第一篇:线面平行习题--精选精讲
1.已知直线a∥平面,直线a∥平面,平面
平面=b,求证a//b.
分析: 利用公理4,寻求一条直线分别与a,b均平行,从而达到a∥b的目的.可借用已知条件中的a∥α及a∥β来实现.
证明:经过a作两个平面和,与平面和分别相交于直线c和d,∵a∥平面,a∥平面,∴a∥c,a∥d,∴c∥d,又∵d平面,c平面,∴c∥平面,又c平面,平面∩平面=b,∴c∥b,又∵a∥c,所以,a∥b.
平面BCD. 2.已知:空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//A
证明:连结BD,在ABD中,∵E,F分别是AB,AD的中点,∴EF//BD,EF平面BCD,BD平面BCD,B∴EF//平面BCD.
3、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB
把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.(I)求证:AF//平面PEC;
.解:(I)如图,设PC中点为G,连结FG,则FG//CD//AE,且FG=1CD=AE,2∴四边形AEGF是平行四边形∴AF//EG,又∵AF平面PEC,EG平面PEC,∴AF//平面PEC正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.证法一:如图9-3-4(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB.又∵AP=DQ,∴PE=QB.又∵PM∥AB∥QN, ∴PMPEQNBQPMQN,.∴.ABAEDCBDABDC
∴即四边形PMNQ为平行四边形.∴PQ∥MN.又∵MN面BCE,PQ面BCE,∴PQ∥面BCE.证法二:如图9-3-4(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.∵AD∥BC,∴DQAQ.QBQK
又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ,∴AQAP.则PQ∥EK.QKPE
∴EK面BCE,PQ面BCE.∴PQ∥面BCE.点拨:证明直线和平面平行的方法有:①利用定义采用反证法;②判定定理;③利用面面平行,证线面平行.其中主要方法是②、③两法,在使用判定定理时关键是确定出面内的与面外直线平行的直线.如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=1AP=2,D为AP的中点,E,F,G分别为PC、2PD、CB的中点,将△PCD沿CD折起,使点P在平面ABCD内的射影为点D,如图2.(I)求证:AP∥平面EFG;
解:由题意,△PCD折起后PD⊥平面ABCD,四边形ABCD是边长为2的正方形,PD=2.(I)∵E、F、G分别为PC、PD、BC的中点.∴EF∥CD,EG∥PB.又CD∥AB∴EF∥AB,PB∩AB = B,∴平面EFG∥平面PAB.∴PA∥平面EFG.6.P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ..证明:如答图9-3-2,连结AC交BD于点O.∵ABCD是平行四边形,∴AO=OC.连结OQ,则OQ在平面BDQ内,且OQ是△APC的中位线,∴PC∥OQ.∵PC在平面BDQ外,∴
PC∥平面BDQ.7.在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD..证明:(1)分别连结B1D1、ED、FB,如答图9-3-3,则由正方体性质得
B1D1∥BD.∵E、F分别是D1C1和B1C1的中点,∴∴
1B1D1.21BD.2∴E、F、B、D对共面.(2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.∵M、N为A1B1、A1D1的中点,∴MN∥EF,EF面EFBD.∴MN∥面EFBD.∵PQ∥AO,∴四边形PAOQ为平行四边形.∴PA∥OQ.而OQ平面EFBD,∴PA∥面EFBD.且PA∩MN=P,PA、MN面AMN,∴平面AMN∥平面EFBD.8 //
S72S。
证明:
GDGHGAC//BDEACFBDHEHAHAE//BF
ACGA9BFHB16BDGB21AE∥
BFAEHA28 AC∥BD
SAEC
SBFD1ACAEsinA3731744BFBDsinB2∴ SBFD96正方形ABCD交正方形ABEF于AB(如图所示)M、N在对角线AC、FB上且AM= FN。求证:MN //平面BCE
证:过N作NP//AB交BE于P,过M作MQ//AB交BC于Q
CMQMBNNPNPMQACABBFEF
又 ∵ NP//AB//MQMQPN
MN//PQMN//面BCEPQ面BCE
