立体几何中平行与垂直的证明(5篇模版)

时间:2019-05-12 17:22:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《立体几何中平行与垂直的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《立体几何中平行与垂直的证明》。

第一篇:立体几何中平行与垂直的证明

立体几何中平行与垂直的证明

姓名

2.掌握正确的判定和证明平行与垂直的方法.D

1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;

例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.

求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:

AD

C1

BC【变式一】如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;

【反思与小结】1.证明线线垂直的方法:

1. 谈谈对“点E在棱AB上移动”转化的动态思考 2. 比较正方体、正四棱柱、长方体

【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩

形,且AF

D

1A

E

B

C

C

AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。

反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识? 【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC

(Ⅰ)求证:

10,D是BC边的中点.ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;

【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识? 【变式三】如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;

(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.

【反思与小结】

1.观察两个图之间的变化联系,写出感受。

2.和【变式一】进行比较,谈谈你把握动态问题的新体会

【变式四】如图,四边形ABCD

为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥BE;

(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同? _P【变式五】如图5所示,在三棱锥PABC中,PA平面ABC,ABBCCA3,M为AB的中点,四点P、A、M、C都在球O的球面上。

(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;

【反思与小结】1.探讨球与正方体、长方体等与球体之间的关系。

2.结合前面几组图形的分割变化规律,说明正方体、正四棱

柱、长方体、直三棱柱、四棱锥、三棱锥的变化联系。

3.总结立几中证明“平行与垂直”的思路和方法

课后练习

1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;

(II)求证:B1C1⊥平面ABB1A

(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面BDE,并说明理由。

2.如图,已知AB平面ACD,DE平面ACD,三角形ACD

为等边三角形,ADDE2AB,F为CD的中点

(1)求证:AF//平面BCE;

(2)求证:平面BCE平面CDE;

P1. 如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.(1)求证:CDAE;

A

D(2)求证:PD面ABE.

2. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=_A_M_B_C1AD.2B

(I)求证:平面PAC⊥平面PCD;

(II)在棱PD上是否存在一点E,使CE∥平面PAB?若

存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB

2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.

(1)证明:CD平面SAE;

(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论. D【课后记】1.设计思路(1)两课时; C(2)认识棱柱与棱锥之间的内在联系;

(3)掌握探寻几何证明的思路和方法;

(4)强调书写的规范性

2.实际效果:

(1)用时两节半课;

(2)平行掌握的比较好,但垂直问题需要继续加强。尤其是面面垂直问题转化为线面垂直后便不知所措。

第二篇:立体几何中的向量方法----证明平行与垂直练习题

§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则().

A.l1∥l2B.l1⊥l

2C.l1与l2相交但不垂直D.以上均不正确

2.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()

A.s1=(1,1,2),s2=(2,-1,0)

B.s1=(0,1,-1),s2=(2,0,0)

C.s1=(1,1,1),s2=(2,2,-2)

D.s1=(1,-1,1),s2=(-2,2,-2)

35153.已知a=1,-,b=-3,λ,-满足a∥b,则λ等于(). 222

2992A.B.C.-D.- 322

34.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是().

A.a=(1,0,0),n=(-2,0,0)

B.a=(1,3,5),n=(1,0,1)

C.a=(0,2,1),n=(-1,0,-1)

D.a=(1,-1,3),n=(0,3,1)

5.若平面α,β平行,则下面可以是这两个平面的法向量的是()

A.n1=(1,2,3),n2=(-3,2,1)

B.n1=(1,2,2),n2=(-2,2,1)

C.n1=(1,1,1),n2=(-2,2,1)

D.n1=(1,1,1),n2=(-2,-2,-2)

6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于().

62636065A.B.C.D.7777

7.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)3B.1,3,2



C.1,-3,2

二、填空题



D.-1,3,-

2

8.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则

l1与l2的位置关系是_______.

9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________.→

=0的_______.

12.已知→AB=(1,5,-2),→BC=(3,1,z),若→AB⊥→BC,→BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为________.

三、解答题

13.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:

11.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量是________.

