第一篇:《立体几何VS空间向量》教学反思
我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。那么这节课我最满意的有以下几个地方(1)学生的参与这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。(2)学生的创新这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。(3)学生的置疑林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.我不满意的地方有以下几点(1)题量的安排 5道题虽然代表不同的类型.但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.(2)课件的制作 立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.(3)总结时间短 这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.
第二篇:空间向量方法解立体几何教案
空间向量方法解立体几何
【空间向量基本定理】
例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分
数x、y、z的值。成定比2,N分PD成定比1,求满足的实
分析;结合图形,从向量
用、、出发,利用向量运算法则不断进行分解,直到全部向量都表示出来,即可求出x、y、z的值。
如图所示,取PC的中点E,连接NE,则
点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。
【利用空间向量证明平行、垂直问题】
例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;
(2)证明:PB⊥平面EFD;
(3)求二面角C—PB—D的大小。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:
①证明直线的方向向量与平面的法向量垂直;
②证明能够在平面内找到一个向量与已知直线的方向向量共线;
③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:
①转化为线线平行、线面平行处理;
②证明这两个平面的法向量是共线向量.
(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:
①证明直线的方向向量与平面的法向量是共线向量;
②证明直线与平面内的两个不共线的向量互相垂直.(6)证明面面垂直的方法:
①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直. 【用空间向量求空间角】
例3.正方形ABCD—中,E、F分别是
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。,的中点,求:
点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角
求得,即。
(2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即或
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。
【用空间向量求距离】
例4.长方体ABCD—中,AB=4,AD=6,段BC上,且|CP|=2,Q是DD1的中点,求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。,M是A1C1的中点,P在线
本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。
(1)平面的法向量的求法:设,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解。
(2)线面角的求法:设n是平面
向量,则直线与平面的一个法向量,AB是平面的斜线l的一个方向
所成角为则sin
(3)二面角的求法:①AB,CD分别是二面角面直线,则二面角的大小为。的两个面内与棱l垂直的异
②设分别是二面角的两个平面的法向量,则
就是二面角的平面角或其补角。
(4)异面直线间距离的求法:向量,又C、D分别是
是两条异面直线,n是。的公垂线段AB的方向
上的任意两点,则
(5)点面距离的求法:设n是平面平面的距离为。的法向量,AB是平面的一条斜线,则点B到
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
练习:
12
1.若等边ABC的边长
为,平面内一点M满足CMCBCA,则
MAMB_________
2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。3.(本小题满分12分)
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=
AD 2
(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。
4.(本题满分15分)如图,平面PAC平面ABC,ABC
是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC16,PAPC10.
(I)设G是OC的中点,证明:FG//平面BOE;
(II)证明:在ABO内存在一点M,使FM平面BOE,并求点M到OA,OB的距离.
5.如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;
(Ⅱ)当PD且E为PB的中点时,求AE与
平面PDB所成的角的大小.
第三篇:用空间向量处理立体几何的问题
【专题】用空间向量处理立体几何的问题
一、用向量处理角的问题
例1在直三棱柱ABOA1B1O1中,OO14,OA4,OB3,AOB90,P是侧棱
BB1上的一点,D为A1B1的中点,若OPBD,求OP与底面AOB所成角的正切值。
B
1A1 P
B
A
平面OAB,OOB例2如图,三棱柱OABO1A1B1,平面OBBO60,AOB90,111
且OBOO1
2,OA 求:(1)二面角O1ABO的余弦值;(2)异面直线A与AO1所成角的余弦值。1B
B1
A
例3如图,已知ABCD是连长为4的正方形,E、F分别是AD、AB的中点,GC垂直于ABCD所在的平面,且GC=2,求点B到平面EFG的距离。
D
E
AB
AB4,AD3,AA12,M、N分别为DC、BB1例4在长方体ABCDA1BC11D1,的中点,求异面直线MN与A1B的距离。
三、用向量处理平行问题 例5如图,已知四边形ABCD,ABEF为两个正方形,MN分别在其对角线BF、AC上,且FM=AN。
求证:MN//平面EBC。
E
F
M
B A
D
C
例6 在正方体ABCDA1BC11D1中,求证:平面A1BD//平面CB1D1。
EFBD的中点,例7在正方体ABCDA求证: A1F平面BDE。1BC11D1中,、分别是CC1、例8如图,直三棱柱ABCA1B1C1中,底面是以ABC为直角的等腰三角形,AC2,E为B1C的中点。BB12,D为AC11的中点,(1)求直线BE与DC所成的角;
(2)在线段AA1上是否存在点F,使CF平面B1DF,若存在,求出AF的长;若不存在,请说明理由;
(3)若F为AA1的中点,求C到平面B1DF的距离。
C
1A1
A
C
五、高考题回顾
1.(2003年全国高考题)如图在直三棱柱ABCA1B1C1,底面是等腰直角三角形,ACB900,侧棱AA12,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是ABD的重心G.()求A1B与平面ABD所成角的余弦值;()求点A1到平面AED的距离.A2.(2004年高考题)如图,直三棱柱ABCA1B1C1中,ACB900,AA11,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.()求证CD平面BDM;
()求面B1BD与面CBD所成二面角的余弦值.B
六、方法小结
1、求点到平面的距离
如图,已知点P(x0,y0,z0),A(x1,y1,z1),平面一个法向量n。
B
A
1C1
nAP由nAP|n||AP|cos,其中n,AP,可知|AP|cos
|n|
而|AP|cos的绝对值就是点P到平面的距离。
2、求异面直线的距离、夹角
ab|EFn|d;cosa,b
|n||a||b|
3、求二面角
如图:二面角l,平面的法向量为n1,平面的法向量为n2,若n1,n2,则二面角l为或.4、用空间向量证明“平行”,包括线面平行和面面平行。
nm0
nm
第四篇:空间向量在立体几何中的应用
【利用空间向量证明平行、垂直问题】
例.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD;(3)求二面角C—PB—D的大小。
如图所示建立空间直角坐标系,D为坐标原点。设DC=a。
(1)证明:连接AC,AC交BD于G,连接EG。依题意得。
∵底面ABCD是正方形。∴G是此正方形的中心,故点G的坐标为,∴则而,∴PA//平面EDB。
(2)依题意得B(a,a,0),∴PB⊥DE由已知EF⊥PB,且
(3)解析:设点F的坐标为又,故,所以PB⊥平面EFD。,则
从而所以
由条件EF⊥PB知,即,解得
∴点F的坐标为,且∴
即PB⊥FD,故∠EFD是二面角C—PB—D的平面角。
∵,且
∴∴∠EFD=60°所以,二面角C—PB—D的大小为60°。
点评:(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量.
