第一篇:线面垂直练习题
例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练
已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥
AC.例2如图9,在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.变式训练
如图10,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.图10
例3如图11(1),在直四已知AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,A1BD,并说明理由.棱柱ABCD—A1B1C1D1中,DC=DD1=2AD=2AB,AD⊥DC,试确定E的位置,使D1E∥平面
变式训练
如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面
GBD.图121、如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点
.求证:
(1)AB⊥MN;(2)MN的长是定值.2、如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;
第二篇:线面垂直与面面垂直垂直练习题
2012级综合和高中练习题
2.3线面垂直和面面垂直
线面垂直专题练习
一、定理填空:
1.直线和平面垂直
如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理
线面垂直判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条垂直于一个平面,那么判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么.线面垂直性质定理:
垂直于同一个平面的两条直线互相平行.性质定理1:垂直于同一条直线的两个平面互相平行。
二、精选习题:
1.设M表示平面,a、b表示直线,给出下列四个命题:
①a//baMaMa//M②③b∥M④bMa//bb⊥M.abaMbMab
其中正确的命题是()
A.①②B.①②③C.②③④D.①②④
2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有()
第3题图
A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF
3.设a、b是异面直线,下列命题正确的是()
A.过不在a、b上的一点P一定可以作一条直线和a、b都相交
B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直
C.过a一定可以作一个平面与b垂直
D.过a一定可以作一个平面与b平行
4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有()
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ
5.有三个命题:
①垂直于同一个平面的两条直线平行;
②过平面α的一条斜线l有且仅有一个平面与α垂直;
③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直
其中正确命题的个数为()A.0B.1C.2D.3 6.设l、m为直线,α为平面,且l⊥α,给出下列命题
① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题的序号是()...A.①②③B.①②④C.②③④D.①③④
7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;
8.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.
10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.12.已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.15.如图11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.求证:(1)AB⊥MN;(2)MN的长是定值.18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1.面面垂直专题练习
一、定理填空
面面垂直的判定定理:面面垂直的性质定理:
二、精选习题
1、正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角等于
2、三棱锥PABC的三条侧棱相等,则点P在平面ABC上的射影是△ABC的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________
4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________
5、已知l是直二面角,A,B,A、Bl,设直线AB与成30角,AB=2,B
到A在l上的射影N,则AB与所成角为______________.6、在直二面角AB棱AB上取一点P,过P分别在,平面内作与棱成 45°角的斜线PC、PD,则∠CPD的大小是_____________
7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.8.如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D
DA
1D
C1
C
A
B10、如图,三棱锥PABC中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC.
BAC11、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.
A
C
B
第三篇:专题线面垂直
专题九: 线面垂直的证明
题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE
1题型二:线面垂直证明(利用线面垂直的判断定理)
例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1
题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD
P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB
题型四:面面垂直的证明(本质上是证明线面垂直)
例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号
是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD
例5.如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.
第四篇:线面垂直高考题
高考真题演练:
(2012天津文数).(本小题满分13分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值。
(2012天津理数)(本小题满分13分)P如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面
直线BE与CD所成的角为30°,求AE的长.C
D
(2010年安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,BFC90,BF=FC,H为BC的中点.(I)求证:FH//平面EDB;
(II)求证:AC⊥平面EDB;
(III)求二面角B—DE—C的大小.(2012上海理数)如图,在四棱锥P-ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:
E
(1)三角形PCD的面积;(6分)(2)异面直线BC与AE所成的角的大小.(6分)
B
(2012山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值。
(2012年北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,(I)求证:A1C⊥平面BCDE;
(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由
(2012辽宁)如图,直三棱柱ABCABC,BAC90,[来源:学科网]
///
ABACAA/,点M,N分别为A/B和B/C/的中点。
(Ⅰ)证明:MN∥平面AACC;
(Ⅱ)若二面角AMNC为直二面角,求的值。
(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1ACCC1E分别是棱BC,11,D,上的点(点D 不同于点C),且ADDE,F为B1C1的中点. A1求证:(1)平面ADE平面BCC1B1;
(2)直线A1F//平面ADE.
