45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版)

时间:2019-05-13 06:37:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《45立体几何中的向量方法(Ⅰ)——证明平行与垂直》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《45立体几何中的向量方法(Ⅰ)——证明平行与垂直》。

第一篇:45立体几何中的向量方法(Ⅰ)——证明平行与垂直

第45课时立体几何中的向量方法(Ⅰ)

——证明平行与垂直

编者:刘智娟审核:陈彩余 班级_________

学号_________

姓名_________第一部分 预习案

一、学习目标

1.理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直和平行关系

2.了解向量方法在研究立体几何问题中的应用

二、知识回顾

1.直线的方向向量与平面的法向量

(1)直线l上的向量e(e≠0)以及与e共线的向量叫做直线l的方向向量.

(2)如果表示非零向量n的有向线段所在直线垂直于平面α,那么称向量n垂直于平面α,记作n⊥α.此时,我们把向量n叫做平面α的法向量.

2.用向量证明空间中的平行关系

(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔ v1∥v

2(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使=xv1+yv2

(3)设直线l的方向向量为,平面α的法向量为,则l∥α或l⊂α⇔⊥.(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1 ∥u2.3.用向量证明空间中的垂直关系

v2=0.(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·

(2)设直线l的方向向量为,平面α的法向量为,则l⊥α⇔∥

u2=0.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·

三、基础训练

1.两条不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1与l2的位置关系是__________

→→→→→2.已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为______________.

b=(2,0,4),c=(-4,3.已知=(-2,-3,1),-6,2),则下列结论正确的序号是________. ①∥c,b∥c;②∥b,⊥c; ③∥,⊥;④以上都不对.

→→4.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量为____________.

5.若平面α、β的法向量分别为v1=(2,-3,5),v2=(-3,1,-4),则α、β的位置关系为____________.

第二部分探究案

探究一 利用空间向量证明平行问题

问题

1、如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.

求证:PB∥平面EFG.探究二利用空间向量证明垂直问题

问题

2、如图所示,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1的中点.

求证:AB1⊥平面A1BD.探究三 利用空间向量解决探索性问题

问题

3、如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.

(1)求证:B1E⊥AD1;

(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.

问题

4、如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.

我的收获

第三部分训练案见附页

第二篇:立体几何中的向量方法----证明平行与垂直练习题

§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则().

A.l1∥l2B.l1⊥l

2C.l1与l2相交但不垂直D.以上均不正确

2.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()

A.s1=(1,1,2),s2=(2,-1,0)

B.s1=(0,1,-1),s2=(2,0,0)

C.s1=(1,1,1),s2=(2,2,-2)

D.s1=(1,-1,1),s2=(-2,2,-2)

35153.已知a=1,-,b=-3,λ,-满足a∥b,则λ等于(). 222

2992A.B.C.-D.- 322

34.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是().

A.a=(1,0,0),n=(-2,0,0)

B.a=(1,3,5),n=(1,0,1)

C.a=(0,2,1),n=(-1,0,-1)

D.a=(1,-1,3),n=(0,3,1)

5.若平面α,β平行,则下面可以是这两个平面的法向量的是()

A.n1=(1,2,3),n2=(-3,2,1)

B.n1=(1,2,2),n2=(-2,2,1)

C.n1=(1,1,1),n2=(-2,2,1)

D.n1=(1,1,1),n2=(-2,-2,-2)

6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于().

62636065A.B.C.D.7777

7.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)3B.1,3,2



C.1,-3,2

二、填空题



D.-1,3,-

2

8.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则

l1与l2的位置关系是_______.

9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________.→

=0的_______.

12.已知→AB=(1,5,-2),→BC=(3,1,z),若→AB⊥→BC,→BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为________.

三、解答题

13.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:

11.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量是________.