(2)证明线面平行的方法:①证明直线的方向向量与平面的法向量垂直;②证明能够在平面内找到一个向量与已知直线的方向向量共线;③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.
(3)证明面面平行的方法:①转化为线线平行、线面平行处理;②证明这两个平面的法向量是共线向量.(4)证明线线垂直的方法是证明这两条直线的方向向量互相垂直.
(5)证明线面垂直的方法:①证明直线的方向向量与平面的法向量是共线向量;②证明直线与平面内的两个不共线的向量互相垂直.
(6)证明面面垂直的方法:①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直.【用空间向量求空间角】例.正方形ABCD—
中,E、F分别是,的中点,求:
(1)异面直线AE与CF所成角的余弦值;(2)二面角C—AE—F的余弦值的大小。
解析:不妨设正方体棱长为2,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立如图所示空间直角坐标系,则 A(2,0,0),C(0,2,0),E(1,0,2),F(1,1,2)(1)由,得
又,∴,即所求值为。
(2)∵
∴
∴,过C作CM⊥AE于M,则二面角C—AE—F的大小等于,∵M在AE上,∴设则,∵
∴
又∴
∴二面角C—AE—F的余弦值的大小为点评:(1)两条异面直线所成的角(2)直线与平面所成的角
求得,即
求得,即。
或
可以借助这两条直线的方向向量的夹角
主要可以通过直线的方向向量与平面的法向量的夹角
(3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。【用空间向量求距离】例.长方体ABCD—求:
(1)异面直线AM与PQ所成角的余弦值;(2)M到直线PQ的距离;(3)M到平面AB1P的距离。解析:(1)方法一:
如图,建立空间直角坐标系B—xyz,则A(4,0,0),M(2,3,4),P(0,4,0),Q(4,6,2),∴,中,AB=4,AD=6,M是A1C1的中点,P在线段BC上,且|CP|=2,Q是DD1的中点,故异面直线AM与PQ所成角的余弦值为
方法二:,∴
故异面直线AM与PQ所成角的余弦值为
(2)∵,∴上的射影的模
故M到PQ的距离为(3)设
是平面的某一法向量,则,∵因此可取,由于
∴,那么点M到平面的距离为,故M到平面的距离为。
点评:本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法,供大家参考。
(1)平面的法向量的求法:设联立后取其一组解。,利用n与平面内的两个向量a,b垂直,其数量积为零,列出两个三元一次方程,(2)线面角的求法:设n是平面的法向量,是直线l的方向向量,则直线l与平面所成角的正弦值为。
(3)二面角的求法:①AB,CD分别是二面角的两个面内与棱l垂直的异面直线,则二面角的大小为。
②设或其补角。
分别是二面角的两个平面的法向量,则就是二面角的平面角
(4)异面直线间距离的求法:
是两条异面直线,n是的公垂线段AB的方向向量,又C、D分别是
上的任意
两点,则。
(5)点面距离的求法:设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为。
(6)线面距、面面距均可转化为点面距离再用(5)中方法求解。
第五篇:空间向量课后反思[模版]
课后反思:
这次上课是 2节课连起来上的,是新的一章空间向量的学习,因为平面向量有些知识可以直接类比到空间向量,所以我将原本3节课的内容压缩到2节课里来上,第1节主要是知识点的梳理,第2节则是通过习题来加强对知识点的掌握。
这节课的一开始我让学生先进行回忆,想一下在高一的时候我们学了平面向量的哪些知识。然后我让学生板书写,下面的学生自己写在进行补充和分类。则个还节的设计能够充分调动学生的积极性并让学生能够加深新旧知识之间的联系,形成知识之间的结构体系。但是在具体实行的时候因为学生回忆的知识很杂乱,而且很多的知识没有想起来,就导致了我在这个环节上耗费了太多的时间且效果没有预期的好,这个主要是自己的知识掌握不够宽泛和经验不足,不能够很好的讲放出去的话题收回来,相信在以后的不断实践中能够得到提高。接下来学习共面向量定理和基本定理时也是通过类比平面向量进行的,并且对基本定理进行了证明以加深学生的印象。这个环节上进行的比较流畅但是在定理证明的过程中暴露出了一个问题是我对证明过程的讲解不能和学生进行很好的互动,基本上是我一个人在自说自话,这个也是缺乏经验的体现。
这节课总的来说还可以,教学任务能够完成,但是还有一些不足的地方需要引起我的注意,在以后授课的过程要不断的改进并在课后不断的充实自己的知识面和在每节课后都要进行反思,争取早一天步入成功教师的行列。