(2012湖南),在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。
B A
D
/
/
/
C1
E
(2012湖北),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;
(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小
(2012广东),在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。
(1)证明:BD⊥平面PAC;
(2)若PH=1,AD=2,求二面角B-PC-A的正切值;
(2012年福建)在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点。(Ⅰ)求证:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由。(Ⅲ)若二面角A-B1EA1的大小为30°,求AB的长。
(2012大纲全国卷)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小。
(2012安徽)平面图形ABB1AC11C如图4所示,其中BB1C1C是矩形,BC2,BB1
4,ABAC,A1B1A1C1BC和B1C1折叠,使ABC
与A1B1C1所在平面都与平面BB1C1C垂直,再分别连接AA1,BA1,CA1,得到如图2所示的空间图形,对此空间图形解答下列问题。
(Ⅰ)证明:AA1BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角ABCA1的余弦值。
第五篇:线面垂直教案
2012第一轮复习数学教案
线面垂直、面面垂直
教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题.(一)主要知识及主要方法:
【思考与分析】要证明线面垂直,我们可以把它转化为证明线线垂直,这道题可以通过证明A1C与平面C1BD内两条相交直线BD,BC1垂直即可.而要证明A1C与相交直线BD、BC1垂直,可利用三垂线定理的三步曲证明.基础平面分别取下底面及右侧面.
1.线面垂直的证明:1判定定理;2如果两条平行线中一条垂直于一个平面,那么另一条也垂直于
这个平面;3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;4两个平面垂直,在一个平面内垂直于它们交线的直线垂直于另一个平面.5如果两个相交平面都与第三个平面垂直,那么它们的交线与第三个平面垂直.P A6向量法:
PQABPQAB0
PQ
PQACPQAC0
CQ
2.面面垂直的证明:2如果一个平面经过另一个平面的一条垂线,1计算二面角的平面角为90 ;
那么这两个平面垂直;
题型讲解证明线线垂直
三垂线定理与平面的位置无关,即对水平位置、竖直位置、倾斜位置的平面都能用三垂线定理.下面我们通过实例来体验“三步曲”的具体应用过程.
例1(1)已知PA、PB、PC两两互相垂直,求证:P在平面ABC内的射影O是△ABC的垂心.
【思考与分析】 要证O是△ABC的垂心,我们需要证明AO⊥BC、BO⊥AC、CO⊥AB.而AO、BO、CO分别是AP、BP、CP在平面ABC上的射影,因此我们想到应用三垂线定理.分三步进行:①定线面:即面内直线BC与基础平面为底面ABC,②找三线:即垂线PO,斜线PA,射影AO,③证垂直:即AO⊥BC.同理可证其它两条.
证明:因为P在平面ABC内的射影为O,所以PO⊥平面ABC,连结AO且延长交BC于D,则AO是PA在平面ABC上的射影.
∵ AP⊥PB,AP⊥PC,PB∩PC=P,∴ PA⊥平面PBC,又BC平面PBC,∴ AP⊥BC.根据三垂线定理的逆定理知,AD⊥BC,所以AD是△ABC中BC边上的高.连结CO并延长交AB于F,同理可证CF⊥AB;所以CF是△ABC中AB边上的高,AD∩CF=O,所以O是△ABC的垂心.【反思】 解这道题时,首先应用的是线面垂直的判定定理,然后运用三垂线定理的逆定理,所以要想快速解题,我们需要熟练掌握并能综合应用所学知识.(2)正方体ABCD-A1B1C1D1中,求证:对角线A1C⊥平面C1BD.
证明:∵ A1A⊥平面ABCD,A1C是斜线,连AC,AC⊥BD,由三垂线定理知BD⊥A1C.∵ A1B1⊥平面BCC1B1,A1C是斜线,连B1C,B1C是A1C在BCC1B1内的射影,又∵ BC1⊥B1C,由三垂线定理知BC1⊥A1C.又BD∩BC1=B,∴ A1C⊥平面DBC1.