10.已知点A,B,C∈平面α,点P∉α,则AP·AB=0,且AP·AC=0是AP·BC

a,b,c.14.如图所示,在正方体ABCD­A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:

MN∥平面A1BD.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直

线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,1

则M0,1,N,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),22→

1

1于是MN=,0,2

2设平面A1BD的法向量是n=(x,y,z). x+z=0,则n·DA1=0,且n·DB=0,得

x+y=0.→

取x=1,得y=-1,z=-1.∴n=(1,-1,-1). →

11

又MN·n=,0,·(1,-1,-1)=0,22→

∴MN⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.15.如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=

1.(1)求证:E,B,F,D1四点共面;

(2)若点G在BC上,BG=M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面

BCC1B1.→→

证明(1)建立如图所示的坐标系,则BE=(3,0,1),BF=(0,3,2),BD1=(3,3,3).

→→

→→→→

所以BD1=BE+BF,故BD1、BE、BF共面. 又它们有公共点B,所以E、B、F、D1四点共面.(2)如图,设M(0,0,z),→

→→

2

则GM=0,-,z,而BF=(0,3,2),3

→→

由题设得GM·BF=-×3+z·2=0,得z=1.→

因为M(0,0,1),E(3,0,1),所以ME=(3,0,0). →

又BB1=(0,0,3),BC=(0,3,0),→→→→

所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.16.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22

,0、(0,0,1).

22→22∴NE=-,-1.22

2

2又点A、M的坐标分别是2,2,0)、,1

22

22∴AM=-,-1.22

→→

∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22

(2)由(1)知AM=-,-1,22

∵D2,0,0),F(2,2,1),∴DF=(0,2,1)→→

∴AM·DF=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.→

第三篇:8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

§8.7 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.33154015,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题7分,共21分

6.设a=1,2,0,b=1,0,1,则“c=(,,的条件.7.若|a|,b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

三、解答题共44分

9.14分已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量

10.(15分)如图,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA

1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:

3EM⊥面BCC1B1.11.(15分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB2,AF

=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.答案

1.C2.A3.B4.B5.D

6.充分不必要7.23132)”是“c⊥a,c⊥b且c为单位向量”3118118,2,或,2,8.1 555

5.9.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设

正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).∴2

211AM1,0,,AN0,1设平面AMN的一个法向量为22

n=x,y,z,1nAMyz02 nANx1yz02

令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

10.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3

得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.11.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22,0、(0,0,1). 22

22∴NE=-1.22

又点A、M的坐标分别是,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F22,1),DF=(0,2,22

1).

→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF

F,∴AM⊥平面BDF.

第四篇:9-5用向量方法证明平行与垂直

2012-2013学第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:

例2.(线线垂直)

如图所示,已知直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°.BC=1,AA1=,M是例5.(面面平行)

如图所示:正方体AC1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平CC1的中点.求证:AB1⊥A1M.例3.(线面平行)

在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.例4.(线面垂直)

在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,试在棱B1B上找一点M,使得D1M⊥平面EFB1.第三页

面AMN∥平面EFDB.例6。(面面垂直)

如图,底面ABCD是正方形,SA底面ABCD,且SAAB平面ABCD.第四页E是SC中点.求证:

平面BDEy,2012-2013学第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:

8.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量v2=-(2,4,2),则平面α与平面β()A.平行

B.垂直C.相交

D.不能确定

9.在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,则()A.面AED∥面A1FD1B.面AED⊥面A1FD1 C.面AED与面A1FD相交但不垂直D.以上都不对

10.已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为

11,2,2,则m=________.11.如右上图所示,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________.

9.如下图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点. 证明:(1)AE⊥CD;(2)PD⊥平面ABE.第三页

10.已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是BB1、DD1、DC的中点,求证:(1)平面ADE∥平面B1C1F;(2)平面ADE⊥平面A1D1G;

(3)在AE上求一点M,使得A1M⊥平面DAE.11.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,cos〈DP,AE〉=33

.(1)建立适当的空间坐标系,写出点E的坐标;(2)在平面PAD内求一点F,使EF

⊥平面

PCB

.第四页

第五篇:立体几何中平行与垂直的证明

立体几何中平行与垂直的证明

姓名

2.掌握正确的判定和证明平行与垂直的方法.D

1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;

例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.

