第一篇:立体几何的平行与证明问题
立体几何
1.知识网络
一、经典例题剖析
考点一 点线面的位置关系
1、设l是直线,a,β是两个不同的平面()
A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥β
C.若a⊥β,l⊥a,则l⊥β D.若a⊥β, l∥a,则l⊥β
2、下列命题正确的是()
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行
3、已知空间三条直线l、m、n.若l与m异面,且l与n异面,则()
A.m与n异面.B.m与n相交.C.m与n平行.D.m与n异面、相交、平行均有可能.4、(2013年高考江西卷(文15))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为
_____________.D
1CB
考点二证明平行关系
5、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,D C
BDE。求证: AC1//平面
6、(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O
为底面中心, A1O⊥平面ABCD, ABAA1
A
(Ⅰ)证明: A1BD //平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的体积.考点三证明垂直问题
7、(2013年高考辽宁卷(文))
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(I)求证:BC平面PAC;
(II)设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC.8、已知正方体ABCDA1BC11D1,O是底ABCD对角线的交点.D1AD
BBC
1求证:(1)C1O∥面AB1D1;(2)AC面AB1D1.1
C
综合练习:
9、(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC中,D,E分别是AB,AC
边上的点,ADAE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图5所示的三棱锥ABCF,其中BC
.(1)证明:DE//平面BCF;(2)证明:CF平面ABF;
图
410、如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=证明:PQ⊥平面DCQ;
PD.
2AC平面B'D'DB;BD'
平面ACB'.11、正方体ABCDA'B'C'D'中,求证:(1)(2)
第二篇:立体几何线面平行问题
线线问题及线面平行问题
一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..
2.公理4 :推理模式:a//b,b//ca//c.
3.等角定理:4.等角定理的推论:若两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法
6.异面直线定理:连结平面内一点与平面外一点的直线,b
a
1AA
推理模式:A,B,l,BlAB与l
7.异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a//a,b//b,a,b所成的角的大小与点O的选择无关,把a,b所成的锐角(或直角)叫异面直线a,b所成的角(或夹角).为了简便,点O(0,
28.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b 垂直,记作ab.
9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;
(210.两条异面直线的公垂线、距离:和两条异面直线都垂直相交....
异面直线的的定义要注意“相交
11.异面直线间的距离:两条异面直线的公垂线在这两条异面直线间的线段垂线段)的长度,叫做两条异面直线间的距离.
12.直线和平面的位置关系(1)直线在平面内(无数个公共a点);(2)直线和平面相交(有且只有一个公共点);(3)直
线和平面平行(没有公共点)——用两分法进行两次分
类.它们的图形分别可表示为如下,符号分别可表示为a,aA,a//. a13.线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:l,m,l//ml//.
14.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这
相交,那么这条直线和交线平行.推理模式:l//,l,ml//m.
lm个平面
二、基本题型
1.判断题(对的打“√”,错的打“×”)
(1)垂直于两条异面直线的直线有且只有一条()
(2)两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB⊥CD()(3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º()(4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直()
2.右图是正方体平面展开图,在这个正方体中
C
①BM与ED平行;②CN与BE是异面直线;③CN与BM成60º角; ④DM与BN垂直.以上四个命题中,正确命题的序号是()(A)①②③(B)②④(C)③④(DF
3.已知空间四边形ABCD.(1)求证:对角线AC与BD是异面直线;(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;(3)若AB=
BC=CD=DA,作出异面直线AC与BD的公垂线段.4.完成下列证明,已知直线a、b、c不共面,它们相交于点P,Aa,Da,Bb,Ec求证:BD和AE证明:假设__ 共面于,则点A、E、B、D都在平面__Aa,Da,∴__γ.Pa,∴P__.Pb,Bb,Pc,Ec∴__,__,这与____矛 ∴BD、E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,(1)求证四边形EFGH是
2)若AC⊥BD时,求证:EFGH为矩形;(3)若BD=2,AC=6,求EG
HF
;(4)
若AC、BD成30º角,AC=6,BD=4,求四边形EFGH的面积;(5)若AB=BC=CD=DA=AC=BD=2,求AC与BD间的距离.6 间四边形ABCD中,ADBC2,E,F分别是AB,CD的中点,EFAD,BC7.在正方体ABCD-A1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.8.在长方体ABCDABCD中,已知AB=a,BC=b,AA=c(a>b),求异面直线DB与AC
9.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别
是AB、PC1)求证:MN//平面PAD;(2)若MNBC4,PA 求异面
直线PA与MN10.如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AMFN求证:MN//平面CBE
参考答案:
1.(1)×(2)×(3)√(4)×2.C
3.证明:(1)∵ABCD是空间四边形,∴A点不在平面BCD上,而C平面BCD, ∴AC过平面BCD外一点A与平面BCD内一点C, 又∵BD平面BCD,且CBD.∴AC与BD是异面直线.(2)解如图,∵E,F分别为AB,BC的中点,∴EF//AC,且EF=同理HG//AC,且HG=
212
AC.AC.∴EF平行且相等HG,∴EFGH是平行四边形.又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.o
∵AC⊥BD,∴∠EFG=90.∴EFGH是矩形.(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.4.答案:假设BD、AE共面于,则点A、E、B、D都在平面 ∵Aa,Da,∴ a .∵Pa,P .∵Pb,Bb,Pc,Ec.∴ b ,c ,这与a、b、c∴BD、AE5.证明(1):连结AC,BD,∵E,F是ABC的边AB,BC上的中点,∴EF//AC,同理,HG//AC,∴EF//HG,同理,EH//FG,所以,四边形EFGH证明(2):由(1)四边形EFGH∵EF//AC,EH//BD,∴由AC⊥BD得,EFEH,∴EFGH为矩形.解(3):由(1)四边形EFGH∵BD=2,AC=6,∴EF
2AC3,EH
BD
1∴由平行四边形的对角线的性质 EGHF2(EF
EH)20.B
D解(4):由(1)四边形EFGH∵BD=4,AC=6,∴EF
又∵EF//AC,EH//BD,AC、BD成30º角,∴EF、EH成30º角,AC3,EH
BD
2∴四边形EFGH的面积 SEFEHsin30
3.解(5):分别取AC与BD的中点M、N,连接MN、MB、MD、NA、NC,∵AB=BC=CD=DA=AC=BD=2,∴MB=MD=NA=NC=3 ∴MNAC,MNBD,∴MN是AC与BD的公垂线段 且MN
MB
NB
2∴AC与BD间的距离为2.6.解:取BD中点G,连结EG,FG,EF,∵E,F分别是AB,CD的中点,∴EG//AD,FG//BC,且EG
2AD1,FG
BC1,∴异面直线AD,BC所成的角即为EG,FG所成的角,EGFGEF
2EGFG
在EGF中,cosEGF
,G
F
D
∴EGF120,异面直线AD,BC所成的角为60.