【反思】 应用三垂线定理解题一定要熟记这三个步骤,而且还需要我们有一定的空间立体感.例2在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求证:A1B⊥B1C
证明:取A1B1的中点D1,连结C1D1∵B1C1=A1C1,∴C1D1⊥ABB1A连结AD1,则AD1是AC1在平面ABB1A1内的射影,∵A1B⊥AC1,∴A1B⊥AD11取AB的中点D,连结CD、B1D,则B1D∥AD1,且B1D是B1C在平面ABB1A1内的射影∵B1D⊥A1B,∴A1B⊥B1C点评:证明异面直线垂直的常用方法有:证明其中一直线垂直于另外一直线所在的平面;利用三垂线定理及其逆定理 证明线面垂直
例3 已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC于点E,求证:AE⊥平面PBC
证明:∵PA⊥平面ABC,∴PA⊥BC
又∵AB是⊙O的直径,∴BC⊥AC 而PC∩AC=C,∴BC⊥平面又∵AE在平面PAC内,∴BC⊥AE∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC 点评:证明直线与平面垂直的常用方法有:利用线面垂直的定义;利用线面垂直的判定定理;利用“若直线a∥直线b,直线a⊥平面α,则直线b⊥平面α”
练习:
1.以AB为直径的圆在平面内PA⊥于A,C在圆上,连PB、PC过A作AE⊥PB于E,AF⊥PC于F,试判断图中还有几组线面垂直。
PA
BC
PAAB为直径ACBC
AF面PAC
AFPC
AF面PBCPB面PBCAFPB
AEPBPBAEF
cosBAC
AB2AC2BC
22ABAC
a2b2a2c2b2c2
2ABAC
a
a2b2a2c2
0
BAC为锐角,同理ABC为锐角。
P在底面射影为ABC垂心。
BC面ABC
PABC
BC面APQAQ面APQBCAQ
Q为ABC垂心
同理ACBQ
CQAB
AB面PQCPQABABPC
同理A、B5.如图,BAAA//BB确定平面
AB
ABAB//AB
AB//ABAA
AB面AACAAAB
ABAC
AB面CAAABCACAB为直角
证明面面垂直
例4在正方体ABCD-A1B1C1D1中,E、F分别是BB1,CD的中点(1)求证:AD⊥D1F;(2)求AE与D1F所成的角;(3)证明平面AED⊥平面A1FD
1分析:涉及正方体中一些特殊的点、线、面的问题,建立空间直角坐标系来解,不仅容易找到解题方向,而且坐标也简单,此时“垂直”问题转化为“两向量数量积为0”的问题,当然也可用其它的证证明:建立空间直角坐标系如图,并设AB=2,则A(0,0,0),D(0,2,0),A1(0,0,2)
D1(0,2,2),E(2,0,1),F(1,2,0)
(1)AD(0,2,0),D1F(1,0,2)
ADD1F=0×1+2×1+0×(-2)=0, AD⊥D1F
(2)AE=(2,0,1)D1F=(1,0,-2),|AE|,|D1F|设AE与D1F的夹角为θ,则 cosθ1
21001(2)
50
所以,直线AE与D1F所成的角为90°(3)由(1)知D1F⊥AD,由(2)知D1F⊥AE,又AD∩AE=A,D1F⊥平面AED,∵D1F平面A1FD1M
平面AED⊥平面A1FDB
例5已知AB是圆O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的任一
点,求证:平面PAC平面PBC.
分析:根据“面面垂直”的判定定理,要证明两平面互相垂直,只要在其中一个平面中寻找一条与另解:∵AB是圆O的直径,∴ACBC,又∵PA垂直于O所在的平面,∴PABC,∴BC平面PAC,又BC在平面PBC中,所以,平面PAC平面PBC. 点评:由于平面PAC与平面PBC相交于PC,所以如果平面PAC平面PBC,则在平面PBC中,垂直于PC的直线一定垂直于平面PAC小结:
1垂直问题来处理或在两直线上分别取它们的方向向量,然后证它们的数量积为0
2面垂直的判定定理,证明直线垂直于平面内的两条相交直线,当然再证这直线(这平面)与已知直线(或平面)重合,有时侯将线面垂直问题转化为证面面垂直问题,也许会给你带来意想不到的收获 3如证面面垂直可转化为证明一个平面经过另一个平面的垂线
用向量法证明垂直,就是证有关向量的数量积为1“直线l垂直于平面α内的无数条直线”是“l⊥α”的 AB
CD 答案:B①直线上有两点到平面的距离相等,则此直线与平面平行②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面③直线m⊥平面α,直线n⊥m,则n∥α④a、b是异面直线,则存在唯一的平面α,使它与a、b都平行且与a、b距离相等 ABCD 解析:①错误与平面相交如下图,平面α∥β,A∈α,C∈α,D∈β,B∈β且E、F分别为AB、CD的中点,过C作CG∥AB交平面β于G,连结BG、GD设H是CG的中点,则EH∥BG,HF∥GD∴EH∥平面β,HF∥平面β
∴平面EHF∥平面β∥平面α∴EF∥α,EF∥β
