的方法:

①转化为线线平行、线面平行处理;

②证明这两个平面的法向量是共线向量.

(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.

(5)证明线面垂直的方法:

①证明直线的方向向量与平面的法向量是共线向量;

②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:

①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】

例3.正方形ABCD—中,E、F分别是

(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角

求得,即。

(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或

(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。

【用空间向量求距离】

例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:

(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线

本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。

(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。

(2)线面角的求法:设n是平面

向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向

所成角为则sin

(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异

②设分别是二面角的两个平面的法向量,则

就是二面角的平面角或其补角。

(4)异面直线间距离的求法:向量,又C、D分别是

是两条异面直线,n是。的公垂线段AB的方向

上的任意两点,则

(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到

(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。

练习:

12

1.若等边ABC的边长

为,平面内一点M满足CMCBCA,则

MAMB_________

2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)

如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=

AD 2

(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。

4.(本题满分15分)如图,平面PAC平面ABC,ABC

是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.

(I)设G是OC的中点,证明:FG//平面BOE;

(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.

5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;

(Ⅱ)当PD且E为PB的中点时,求AE与

平面PDB所成的角的大小.

第二篇:解立体几何方法总结

启迪教育

解立体几何方法总结

1坐标系的建立:

2空间向量的运算:

3求异面直线的夹角

4法向量的求法

5证明线面平行方法:

6求线和面的夹角

7求几何体的体积

8证明面和面垂直和线面垂直

9求点到面的距离(等体积法)

罗老师教案

1罗老师教案

6罗老师教案

1如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,PAAD4,AB2.以BD的中点O为球心、BD为直径的球面交PD于点M.

(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.

B

2如图3-2,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC,M是AD的中点。(Ⅰ)求证:AD∥平面A1BC;(Ⅱ)求证:平面A1MC⊥平面A1BD1;(Ⅲ)求点A到平面A1MC的距离。

3如图,已知E,F分别是正方形ABCD边BC,CD的中点,EF与AC交于点O, PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2, M是线段PA上一动点(1)求证:平面PAC⊥平面NEF;

(2)若PC∥平面MEF,试求PM∶MA的值;

(3)当M是PA中点时,求二面角M-EF-N的余弦值

MN

A

E

C

图3-2

罗老师教案

第三篇:《立体几何VS空间向量》教学反思

我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。那么这节课我最满意的有以下几个地方(1)学生的参与这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。(2)学生的创新这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。(3)学生的置疑林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.我不满意的地方有以下几点(1)题量的安排 5道题虽然代表不同的类型.但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.(2)课件的制作 立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.(3)总结时间短 这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.

第四篇:用向量方法解立体几何题(老师用)

用向量方法求空间角和距离

在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 求空间角问题

空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异面直线所成的角

设a、b分别为异面直线a、b的方向向量,ab则两异面直线所成的角=arccos||

|a||b|

(2)求线面角

设l是斜线

l的方向向量,n是平面的法向量,则斜线

(3)求二面角

lnl与平面所成的角=arcsin||

|l||n|法

一、在内al,在内bl,其方向如图,则二面角

abl的平面角=arccos|a||b| 1

法

二、设n1,n2,是二面角l的两个半平面的法向量,l其方向一个指向内侧,另一个指向外侧,则二面角nn2 的平面角=arccos1|n1||n2|2 求空间距离问题

构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求.(1)求点面距离

法

一、设n是平面的法向量,在内取一点B, 则 A

|ABn|到的距离d|AB||cos||n|法

二、设AO于O,利用AO和点O在内的向量表示,可确定点O(2)求异面直线的距离

的位置,从而求出|AO|.

一、找平面使b且a,则异面直线a、b的距离就转化为直线a到平面的距离,又转化为点A到平面的距离.

二、在a上取一点A, 在b上取一点B, 为异面直线a、b异面直线a、b

的方向向量,求n(na设a、b分别

,nb),则

|ABn|的距离d|AB||cos|(此方法移植|n|于点面距离的求法). 例1.如图,在棱长为2的正方体ABCDA1B1C1D1中,E、F分别是棱A1D1,A1B1的中点.

(Ⅰ)求异面直线DE与FC1所成的角;(II)求BC1和面EFBD所成的角;(III)求B1到面EFBD的距离

解:(Ⅰ)记异面直线DE与FC1所成的角为,则等于向量DE与FC1的夹角或其补角, cos|DEFC1|DE||FC|(DDD1|11E)(FB1B ||DE|1C1)||FC1| |2|2 555,arccos25(II)如图建立空间坐标系Dxyz,则DE(1,0,2),DB(2,2,0)

设面EFBD的法向量为n(x,y,1)

由DEn

DB0n0得n(2,2,1)又BC1(2,0,2)

记BC1和面EFBD所成的角为 则 sin|cosBCBC1n21,n|||BC|

1||n|2∴ BC1和面EFBD所成的角为4.(III)点B1到面EFBD的距离d等于

向量BB1在面EFBD的法向量上的投影的绝对值,2|BB1n|d3|n|设计说明:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―――正方体为载体,来说明空间角和距离的向量求法易于学生理解. 2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求). 3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决,向量方法可以人人学会,它程序化,不需技巧.

例2.如图,三棱柱中,已知A BCD是边长为1的正方形,四边形

AABB 是矩形,平面AABB平面ABCD。

(Ⅰ)若AA=1,求直线AB到面DA'C的距离.(II)试问:当AA的长度为多少时,二面角

DACA的大小为60?

解:(Ⅰ)如图建立空间坐标系Axyz,则 'DA(1,0,a)DC(0,1,0)'

'DAn10则 DCn10设面DAC的法向量为n1(x,y,1)得n1(a,0,1)直线AB到面DA'C的距离d就等于点A到面DA'C的距离,也等于向量AD在面DA'C的法向量上的投影的绝对值,|ADn1|2d2|n1|

(1,1,0)(II)易得面AA'C的法向量n2向量n1,n2的夹角为60 nn2由cosn1,n21|n1||n2|

aa1221

2得 a

1当AA=1时,二面角DACA的大小为60.

设计说明:1.通过(Ⅰ),复习线面距离转化为点面距离再转化为一向量在一向量(法向量)投影的绝对值的解题思路与方法.

2.通过(II),复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.

例3.正三棱柱ABCA1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.(Ⅰ)求证: 直线B1P不可能与平面ACC1A1垂直;(II)当BC1B1P时,求二面角CB1PC1的大小.

a

证明:(Ⅰ)如图建立空间坐标系Oxyz,设AP则A,C,B1,P的坐标分别为(0,1,0),(0,1,0),(AC(0,2,0),B1P(3,1,a2)ACB1P20,B1P不垂直AC直线B1P

3,0,2)(0,1,a)

不可能与平面ACC1A1垂直. (II)BC1(3,1,2),由BC1B1P,得BC1B1P0

即22(a2)0 又BC1B1Ca1

BC1面CB1P

BC1(3,1,2)是面CB1P的法向量

B1Pn0设面C1B1P的法向量为n(1,y,z),由B1C1n0得n(1,3,23),设二面角CB1PC1的大小为BC1n6则cos4|BC1||n| 64二面角CB1PC1的大小为arccos.

设计说明:1.前面选择的两个题,可有现成的坐标轴,但本题x、z轴需要自己添加(也可不这样建立).

2.第(1)小题是证明题,同样可用向量方法解答,是特殊情况;本小题也可证明这条直线与这个面的法向量不平行.

通过上面的例子,我们看到向量方法(更确切地讲,是用公式: ab|a||b|cos)解决空间角和距离的作用,当然,以上所举例子,用传统方法去做,也是可行的,甚至有的(例2)还较为简单,用向量法的好处在于克服传统立几以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强―――运算过程公式化、程序化,有效地突破了立体几何教学和学习中的难点,是解决立体几何问题的重要工具.充分体现出新教材新思想、新方法的优越性.这是继解析几何后用又一次用代 数的方法研究几何形体的一块好内容,数形结合,在这里得到淋漓尽致地体现.