10.已知点A,B,C∈平面α,点P∉α,则AP·AB=0,且AP·AC=0是AP·BC

a,b,c.14.如图所示,在正方体ABCD­A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:

MN∥平面A1BD.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直

线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,1

则M0,1,N,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),22→

1

1于是MN=,0,2

2设平面A1BD的法向量是n=(x,y,z). x+z=0,则n·DA1=0,且n·DB=0,得

x+y=0.→

取x=1,得y=-1,z=-1.∴n=(1,-1,-1). →

11

又MN·n=,0,·(1,-1,-1)=0,22→

∴MN⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.15.如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=

1.(1)求证:E,B,F,D1四点共面;

(2)若点G在BC上,BG=M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面

BCC1B1.→→

证明(1)建立如图所示的坐标系,则BE=(3,0,1),BF=(0,3,2),BD1=(3,3,3).

→→

→→→→

所以BD1=BE+BF,故BD1、BE、BF共面. 又它们有公共点B,所以E、B、F、D1四点共面.(2)如图,设M(0,0,z),→

→→

2

则GM=0,-,z,而BF=(0,3,2),3

→→

由题设得GM·BF=-×3+z·2=0,得z=1.→

因为M(0,0,1),E(3,0,1),所以ME=(3,0,0). →

又BB1=(0,0,3),BC=(0,3,0),→→→→

所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.16.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22

,0、(0,0,1).

22→22∴NE=-,-1.22

2

2又点A、M的坐标分别是2,2,0)、,1

22

22∴AM=-,-1.22

→→

∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22

(2)由(1)知AM=-,-1,22

∵D2,0,0),F(2,2,1),∴DF=(0,2,1)→→

∴AM·DF=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.→

第三篇:8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

§8.7 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.33154015,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题7分,共21分

6.设a=1,2,0,b=1,0,1,则“c=(,,的条件.7.若|a|,b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

三、解答题共44分

9.14分已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量

10.(15分)如图,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA

1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:

3EM⊥面BCC1B1.11.(15分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB2,AF

=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.答案

1.C2.A3.B4.B5.D

6.充分不必要7.23132)”是“c⊥a,c⊥b且c为单位向量”3118118,2,或,2,8.1 555

5.9.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设

正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).∴2

211AM1,0,,AN0,1设平面AMN的一个法向量为22

n=x,y,z,1nAMyz02 nANx1yz02

令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

10.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3

得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.11.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22,0、(0,0,1). 22

22∴NE=-1.22

又点A、M的坐标分别是,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F22,1),DF=(0,2,22

1).

→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF

F,∴AM⊥平面BDF.

第四篇:证明平行与垂直

§9.8 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.15401533,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题6分,共24分

6.设a=1,2,0,b=1,0,1,则“c=(的条件.7.若|a|

b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

212,,)”是“c⊥a,c⊥b且c为单位向量”33

39.设A是空间任一点,n为空间内任一非零向量,则适合条件AM·n=0的点M的轨迹

是.三、解答题共41分

10.(13分)已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量.

11.(14分)如图,已知ABCD—A1B1C1D1是棱长为3的正

方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,3垂足为H,求证:EM⊥面BCC1B1.12.(14分)如图所示,已知正方形ABCD和矩形ACEF所在的平

面互相垂直,AB2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.答案

1.C2.A3.B4.B5.D

6.充分不必要7.118118,2,或,2,8.1 555

5.9.过A点且以n为法向量的平面

10.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).2211∴AM1,0,,AN0,1设平面AMN的一个法向量为n=x,y,z, 22

1nAMyz02 1nANxyz0

2令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

11.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3

得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 ,0、(0,0,1).

22

∴NE=-1.22

又点A、M的坐标分别是2,2,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F2,2,1),22

DF=(0,2,1).

→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF=F,∴AM⊥平面BDF.