PECFFACEBFA求证:EF//面PCD EPB10.P为ABCD所在平面外一点,,且
CFHFFB.证:连BF交CD于H,连PHAB//CD∴ ABF∽CFH∴ FA
PECFHFEBFAFBBPH在中
EF面PCDPHPCD∴
EF//PH11已知:平面α∩平面β=a求证:a、b、c证明:∵α∩β=a,β∩∴a、bβ
∴a、b相交或a∥b.(1)a、b相交时,不妨设a∩b=P,即P∈a,P∈b
而a、bβ,aα
∴P∈β,P∈α,故P为α和β的公共点
又∵α∩γ=c
由公理2知P∈c
∴a、b、c都经过点P,即a、b、c三线共点.(2)当a∥b时
∵α∩γ=c且aα,aγ
∴a∥c且a∥b
∴a∥b∥c
故a、b、c两两平行.12如图,正方体ABCD—A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.证法一:连AF延长交BC于M,连结B1M.∵AD∥BC
∴△AFD∽△MFB
∴AFDF FMBF
又∵BD=B1A,B1E=BF
∴DF=AE
∴AFAE FMB1E
∴EF∥B1M,B1M平面BB1C1C
∴EF∥平面BB1C1C.证法二:作FH∥AD交AB于H,连结HE
∵AD∥BC
∴FH∥BC,BCBB1C1C
∴FH∥平面BB1C1C
由FH∥AD可得BFBH BDBA
又BF=B1E,BD=AB1 ∴B1EBH AB1BA
∴EH∥B1B,B1B平面BB1C1C
∴EH∥平面BB1C1C,EH∩FH=H
∴平面FHE∥平面BB1C1C
EF平面FHE
∴EF∥平面BB1C1C
说明:证法一用了证线面平行,先证线线平行.证法二则是证线面平行,先证面面平行,然后说明直线在其中一个平面内.∴△END的面积为n2(m+p)平方单位.m
13如图,在正方体ABCD—A1B1C1D1中,点N在BD上,点M在B1C上,并且CM=DN.求证:MN∥平面AA1B1B.分析一:本题是把证“线面平行”转化为证“线线平行”,即在平面ABB1A1内找一条直线与MN平行,除上面的证法外,还可以连CN并延长交直线BA于点P,连B1P,就是所找直线,然后再设法证明MN∥B1P.分析二:要证“线面平行”也可转化为证“面面平行”,因此,本题也可设法过MN作一个平面,使此平面与平面ABB1A1平行,从而证得MN∥平面ABB1A1.
第二篇:线面、面面平行习题
线面、面面平行习题课
三、例题精讲
题型
1、线面平行判定定理,线面平行性质定理
线线平行 线面平行
例
1、(线线平行 →线面平行→线线平行)
解:已知直线a∥平面,直线a∥平面,平面平面=b,求证a//b.
证法一: 经过a作两个平面和,与平面和分别相交于直线c和d,aa//c c同理:a//da//
c//ddc//ccbc//ba//ba//c
证法二:经过a作一平面π,使得平面π∩面=k,面π∩面=l.aa// k k同理:a// la//
a// l// k
又∵三个平面α、、π两两相交,交线分别为k、l、b且k∥l,∴k∥l∥b,则a∥b.证法三:在b上任取一点A,过A和直线a作平面和平面α相交于l1,和平面相交于直线l2.aa// l1 l1同理:a// l2a//
a// l1// l
2∵过一点只能作一条直线与另一直线平行,∴l1与l2重合.又∵l1面α,l2面,∴l1与l2重合于b.∴a∥b.点拨:证明直线与直线平行,有下列方法:(1)若a,bα,且a∩b=,则a∥b;(2)若α∩β=a,β∩γ=b,γ∩α=c且a∥b∥c;(3)若a∥b,b∥c,则a∥c;(4)若a∥α;aβ,α∩β=b,则a∥b.C
1例
2、(线线平行→线面平行→线线平行→线面平行)证法一:连结AC、AC11,A
1长方体中A1A//C1CAC11//AC
AC面A1C1C
A1C1面A1C1
A BAC//面A1C1B
AC
面ACP
A1BPAM 面ACP面A1C1BMN
PCBCN1AC//MN
MN面ABCDMN//面ABCD
AC面ABCD
证法二:利用相似三角形对应边成比例及平行线分线段成比例的性质。∽PMPB
AA1M PBM MAAA1
∽ A1PNPB
PBNCCN 1
NCCC1
CC1AA1
PMPN
AC//MN
MANCMN//面
ABCDMN面ABCD
AC面ABCD
点拨:证明直线和平面平行的方法有:①利用定义采用反证法;②判定定理:利用线线平行,证线面平行;③利用面面平行,证线面平行.其中主要方法是②、③两法,在使用判定定理时关键是确定出面内的与面外直线平行的直线.例3.(线线平行→线面平行→面面平行)
证明:(1)分别连结B1D1、ED、FB,如答图9-3-3,C
1C
E、F分别是D1C1和B1C1的中点B1D1.2
正方体性质得B1D1//BD
EFBD.唯一平面,EF,BD
∴E、F、B、D共面.(2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.M、N为A1B1、A1D1的中点MN//EF
EF面EFBDMN面EFBD.