7.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90o.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD1成角90.8.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形, ∴∠A1BD=60o,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.o
在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD成角90o.9.略证(1)取PD的中点H,连接AH,NH//DC,NH
12DC
o
o
C
NH//AM,NHAMAMNH为平行四边形 MN//AH,MNPAD,AHPADMN//PAD
解(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等
于PA的一半,所以ONM就是异面直线PA与MN所成的角,由
MNBC
4,PAOM=2,ON=
所以ONM300,即异面直线PA与MN成30010.略证:作MT//AB,NH//AB分别交BC、BE于T、H点
AMFNCMT≌BNHMTNH
从而有MNHT为平行四边形MN//THMN//CBE
E
第三篇:立体几何证明问题
证明问题
例1.如图,E、F分别是长方体边形
.-的棱A、C的中点,求证:四边形是平行四
例2.如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证:AE⊥SB.例3.如图,长方体∠求证:
=90°.⊥
PQ
-中,P、Q、R分别为棱、、BC上的点,PQ//AB,连结,例4.已知有公共边AB的两个全等的矩形ABCD和ABEF不同在一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ,如图所示.求证:PQ//平面
CBE.例5.如图直角三角形ABC平面外一点S,且SA=SB=SC,且点D为斜边AC的中点.(1)求证:SD⊥平面ABC.(2)若AB=AC,求证BD⊥平面
SAC.例6.如图,在正方体
-中,M、N、E、F分别是棱、、、的中点.求证:平面AMN//平面
EFDB.例7.如图(1)、(2),矩形ABCD中,已知AB=2AD,E为AB的中点,将ΔAED沿DE折起,使AB=AC.求证:平面ADE⊥平面
BCDE.
第四篇:高中立体几何证明平行的专题训练
1. 如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;
2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:求证:FG∥面BCD;
3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证: C1D∥平面B1FM.4、如图所示, 四棱锥PABCD底面是直角梯形,FAD
A
1BAAD,CDAD,CD=2AB, E为PC的中点, 证明:
EB//平面PAD;
5、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
6.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;
7.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
8、在四棱锥P-ABCD中,AB∥CD,AB=求证:AE∥平面PBC;
9、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.M是线段AD的中点,求证:GM∥平面ABFE;
10、S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且MN∥平面SDC11、如图,三棱锥PABC中,PB底面ABC,BCA90,PB=BC=CA,E为PC的中点,M为AB的中点,点F在PA上,且
DC,E为PD中点.AMSM
=
BNND,求证:
AF2F
P
.求证:CM//平面BEF;
第五篇:高中立体几何证明平行的专题
高中立体几何证明平行的专题(基本方法)
一、利用三角形及一边的平行线a.利用中位线
b.利用对应线段成比例
(a)、利用中位线
例
1、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
例
2、如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证AB1//平面BC1D
例
3、在四棱锥P-ABCD中,AB∥CD,AB=
练习
1、ABCDA1B1C1D1是正四棱柱,E是棱BC的中点。求证:BD1//平面C1DE1DC,E为PD中点.求证:AE∥平面PBC;
2练习
2、在三棱柱ABCA1B//平面ADC1; 1B1C1中,D为BC中点.求证:A
B
1B
C1
练习
3、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点,证明: EB//平面PAD;
练习
4、如图所示,正三棱柱ABC—A1B1C1中,D是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论.(b)、利用对应线段成比例
例
4、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且
SDC
AMBN
=,求证:MN∥平面SMND
例
5、在正方体ABCD—A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1。
1A
A
二、利用平行四边形的性质
例6.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD的中点.求证:AF∥平面PCE;
例
7、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,求证:FG∥面BCD;
例
8、正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
例
9、在四棱锥P-ABCD中,AB∥CD,AB=
DC,E为PD中点.求证:AE∥平面PBC
2练习
5、四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点,求证:MN∥平面
PAD;
练习
6、如图,在正方体ABCD——A1B1C1D1中,O是底面ABCD对角线的交点.求证:C1O//平面AD1B1.练习
7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是
AB、PD的中点.求证:AF//平面PEC
P
A
E
B
C
练习
8、在三棱柱ABC-A1B1C1中,M,N分别是CC1,AB的中点.求证:CN //平面AB1M.
C
1A1
M
B1
C
A
B
3利用平行线的传递性
例
10、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:C1D∥平面B1FM.F
A
1D
A
练习
9、三棱柱ABC—A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;
4利用面面平行
例
11、如图,三棱锥PABC中,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.求证:CM//平面BEF;