求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:

AD

C1

BC【变式一】如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;

【反思与小结】1.证明线线垂直的方法:

1. 谈谈对“点E在棱AB上移动”转化的动态思考 2. 比较正方体、正四棱柱、长方体

【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩

形,且AF

D

1A

E

B

C

C

AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。

反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识? 【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC

(Ⅰ)求证:

10,D是BC边的中点.ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;

【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识? 【变式三】如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;

(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.

【反思与小结】

1.观察两个图之间的变化联系,写出感受。

2.和【变式一】进行比较,谈谈你把握动态问题的新体会

【变式四】如图,四边形ABCD

为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥BE;

(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同? _P【变式五】如图5所示,在三棱锥PABC中,PA平面ABC,ABBCCA3,M为AB的中点,四点P、A、M、C都在球O的球面上。

(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;

【反思与小结】1.探讨球与正方体、长方体等与球体之间的关系。

2.结合前面几组图形的分割变化规律,说明正方体、正四棱

柱、长方体、直三棱柱、四棱锥、三棱锥的变化联系。

3.总结立几中证明“平行与垂直”的思路和方法

课后练习

1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;

(II)求证:B1C1⊥平面ABB1A

(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面BDE,并说明理由。

2.如图,已知AB平面ACD,DE平面ACD,三角形ACD

为等边三角形,ADDE2AB,F为CD的中点

(1)求证:AF//平面BCE;

(2)求证:平面BCE平面CDE;

P1. 如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.(1)求证:CDAE;

A

D(2)求证:PD面ABE.

2. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=_A_M_B_C1AD.2B

(I)求证:平面PAC⊥平面PCD;

(II)在棱PD上是否存在一点E,使CE∥平面PAB?若

存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB

2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.

(1)证明:CD平面SAE;

(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论. D【课后记】1.设计思路(1)两课时; C(2)认识棱柱与棱锥之间的内在联系;

(3)掌握探寻几何证明的思路和方法;

(4)强调书写的规范性

2.实际效果:

(1)用时两节半课;

(2)平行掌握的比较好,但垂直问题需要继续加强。尤其是面面垂直问题转化为线面垂直后便不知所措。

下载45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版)word格式文档
下载45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    用向量方法证明空间中的平行与垂直

    用向量方法证明空间中的平行与垂直1.已知直线a的方向向量为a,平面α的法向量为n,下列结论成立的是( C )A.若a∥n,则a∥αB.若a·n=0,则a⊥αC.若a∥n,则a⊥αD.若a·n=0,则a∥α解析:由方......

    传统方法证明平行与垂直

    立体几何——证明平行与垂直证明平行Ⅰ、线面平行:证明线面平行就证明线平行于面内线。(数学语言)性质:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条......

    立体几何-8.7 立体几何中的向量问题(Ⅰ)——平行与垂直(作业)(优秀范文5篇)

    响水二中高三数学(理)一轮复习作业 第八编 立体几何 主备人 张灵芝 总第41期 班级 姓名 等第 §8.7 立体几何中的向量问题(Ⅰ)——平行与垂直 一、填空题 1.若平面、的法向......

    证明平行与垂直

    §9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    高一立体几何平行垂直证明基础练习

    高一垂直证明基础练习专项1、点线面位置关系判定问题解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都......

    立体几何垂直证明范文

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等......

    3.2.1用向量方法证明平行与垂直关系(小编整理)

    §3.2.1用向量方法证明平行与垂直1、直线的方向向量直线的方向向量是指和这条直线或的向量,一条直线的方向向量有个。 2.平面的法向量直线l,取直线l的a,则向量a叫做平面的。 3......

    高二数学3.2立体几何中的向量方法,第2课时,利用空间向量证明平行、垂直关系

    立体几何中的向量方法(2)2、利用空间向量证明平行、垂直关系基础性练习:1、在空间四边形ABCD中,E、F分别是AB、BC的中点,则AC与平面DEF的位置关系是A、平行B、相交C、在平面内D、......