MN面EFBD
O四边形PAOQ为平行四边形PA//OQ
OQ平面EFBDPA//面EFBD.
PA平面EFBD
PAMNP
PA、MN面AMN
平面AMN平面EFBD.例4.(线线平行→线面平行→面面平行→线面平行)证法一:作FH∥AD交AB于H,连结HE.
BC
ADBFBH
FH//ADBDBA
BF=B1E,BD=AB1
B1EBHEH//B1B
AB1BA
B1B平面BB1C1CEH//平面BB1C1C
EH平面BB1C1CEHFH=H
EH、FH平面FHE平面FHE//平面BB1C1C
EF//平面BB1C1C
EF平面FHEBC
1AD//BC
FH//BC
FH//AD
BC面BB1C1CFH//平面BB1C1C FH面BB1C1C
B1C1
D1
A1
证法二:(线线平行→线面平行)
A1
D1
连AF延长交BC于M,连结B1M.AD//BC
AFDF
AFD∽MFB
FMBF
BD=B1A
DF=AE
BE=BF1
AFAE
FMB1E
EF//B1M
B1M平面BB1C1CEF//平面BB1C1CEF平面BB1C1C
说明:证法一证线面平行,先证面面平行,然后说明直线在其中一个平面
内.证法二则是用了证线面平行,先证线线平行.例5.(面面平行→线线平行)
证明: 过A作直线AH//DF, 连结AD,GE,HF(如图).AH//m平面,AAH,mAD,GE,HF
lAHA平面',l,AH'GB,HC'
GE
AD,GE,HF
'GB,'HC
////
ABAGmlBG//CH ABDEBCGH BCEFAD//GE//HFAGDE、GHEF
例6.(线线平行→面面平行)证明:根据每相邻的两边互相垂直,边长均为a,A且AA1//CC1,将图形补成正方体,如图。则,B
C
只需在正方体中,证明面ABC//面A1B1C1即可。
A
1连接AC,AC11.正方体AB//B1C1且BC//A1B1
ABBCB,B1C1A1B1B1
AB,BC面ABC, A1B1,B1C面A1B1C面ABC//面A1B1C1
C1
B1
四、综合练习
1.证明:
证法一:(线线平行→线面平行(构造平行四边形))
如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN。
面ABCD面ABEFABAEDB
APDQ
PEQB
PMQN
AB//QN
ABDCPMPE
PM//AB
ABAE
//
PM QN四边形PMNQ为平行四边形PQ//MN
MN面BCEPQ//面BCEPQ面BCE
证法二:(线线平行→线面平行(构造三角形,利用平行线段比,三角形相似比))
如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.