第五篇:高一立体几何平行垂直证明基础练习

高一垂直证明基础练习专项

1、点线面位置关系判定问题

解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都是点集,所以在考虑线面关系时从集合与集合的包含关系或者集合与集合的交、并、补关系来判定;(2)几何:把集合与几何关系结合来判定线线,线面,面面关系

例1、设是三个不重合的平面,l是直线,给出下列命题

①若,则;

②若l上两点到的距离相等,则;

③若

④若

其中正确的命题是

()

A.①②

B.②③

C.②④

D.③④

解析:

①由面面垂直关系已知不成立,可能垂直也可能相交平行。错误;②由点到面距离易知直线还可能和平面相交;③因为所以在平面β内一定有一直线垂直α所以正确④根据平行关系易知正确

答案选D

练习1、设,是两条不同的直线,是一个平面,则下列命题正确的是()

(A)若,则

(B)若,则

(C)若,则

(D)若,则

练习2、给定下列四个命题:

()

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是

A.①和②

B.②和③

C.③和④

D.②和④

练习3.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是()

A.若,则

B.若,则

C.若,则

D.若,则

练习4.顺次连接空间四边形各边中点所成的四边形必定是()

A、平行四边形

B、菱形

C、正方形

D、梯形

练习题答案:练习1:B;练习2:

D;练习3:

C;练习4:

A;

2、空间中线面的平行垂直证明

例1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

解析:

证明PC平行于面EBD,只需在面EBD内找一条直线和已知直线平行即可

E为中点,首先考虑构造等腰三角形中位线,取AC中点O连接EO即可

证明:取AC的中点O,连接EO,例2:三棱柱—中,为的中点,为的中点,为的中点,证明:平面∥平面

解析:面面平行的证明定理,证明两平面内两组相交直线平行,即把面面

平行问题转化为线线平行问题,按解决线线平行的思路即可解决问题

证明:连接BC1,EF

分别为BC、B1C1、BB1、CC1的中点,例3:如图:四棱锥—中,⊥平面,底面是矩形,为的中点,⊥,证明:⊥

解析:线线垂直的证明分同平面直线垂直证明和异平面垂直证明,在处理异平面垂直证

明问题时,优先考虑证明一直线垂直于另一直线所在平面,转化为线面垂直证明问题

即证明PD垂直于面BEF即可

证明:点

例4:如图:四棱锥—中,⊥平面,底面是矩形,证明:平面⊥平面

练习1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

练习2:如图:三棱柱—中,为的中点,证明:∥平面

练习3:如图:三棱柱—中,为的中点,证明:∥平面

练习4:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习5:如图:三棱柱—中,、分别为、的中点,证明:∥平面

练习6:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习7:如图:三棱柱—中,为的中点,为的中点,证明:∥平面

练习8:如图:四棱锥—中,⊥平面,底面是梯形,∥,,为的中点,证明:⊥

练习9:如图:直三棱柱—中,,、分别为、的中点,为的中点,证明:⊥

练习10:如图:四棱锥—中,⊥平面,⊥,,⊥,⊥,为的中点,证明:⊥

练习11:如图:四棱锥—中,底面是矩形,平面⊥平面,证明:平面⊥平面

练习12:如图:五面体中,是正方形,⊥平面,∥,证明:平面⊥平面

练习13:如图:四棱锥—中,⊥平面,是菱形,为的中点,证明:平面⊥平面

练习14:如图:四棱锥—中,平面⊥平面,,证明:平面⊥平面

下载立体几何中平行与垂直的证明(5篇模版)word格式文档
下载立体几何中平行与垂直的证明(5篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    立体几何垂直证明范文

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等......

    45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版)

    第45课时立体几何中的向量方法(Ⅰ)——证明平行与垂直编者:刘智娟审核:陈彩余 班级_________学号_________姓名_________第一部分 预习案 一、学习目标1. 理解直线的方向向量......

    立体几何垂直和平行的证明练习题(共5则)

    1.下列命题正确的是………………………………………………A.三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两条相交直线确定一个平面2.若直线a不平......

    平行与垂直的证明

    立体几何中平行与垂直的证明1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.ADBC1DBC2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1, 点E在......

    立体几何中线面平行垂直性质判定2012五篇范文

    2012考前集训高频考点立体几何考纲解读必须掌握空间中线面平行、垂直的有关性质与判定定理判定定理1.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平......

    立体几何的平行与证明问题

    立体几何1.知识网络一、 经典例题剖析考点一 点线面的位置关系1、设l是直线,a,β是两个不同的平面 A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥βC.若a⊥β,l⊥a,则l⊥β D.若a......

    传统方法证明平行与垂直

    立体几何——证明平行与垂直证明平行Ⅰ、线面平行:证明线面平行就证明线平行于面内线。(数学语言)性质:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条......

    空间几何——平行与垂直证明

    三、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行......