第一篇:线面平行练习题
线面平行练习题
11.三棱柱ABC—A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;
2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的中点.求证:PB//平面 AEC;
3.四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点,求证:MN∥平面PAD;
线面平行练习题
24.在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点. 求证:MN∥平面PAD;
P
N
A
D
B5、如图,在三棱柱ABC—A1B1C1中,D是 AC的中点。
求证:AB1//平面DBC14、如图,在正方体ABCD——A1B1C1D1中,O
是底面ABCD 对角线的交点.求证:C1O//平面AD1B1.线面平行练习题
37.已知ABC-A1B1C
1是底面是正三角形的棱柱,D是AC的中点,求证:AB1//平面DBC1.C
B 1
8.正四棱锥SABCD中,E是侧棱SC 的中点.求证:直线SA//平面BDE
S
C
B
9.已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是AB、PD的中点.求证:AF//平面PEC
P
C
A
E
B
线面平行练习题4
10.ABCD-A1B1C1D1是正四棱柱,E是棱BC的中点。求证:BD1//平面C1DE
11.在三棱柱ABCA1B1C1中,D为BC中点.求证:A1B//平面ADC1;
C11
B1
C
A
. B
12.在三棱柱ABC-A1B1C1中,M,N分别是CC1,AB的中点.
求证:CN //平面AB1M.
C1
B1
A1
MC
B
A
第二篇:线面平行证明经典练习题
1、在底面为平行四边形的四棱锥P—ABCD中,点E是 PD的中点。求证:PB//平面 AEC
E
B
D C2、在四棱锥P—ABCD中,底面ABCD是矩形,M,N分别是AB,PC的中点。求证:MN//平面PAD
D
B3、在三棱柱ABC—A1B1C1中,D是 AC的中点。
求证:AB1//平面DBC1 C'A'
A4、在正方体ABCD—A1B1C1D1中,O是底面ABCD对角线的交点。
求证:C1O//平面AD1B15、已知ABC-A1B1C1是底面为正三角形的棱柱,D是
AC的中点。求证:AB1//平面DBC
1C
B16、正四棱锥SABCD中,E是侧棱SC的中点。
求证:直线SA//平面BDE
C
A7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是AB、PD的中点. 求证:AF//平面PEC
P
C
A8、ABCD-A1B1C1D1是正四棱柱,E是棱BC的中点。
求证:BD1//平面C1DE
9.在三棱柱ABCA1B1C1中,D为BC中点.求证:A1B//平面ADC1;
C1 B1 A
B
第三篇:线面平行教案
§2.2.1 直线与平面平行的判定
【教学目标】
(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题;(2)进一步培养学生观察、发现的能力和空间想象能力;(3)让学生了解空间与平面互相转换的数学思想。【教学重难点】
重点、难点:直线与平面平行的判定定理及应用。【教学过程】
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第54页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知
1、观察
①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?
问题本质:门扇两边平行;书的封面的对边平行 从情境抽象出图形语言a
b
探究问题:
平面外的直线a平行平面内的直线b ③直线a,b共面吗? ④直线a与平面相交吗?
课本P55探究学生思考后,小组共同探讨,得出以下结论 直线与平面平行的判定定理:
简记为: 符号表示:
2、典例
例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
变式训练 :如图,在空间四面体ABCD中,E,F,M,N分别为各棱的中点,变式一(学生口头表达)①四边形EFMN是什么四边形?
②若ACBD,四边形EFMN是什么四边形?
B
③若ACBD,四边形EFMN是什么四边形? C
变式二
①直线AC与平面EFMN的位置关系是什么?请证明?
②在这图中,你能找出哪些线面平行关系?
例
2、如图,已知P为平行四边形ABCD所在平面外一点,M
求证:PD//平面MAC.
变式训练:如图,在正方体ABCDA1B1C1D1中,试作出过AC且与直线D1B平行的截面,并说明理由.
(三)效果检测
1.直线a//直线b,b平面,则a与的位置关系是:()
A a//B a//或aC aDa//或a或a与相交 2.a是平面外的一条直线,可得出a//的条件是:()A a与内的一条直线不相交B a与内的两条直线不相交
C a与内的无数条直线不相交D a与内的任意一条直线都不相交。
3、过空间一点作与两条异面直线都平行的平面,这样的平面()A不存在B有且只有一个或不存在C有且只有一个D有无数个
4、下列三个命题正确的个数为()
(1)如果一条直线不在平面内,则这条直线与该面平行
(2)过直线外一点,可以作无数个面与该面平行
(3)如果一条直线与平面平行,则它与平面内的任意直线平行 A0B1C2D3 5.下面四个命题中:
①平面外的直线就是平面的平行线。②平行于同一平面的两条直线平行 ③过平面外一点可做无数条直线和这个平面平行。④三角形ABC中,AB//平面,延长CA,CB, 分别交于E,F两点,则AB//EF.正确命题的序号是:
6.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.
求证:MN//平面PAD.
7.如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA12,E,E1,F分别是AD,AA1,AB的中点,证明:EE1//平面FCC
1【作业布置】
1、教材第62页习题2.2 A组第3题;
2、预习:如何判定两个平面平行?
第四篇:证明线面平行
证明线面平行
一,面外一条线与面内一条线平行,或两面有交线强调面外与面内
二,面外一直线上不同两点到面的距离相等,强调面外
三,证明线面无交点
四,反证法(线与面相交,再推翻)
五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面
线面平行
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
【平面与直线平行的性质】
定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。
注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
第五篇:线面平行证明
线面平行证明“三板斧”
第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面
内找到与已知直线的平行线。
例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。
练习:
如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD
第二斧:以平面外的直线作平行四边形
D
例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC
1练习:
如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:
A1E//平面B1CF
第三斧:选证明面面平行,再由线平行的定义过度到线面平行。
例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG
练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:
AC1//平面AB1D
B
C
总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。
1.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.
求证:MN//平面PAD.
2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.P
E
C
A
B
3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;
AA
D
C
B1
C1
4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.A
7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是
A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b
C.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()
A.不存在B.有1条C.有2条D.有无数条
10.如图所示:设P
上的点,AMDN且MBNP
11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.
(1)求证:PQ//平面DCC1D1(2)求PQ的长.
(3)求证:EF//平面BB1D1D.