证明空间线面平行与垂直(5篇范文)

时间:2019-05-12 17:22:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《证明空间线面平行与垂直》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《证明空间线面平行与垂直》。

第一篇:证明空间线面平行与垂直

证明空间平行与垂直

 知识梳理

一、直线与平面平行

1.判定方法

(1)定义法:直线与平面无公共点。

(2)判定定理: a

ba//ba//

//

(3)其他方法:a//a

a//

2.性质定理:a

 a//b

b

二、平面与平面平行

1.判定方法

(1)定义法:两平面无公共点。

a//

b//

(2)判定定理:a //

b

abP

(3)其他方法:aa// //;// a//

//

2.性质定理:a a//b

b

三、直线与平面垂直

(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。

(2)判定方法

① 用定义.abac

② 判定定理:bcAa

b

c

a

③ 推论: b

a//b

(3)性质 ①

aa

ab②a//bbb

四、平面与平面垂直

(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。

a

(2)判定定理 

a

(3)性质

l

①性质定理

a

al

l②Al

P

PA垂足为A④PA

PPA

 “转化思想”

面面平行线面平行 线线平行 面面垂直线面垂直 线线垂直

例题1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;例

题2.如图,在棱长为2的正方体

ABCDA1B1C1D1中,O为BD1的中点,M为BC的中点,N为AB的中点,P为BB1的中点.(I)求证:BD1B1C;(II)求证BD1平面MNP;

例题3.如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且ACBCa,∠VDC0(I)求证:平面VAB⊥平面VCD;



π. 2

π

(II)试确定角的值,使得直线BC与平面VAB所成的角为.

例题4.(福建省福州三中2008届高三第三次月考)如图,正三棱柱ABCA1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.BB

(1)求证:AE平面A1BD;

(2)求二面角DBA1A的大小(用反三角函数表示);

A1

CHA

C

第二篇:空间线面平行与垂直的证明

空间线面平行与垂直的证明

本考点以空间几何体为载体,既考查几何体的概念和性质,又考查空间线面位置关系(平行与垂直)的判定与性质,还可结合一些简单的计算进行考查,是每年高考的必考内容,也是重点考查的内容.该部分试题难度适中,一般都可用几何综合法解决,少部分不易证明的才通过建立空间直角坐标系用坐标法求解.(1)掌握线面平行、垂直的判定与性质定理,能用判定定理证明线面平行与垂直,会用性质定理解决线面平行与垂直的问题.(2)通过线面平行、垂直的证明,培养同学们的空间观念及观察、操作、实验、探索、合情推理的能力.该知识点的重点、难点是:线线垂直、线面垂直及面面垂直之间的灵活转化;同时要注意推理表达的规范与完整.(1)证明平行或垂直问题,一般利用平行或垂直的判定定理及其推论,将面面平行转化为线面平行或线线平行来证明;而无论是线面垂直还是面面垂直,都源自于线线垂直.可见,转化是证明平行、垂直问题的关键.(2)在处理实际问题的过程中,可以先从题设条件入手,再从结论中分析所要证明的关系,从而架起已知与未知之间的桥梁.增添辅助线是解决问题的关键,常见的添辅助线的方法有:中点、垂足等特殊点,用中位线、高线转化;有面面垂直的条件,则作交线的垂线,等等.例1 如图12,矩形ABCD所在的平面和平面ABEF互相垂直,在等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.图12

(1)求证:平面ADF⊥平面CBF;?摇

(2)求证:PM∥平面AFC.破解思路 对于第(1)问,将证明面面垂直转化为证明线面垂直;

(2)根据面面平行的性质定理,将线面平行的问题转化为面面平行来证明.答案详解(1)因为矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,所以CB⊥平面ABEF.?摇 又AF?奂平面ABEF,所以CB⊥AF.又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=,所以AF2+BF2=AB2,所以AF⊥BF.又BF∩CB=B,所以AF⊥平面CFB.因为AF?奂平面ADF,所以平面ADF⊥平面CBF.?摇

(2)连结OM并延长交BF于H,则H为BF的中点.又P为CB的中点,所以PH∥CF.又因为CF?奂平面AFC,所以PH∥平面AFC.连结PO,则PO∥AC.因为AC?奂平面AFC,所以PO∥平面AFC.又PO∩PH=P,所以平面POH∥平面AFC.因为PM?奂平面POH,所以PM∥平面AFC.?摇