③错误直线n可能在平面α内④正确AB是异面直线a、b的公垂线段,E为AB的中点,过E作a′∥a,b′∥b,则a′、b′确定的平面即为与a、b都平行且与a、b距离相等的平面,并且它是唯一确定的答案:D
3在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,在四面体S—EFG中必有 A⊥平面EFGB⊥平面EFG C⊥平面SEF D⊥平面SEF
解析:注意折叠过程中,始终有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFGA答案:A
4PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任一点,则下列关系不正确的是 A⊥BCB⊥平面PACC⊥PB D⊥BC 解析:由三垂线定理知AC⊥PB,故选答案:C 5ABC的三个顶点A、B、C到平面α的距离分别为2 cm、3 cm、4 cm,且它们在α的同侧,则△ABC的重心到平面α的距离为解析:如下图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连结CG交
AB于中点E,又设E、G在平面α上的射影分别为E′、G′,则E′∈A′B,G′∈C′E,EE′=A′
A+B′B)=,CC′=4,CG∶GE=2∶1,在直角梯形EE′C′C中可求得GG′=3答案:3 cm
6ABCD—A1B1C1D1中,当底面四边形ABCD满足条件_______时,有A1C⊥B1D1认为正确的一种条件即可,不必考虑所有可能的情况)答案:A1C1⊥B1D1或四边形A1B1C1D1为菱形等 7ABCD—A1B1C1D1的棱长为1,则(1)A点到CD1的距离为________;(2)A点到BD1的距离为________;
(3)A点到面BDD1B1的距离为_____________;(4)A点到面A1BD的距离为_____________;(5)AA1与面BB1D1D的距离为__________6622(2)(3)(4)(5)232
328△ABC在平面α内的射影是△A1B1C1,设直角边AB∥α,则△A1B1C1的形状是_____________三角形答案:(1)
解析:根据两平行平面的性质及平行角定理,知△A1B1C的形状仍是Rt△答案:直角 4ABCD—A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD证明:连结MO ∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1又A1O平面A1ACC1,∴A1O⊥DB
(1)解:当a=2时,ABCD为正方形,则BD⊥AC又∵PA⊥底面ABCD,BD平面ABCD,∴BD⊥PA∴BD⊥平面故当a=2时,BD⊥平面PAC(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连结AM、DM、BMN∵ABMN和DCMN都是正方形,∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM(3)解:设M是BC边上符合题设的点M,∵PA⊥底面ABCD,∴DM⊥AM因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4点评:本题的解决中充分运用了平面几何的相关知识因此,立体几何解题中,要注意有关的平面几何知识的运用事实上,立体几何问题最终是在一个或几个平面中得以解决的在矩形A1ACC1中,tan∠AA1O=
22,tan∠MOC=,22
∴∠AA1O=∠MOC,则∠A1OA+∠MOC=90A1O⊥OM∵OM∩DB=O,∴A1O⊥平面9S—ABC中,N是S在底面ABC上的射影,且N在△ABC的AB边的高CD上,点M∈SC,截面MAB和底面ABC所成的二面角M—AB—C等于∠NSC,求证:SC⊥截面证明:∵CD是SC在底面ABC上的射影,AB⊥CD,∴AB⊥SCMD∵∠MDC=∠NSC,∴DM⊥SCAB∩DM=D,∴SC⊥截面MABABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值解:∵P是定点,要使PM的值最小,只需使PM⊥AB即可 要使PM⊥AB,由于PC⊥平面ABC,∴只需使CM⊥AB即可
∵∠BAC=60°,AB=8,∴AC=AB·cos60°=4
∴CM=AC·sin60°=4·
=2
B
∴PM=PC2CM2=
12P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD(1)当a为何值时,BD⊥平面PAC?试证明你的结论(2)当a=4时,求证:BC边上存在一点M,使得PM⊥(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围分析:本题第(1)问是寻求BD⊥平面PAC的条件,即BD垂直平面PAC内两相交直线,易知BD⊥PA,问题归结为a为何值时,BD⊥AC,从而知ABCD为正方形-4-