面ABCD面ABEFABAEDB
APDQ
AQAPPQ//EKQKPE
EK面BCEPQ//面BCEPQ面BCE
AD//BC
证法三:(面面平行→线面平行)
如图(1),过PM∥BE交AB于M,连接MQ。
APAM
AEAB
面ABCD面ABEFABAEDBAPDQ
PM//BE
DQAQ
QBQK
A
M
F
P
B
D
Q
C
E
3
DQAM
MQ//ADDBABMQ//BC
AD//BC
PM//BEPMMQM,BEBCB
PM、MQ面PMQ,BE、BC面BCE
面PMQ
PM
2.证明:
GDGHGHEHA
HAC∥BD
ACBDBF
BFHB16
AEHA28
SAECSBFD
ACAEsinA
373
1744BFBDsinB2∴ SBFD96
3.证明:如答图9-3-2,连结AC交BD于点O.连结OQ
ABCD是平行四边形AOOC
PQ=PA
OQ是APC的中位线PC//OQ
PC面BDQ,OQ面BDQPC//平面BDQ.4.证明:连BF交CD于H,连PH
CFHF
AB//CDABF∽CFHFAFB
PECF
EBFA
PEHFEF//PH
EF// EBFB
EF面PCD,PH面PCD
第三篇:线面平行判定习题
线面平行的证明
注意:证明线面平行的方法可分为三类:①直接法,②找中点(或作中点),③通过连接平行四边形的对角线,找中点(平行四边形的对角线互相平分)。题型一:直接法
1、如图是正方体ABCD-A1B1C1D1,求证:BC1∥平面AB1D
1题型二:找中点(或作中点)
2、如图是四棱锥,已知BC∥AD且BC
AD,E为中点,2求证:CE∥平面PAB
题型三:通过连接平行四边形的对角线,找中点
3、如图,在底面为平行四边形的四棱锥P-ABCD中,F为PC的中点,求证:PA∥平面FBD.D
变式训练:
1、如图,在三棱柱ABC-A1B1C1中,E为AC的中点,求证:AB1∥平面EBC1.2、如图是三棱柱ABC-A1B1C1,E为AC的中点,求证:AB1∥面EBC13、如图,在长方体ABCD-A1B1C1D1中,E为CC1,求证:AC1∥面BDE
第四篇:线面平行教案
§2.2.1 直线与平面平行的判定
【教学目标】
(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题;(2)进一步培养学生观察、发现的能力和空间想象能力;(3)让学生了解空间与平面互相转换的数学思想。【教学重难点】
重点、难点:直线与平面平行的判定定理及应用。【教学过程】
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第54页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知
1、观察
①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?
问题本质:门扇两边平行;书的封面的对边平行 从情境抽象出图形语言a
b
探究问题:
平面外的直线a平行平面内的直线b ③直线a,b共面吗? ④直线a与平面相交吗?
课本P55探究学生思考后,小组共同探讨,得出以下结论 直线与平面平行的判定定理:
简记为: 符号表示:
2、典例
例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
变式训练 :如图,在空间四面体ABCD中,E,F,M,N分别为各棱的中点,变式一(学生口头表达)①四边形EFMN是什么四边形?
②若ACBD,四边形EFMN是什么四边形?
B
③若ACBD,四边形EFMN是什么四边形? C
变式二
①直线AC与平面EFMN的位置关系是什么?请证明?
②在这图中,你能找出哪些线面平行关系?
例
2、如图,已知P为平行四边形ABCD所在平面外一点,M
求证:PD//平面MAC.
变式训练:如图,在正方体ABCDA1B1C1D1中,试作出过AC且与直线D1B平行的截面,并说明理由.
(三)效果检测
1.直线a//直线b,b平面,则a与的位置关系是:()
A a//B a//或aC aDa//或a或a与相交 2.a是平面外的一条直线,可得出a//的条件是:()A a与内的一条直线不相交B a与内的两条直线不相交
C a与内的无数条直线不相交D a与内的任意一条直线都不相交。
3、过空间一点作与两条异面直线都平行的平面,这样的平面()A不存在B有且只有一个或不存在C有且只有一个D有无数个
4、下列三个命题正确的个数为()
(1)如果一条直线不在平面内,则这条直线与该面平行
(2)过直线外一点,可以作无数个面与该面平行
(3)如果一条直线与平面平行,则它与平面内的任意直线平行 A0B1C2D3 5.下面四个命题中:
①平面外的直线就是平面的平行线。②平行于同一平面的两条直线平行 ③过平面外一点可做无数条直线和这个平面平行。④三角形ABC中,AB//平面,延长CA,CB, 分别交于E,F两点,则AB//EF.正确命题的序号是:
6.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.
求证:MN//平面PAD.
7.如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA12,E,E1,F分别是AD,AA1,AB的中点,证明:EE1//平面FCC
1【作业布置】
1、教材第62页习题2.2 A组第3题;
2、预习:如何判定两个平面平行?
第五篇:证明线面平行
证明线面平行
一,面外一条线与面内一条线平行,或两面有交线强调面外与面内
二,面外一直线上不同两点到面的距离相等,强调面外
三,证明线面无交点
四,反证法(线与面相交,再推翻)
五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面
线面平行
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
【平面与直线平行的性质】
定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。
注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD