第一篇:立体几何中的向量方法的教学设计
《立体几何中的向量方法》的教学设计
一、教材分析
本节课是坐标法与向量有效结合的典型范例,有利于培养学生利用向量解决立体几何问题的能力。
二、教学目标
通过类比平面内的点、线的位置可以由向量来确定,引导学生理解空间内的点、线、面的位置也可以由向量来表示,并进一步探究用空间向量的运算来表示空间线、面的位置关系。从应用其证明空间线面的平行与垂直问题中体会直线的方向向量与平面的法向量在解决立体几何中线面平行与垂直问题时的作用。从而树立学好用好向量法解决立体几何问题的兴趣和信心。
三、教学重点、难点
由于建系求点坐标是向量方法中最大的障碍,所以把坐标法与向量法结合作为重点,而适当地建立空间直角坐标系及添加辅助线作为难点。
四、教学手段
用几何画板直观展示图形给学生立体感,通过问题链让学生有效地进行数学思维。
五、教学流程
1、新课导入:
同学们,在前面的学习中,我们已经接触过一些用空间向量的运算方法,所以这节课我们将使用一些用空间向量知识证明点、线、面的位置关系。
为了运用向量来解决立体几何问题,首先要明确空间的点、线、面的位置是否可以用向量来确定?想一想平面内点、线的位置可以由向量来唯一确定吗?你能利用类比的方法,相应地得出空间点、线、面的位置也可以由向量来唯一确定的结论吗?
2、经典例题讲解:
<例一> 已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CBC1CDBCD,求证:CC1BD.分析:题目是让我们求证CC1BD,我们可以利用向量垂直的方法来试着证明CC1.BD =0 <例二> 棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:A1E⊥平面DBC1。
分析:该题主要是考察学生是否可以根据已知题目给出的信息将建立空间直角坐标系,本题以D为坐标原点,DC所在的直线为x轴,连接BD以BD为y轴,Z轴则平行与CC1建立了D-XYZ的空间直角坐标系。接着根据平面法向量的性质来求证出结果。
六、练习
用向量的方法证明“平面与平面垂直的判定定理”。
七、总结
将空间向量的方法引入到立体几何中,通常的方法不必添加繁杂的辅助线,只要建立适当的空间直角坐标系,写出相关点的坐标,利用向量运算解决立体几何问题,这样使问题坐标化、符号化、数量化,从而降低推理问题的思维难度。
第二篇:3.2立体几何中的向量方法 教学设计 教案
教学准备
1.教学目标
(1)知识与技能:理解直线的方向向量和平面的法向量;会用向量及其运算表示线线、线面、面面间的位置关系.(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对相关知识的理解。
(3)情感态度与价值观:开始体会把立方体几何几何转化为向量问题优势。
2.教学重点/难点
【教学重点】:平面的法向量.【教学难点】:用向量及其运算表示线线、线面、面面间的位置关系.3.教学用具
多媒体
4.标签
3.2.1 直线的方向向量与平面的法向量
教学过程
课堂小结
1. 点、直线、平面的位置的向量表示。线线、线面、面面间的位置关系的向量表示。
第三篇:向量方法在立体几何教学中的应用
转自论文部落论文范文发表论文发表
向量方法在立体几何教学中的应用
作者:王龙生
摘 要: 在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都作为重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,能避免构图和推理的复杂过程,有利于降低解题难度.关键词: 向量 立体几何教学 数形结合在江苏省对口单招数学试卷中,立体几何这一章的知识点每年都是重点考查的内容.每年我校考生在立体几何解答题上的得分情况都不太理想.向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.根据向量的数形特性,可以将几何图形数量化,从而通过运算解决立体几何中的平行、垂直等问题,避免构图和推理的复杂过程,有利于降低解题难度.一、将立体几何中的平行问题转化为向量平行来证明
二、将立体几何中的垂直问题转化为向量垂直来证明
由于立体几何中的垂直问题图形比较复杂,加上学生的空间感比较薄弱,因此学生很难解决.把立体几何中的垂直问题转化为向量垂直,其优越性非常明显,具体体现在:两个向量垂直的充要条件可以把“垂直”体现在一个等式中变为纯粹的运算,所涉及的向量易于用坐标表示就足够了.立体几何中的线线、线面、面面垂直,都可以转化为空间两个向量的垂直问题解决.1.“线线垂直”化为“向量垂直”
华罗庚关于“数形结合”有一句名言:“数缺形时少直观,形离数时难入微.”向量是基本的数学概念之一,是沟通代数与几何的工具之一,体现了数形结合的思想.因此,充分掌握、运用好向量知识,可以提高学生的数形结合能力,培养学生发现问题的能力,帮助学生理清数形结合呈现的内在关系,把无形的解题思路形象化,有利于学生顺利地、高效率地解决数学问题.利用向量方法研究立体几何问题,能避免传统几何方法中繁琐的推理及论证,有效提高学生解决立体几何问题的能力.参考文献:
[1]单招生—相约在高校,数学:基础知识梳理.[2]单招零距离—数学:总复习方案.[3]吕林根,张紫霞,孙存金.立体几何学习指导书.