练习:

1.在正四面体SABC中,棱长为a,E,F分别为SA和BC的中点,求异面

23直线BE和SF所成的角.(arccos)

2.在边长为1的菱形ABCD中,ABC起后BD=1,求二面角B3.在四棱锥PPDADABCDACD60,将菱形沿对角线AC折起,使

13的余弦值.()

P中,底面ABCD为矩形,PD底D面,且Ca,问平面PBA与平面PBC能否垂直?试说明理由.(不垂直)

AB4.在直三棱柱ABCA1B1C1中,A90,O,O1,G 分别为BC,B1C1,AA1的中点,且AB(1)求O1到面A1CB1的距离;(22ACAA12.))(2)求BC到面GB1C1的距离.(263E 5.如图,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC =900,BE和CD都垂直于平面ABC,F

D B C A 且BE=AB=2,CD=1,点F是AE的中点.(Ⅰ)求证:DF∥平面ABC;

(Ⅱ)求AB与平面BDF所成角的大小.(arcsin)

8

第五篇:【教案】3.2立体几何中的向量方法

3.2.2向量法解决空间角问题

(习题课)

(1)、三维目标

1.知识与能力:向量运算在几何计算中的应用.培养学生的空间想象能力和运算能力。

2.过程与方法:掌握利用向量运算解几何题的方法,并能解简单的立体几何问题. 3.情感目标

通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.(2)教学重点:向量运算在解决空间角中的应用.(3)教学难点:向量运算在解决空间角中的应用.21 新课导入设计

一、复习引入

1、两条异面直线所成的角的定义及范围?

2、直线与平面所成角的定义及范围?

3、二面角定义及范围?

(和学生一起回忆定义,并且通过直线的方向向量及平面的法向量复习线线角,线面角及面面角的公式)

二、习题展示:教师给出正方体这个载体,由学生在正方体中构造空间角,展示自编题目,并由学生解答完成。

1、展示线线角习题:

(设计意图:使学生清楚如何将求两条异面直线所成角转化成求两个向量所成角,并且会用cos=|cos<a,b>|=|ab|解决问题,但要注意异面直线所成角的范围与

ab两个向量所成角范围的不同)

2、展示线面角习题;(设计意图:使学生能将求线面角转化为求线线角,即求斜线与平面的法向量所成的角,进而转化为求两个向量所成角,这里关注学生在讲解过程中是否能讲清楚线面角的正弦即是线线角的余弦,即sincosAB,nABnABn)

3、展示面面角习题;(设计意图;使学生能将二面角的平面角转化为线线角,即转化为求平面的法向量所成的角,进而使问题又归为

下载空间向量方法解立体几何教案word格式文档
下载空间向量方法解立体几何教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    用空间向量处理立体几何的问题

    【专题】用空间向量处理立体几何的问题一、用向量处理角的问题例1在直三棱柱ABOA1B1O1中,OO14,OA4,OB3,AOB90,P是侧棱BB1上的一点,D为A1B1的中点,若OPBD,求OP与底面AOB所成角的正切......

    空间向量在立体几何中的应用

    【利用空间向量证明平行、垂直问题】例. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二......

    2015年高考空间向量和立体几何空间几何体知识汇总(合集5篇)

    1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。2. 空间向量的运算:OBOAABab;BAOAOBab;OPa(R)运算律:⑴加法交换律:abba⑵加法结合律:(ab)ca(bc)⑶数乘分配律:(ab)ab......

    2018高考一轮复习 立体几何 空间向量(共五则范文)

    2017高考一轮复习空间向量 一.解答题(共12小题) 1.(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3, (Ⅰ)求证:BF⊥平面ACFD; (Ⅱ)求二面角B﹣AD﹣F的......

    28.空间向量在立体几何中的应用

    高三数学一轮复习材料命题:王晓于杰审题:刘臻祥2007-8-22§5.3空间向量在立体几何中的应用NO.28【基础知识梳理】1. 直线的方向向量与直线的向量方程⑴ 用向量表示直线或点在......

    法向量在立体几何解题中的应用

    龙源期刊网 http://.cn 法向量在立体几何解题中的应用 作者:魏庆鼎 来源:《理科考试研究·高中》2013年第08期 高中数学教材引进了向量知识以后,为我们解决数学问题提供了一套......

    空间向量在立体几何中的应用(一) 课时教案

    空间向量在立体几何中的应用(一) ——求空间两条直线、直线与平面所成的角 知识与技能:引导学生探索并掌握利用空间向量求线线角、线面角的基本方法。、 过程与方法:通过对例题......

    3.2立体几何中的向量方法 教学设计 教案

    教学准备 1. 教学目标 (1)知识与技能:理解直线的方向向量和平面的法向量;会用向量及其运算表示线线、线面、面面间的位置关系. (2)过程与方法:在解决问题中,通过数形结合的思想方......