例2 如图13,平面ABCD⊥平面ABE,其中四边形ABCD是正方形,△ABE是等边三角形,且AB=2,点F,G分别是BC,AE的中点.(1)求三棱锥F-ABE的体积;

(2)求证:BG∥平面EFD;

(3)若点P在线段DE上运动,求证:BG⊥AP.图13 图14

破解思路 对于第(1)问,求出三棱锥F-ABE的高后可直接求解.对于第(2)问,根据线面平行的判定定理,在平面EFD中,只要找出与BG平行的直线即可证明.对于第(3)问,可通过证明线面垂直来转化.答案详解(1)因为平面ABCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE.因为G是等边三角形ABE的边AE的中点,所以BG⊥AE,所以VF-ABE= S△ABE?BF= ? ?AE?BG?BF= ×2× ×1=.(2)如图14,取DE的中点M,连结MG,FM.因为MG AD,BF AD,所以MG BF,所以四边形FBGM是平行四边形,所以BG∥FM.又因为FM?奂平面EFD,BG?埭平面EFD,所以BG∥平面EFD.(3)因为DA⊥平面ABE,BG?奂平面ABE,所以DA⊥BG.又BG⊥AE,AD∩AE=A,所以BG⊥平面DAE.又AP?奂平面DAE,所以BG⊥AP.1.如图15,直角梯形ACDE与等腰直角三角形ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.图15

(1)求证:平面BCD⊥平面ABC;

(2)求证:AF∥平面BDE;

(3)求四面体B-CDE的体积.2.如图16,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.图16

(1)求证:MD⊥AC;

(2)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.

第三篇:空间几何——平行与垂直证明

三、“平行关系”常见证明方法

(一)直线与直线平行的证明

1)利用某些平面图形的特性:如平行四边形的对边互相平行

2)利用三角形中位线性质

3)利用空间平行线的传递性(即公理4):

平行于同一条直线的两条直线互相平行。

4)利用直线与平面平行的性质定理: a∥ca∥bb∥c

如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

a∥

aβ a a∥

b

α b b

5)利用平面与平面平行的性质定理:

如果两个平行平面同时和第三个平面相交,那么它们的交线平行.//aa//b



b

6)利用直线与平面垂直的性质定理:

垂直于同一个平面的两条直线互相平行。

baa∥

b7)利用平面内直线与直线垂直的性质:

8)利用定义:在同一个平面内且两条直线没有公共点

(二)直线与平面平行的证明

1)利用直线与平面平行的判定定理:

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

ab

a∥

b

a∥b

2)利用平面与平面平行的性质推论:

两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

a

∥

a∥

a

β

3)利用定义:直线在平面外,且直线与平面没有公共点

(二)平面与平面平行的证明

常见证明方法:

1)利用平面与平面平行的判定定理:

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

a⊂b⊂a∩bPa//b//

//

b

2)利用某些空间几何体的特性:如正方体的上下底面互相平行等 3)利用定义:两个平面没有公共点

三、“垂直关系”常见证明方法

(一)直线与直线垂直的证明

1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。2)看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。3)利用直线与平面垂直的性质:

如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

a

b

ba

b

a

4)利用平面与平面垂直的性质推论:

如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

l

abalbl

a

b

5)利用常用结论:

① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另

一条直线也垂直于第三条直线。

a∥b

ac

b

c

② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么

这两条直线互相垂直。

a

b∥

ab

b

(二)直线与平面垂直的证明

1)利用某些空间几何体的特性:如长方体侧棱垂直于底面等

2)看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂

直于此平面。

3)利用直线与平面垂直的判定定理:

ababAlalb



l

l

b

A

a

4)利用平面与平面垂直的性质定理:

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

l

aal



a

l

5)利用常用结论:

a∥bb

a

② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一

个平面。

∥

a

a

(三)平面与平面垂直的证明

1)利用某些空间几何体的特性:如长方体侧面垂直于底面等

2)看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角

是直角的二面角),就说这连个平面互相垂直。3)利用平面与平面垂直的判定定理

一个平面过另一个平面的垂线,则这两个平面垂直。

aa



a

第四篇:线线、线面平行垂直的证明

空间线面、面面平行垂直的证明

12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点,(Ⅰ)求证:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。

D'

3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD';

(2)求证:平面ACD'平面DD'B。

A

4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.C'

C

B

5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证:(Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1平面AB1D1.