第四篇:【教案】3.2立体几何中的向量方法
3.2.2向量法解决空间角问题
(习题课)
(1)、三维目标
1.知识与能力:向量运算在几何计算中的应用.培养学生的空间想象能力和运算能力。
2.过程与方法:掌握利用向量运算解几何题的方法,并能解简单的立体几何问题. 3.情感目标
通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.(2)教学重点:向量运算在解决空间角中的应用.(3)教学难点:向量运算在解决空间角中的应用.21 新课导入设计
一、复习引入
1、两条异面直线所成的角的定义及范围?
2、直线与平面所成角的定义及范围?
3、二面角定义及范围?
(和学生一起回忆定义,并且通过直线的方向向量及平面的法向量复习线线角,线面角及面面角的公式)
二、习题展示:教师给出正方体这个载体,由学生在正方体中构造空间角,展示自编题目,并由学生解答完成。
1、展示线线角习题:
(设计意图:使学生清楚如何将求两条异面直线所成角转化成求两个向量所成角,并且会用cos=|cos<a,b>|=|ab|解决问题,但要注意异面直线所成角的范围与
ab两个向量所成角范围的不同)
2、展示线面角习题;(设计意图:使学生能将求线面角转化为求线线角,即求斜线与平面的法向量所成的角,进而转化为求两个向量所成角,这里关注学生在讲解过程中是否能讲清楚线面角的正弦即是线线角的余弦,即sincosAB,nABnABn)
3、展示面面角习题;(设计意图;使学生能将二面角的平面角转化为线线角,即转化为求平面的法向量所成的角,进而使问题又归为
第五篇:空间向量方法解立体几何教案
空间向量方法解立体几何
【空间向量基本定理】
例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分
数x、y、z的值。成定比2,N分PD成定比1,求满足的实
分析;结合图形,从向量
用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。
如图所示,取PC的中点E,连接NE,则
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;
(2)证明:PB⊥平面EFD;
(3)求二面角C—PB—D的大小。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:
①证明直线的方向向量与平面的法向量垂直;
②证明能够在平面内找到一个向量与已知直线的方向向量共线;
③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:
①转化为线线平行、线面平行处理;
②证明这两个平面的法向量是共线向量.
(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:
①证明直线的方向向量与平面的法向量是共线向量;
②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:
①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】
例3.正方形ABCD—中,E、F分别是
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角
求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。
(2)线面角的求法:设n是平面
向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向
所成角为则sin
(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异
②设分别是二面角的两个平面的法向量,则
就是二面角的平面角或其补角。
(4)异面直线间距离的求法:向量,又C、D分别是
是两条异面直线,n是。的公垂线段AB的方向
上的任意两点,则
(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
12
1.若等边ABC的边长
为,平面内一点M满足CMCBCA,则
MAMB_________
2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=
AD 2
(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。
4.(本题满分15分)如图,平面PAC平面ABC,ABC
是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.
(I)设G是OC的中点,证明:FG//平面BOE;
(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.
5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;
(Ⅱ)当PD且E为PB的中点时,求AE与
平面PDB所成的角的大小.