DA

C1

C

(5题图)

6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为

DD1的中点。

(1)求三棱锥DPAC的体积;(2)求证:直线BD1∥平面PAC;(3)求证:直线PB1平面PAC.C1

D1

B1

A1

P

DC

B

A

7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱

PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。

(1)证明:PA//平面EDB;(2)证明:DEBC

(3)证明:PB平面EFD。

8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱

A

AA12,E是侧棱BB1的中点.(Ⅰ)求证:AE平面A1D1E;

(Ⅱ)求三棱锥AC1D1E的体积.

第五篇:线面平行与垂直的证明题

勤志数学

线面平行与垂直的证明

1:如图,在棱长为1的正方体ABCD-A1B1C1D1中.(1)求证:AC⊥平面B1BDD1;

(2)求三棱锥B-ACB1体积.

2:如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.

A

D

C

B

DA

1B1 1

求证:(1)PA∥平面BDE;(2)平面PAC平面BDE.

3:如图:在底面是直角梯形的四棱锥S—ABCD中,∠ABC = 90°,SA⊥面ABCD,SA = AB = BC = 1,AD(Ⅰ)求四棱锥S—ABCD的体积;(Ⅱ)证明:平面SBC⊥平面SCD.4:已知多面体ABCDFE中,四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD,O、M分别为AB、FC的中点,且AB = 2,AD = EF = 1.(Ⅰ)求证:AF⊥平面FBC;(Ⅱ)求证:OM∥平面DAF.1.

25:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;

6:已知正方形ABCD和正方形ABEF所在的平面相

交于AB,点M,N分别在AC和BF上,且AM=FN.求证:MN‖平面BCE.7:如图,正方体ABCDA1B1C1D1中,棱长为a(1)求证:直线A1B//平面ACD1(2)求证:平面ACD1平面BD1D;

8: 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC(2)AF⊥平面EDB.C

9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.10:如图,PA矩形ABCD所在的平面,M、N分别是AB、PC的中点.(1)求证:MN//平面PAD;(2)求证:MNCD;

P

N

D

C

A

M

B

11:如图,棱长为1的正方体ABCD-A1B1C1D1中,求证:⑴AC⊥平面B1D1DB;

⑵求证:BD1⊥平面ACB1⑶ 求三棱锥B-ACB1体积.

D

A

B

C

D

1AB1

P

12: 四棱锥ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点. 求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC平面BDE.13:在三棱锥SABC中,已知点D、E、F分别为棱AC、SA、SC的中点.①求证:EF∥平面ABC.②若SASC,BABC,求证:平面SBD⊥平面ABC.14:如图, 已知正三角形PAD, 正方形ABCD,B

平面PAD平面ABCD, E为PD的中点.(Ⅰ)求证:CDAE;(Ⅱ)求证:AE平面PCD.15:四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,M、N分别是

AB、PC的中点,PAAOa.

(1)求证:MN//平面PAD;(2)求证:平面PMC⊥平面PCD.(自己画图)

P

A

B

C

16:如图,在三棱锥PABC中,PC⊥底面ABC,ABBC,D、E分别是AB、PB的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PB;

下载证明空间线面平行与垂直(5篇范文)word格式文档
下载证明空间线面平行与垂直(5篇范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    证明线面平行

    证明线面平行一,面外一条线与面内一条线平行,或两面有交线强调面外与面内二,面外一直线上不同两点到面的距离相等,强调面外三,证明线面无交点四,反证法(线与面相交,再推翻)五,空间向......

    线面平行证明

    线面平行证明“三板斧”第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面内找到与已知直线的平行线。例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC......

    证明平行与垂直

    §9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    线面平行证明“三板斧”

    线面平行证明“三板斧”线面平行是高考的重点,也是平行关系中的核心。在证明线面平行的过程中,如何快速的找到证明的思路,此文的目的就在于此。将证明的过程程序化,可以帮助学生......

    线面平行证明经典练习题

    1、在底面为平行四边形的四棱锥P—ABCD中,点E是 PD的中点。 求证:PB//平面 AECEBD C2、在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点。 求证:MN//平面PADDB3、在三棱柱A......

    平行与垂直的证明

    立体几何中平行与垂直的证明1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.ADBC1DBC2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1, 点E在......

    专题线面垂直

    专题九: 线面垂直的证明 题型一:共面垂直(实际上是平面内的两条直线的垂直) 例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE 1题型二:线面垂直证明 (利用......

    证明线面平行的方法

    证明线面平行的方法线面平行重点难点剖析线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行.本节复......