关于线面平行问题的探讨

时间:2019-05-12 17:21:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于线面平行问题的探讨》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于线面平行问题的探讨》。

第一篇:关于线面平行问题的探讨

关于线面平行问题的探讨

刘玉扬中市第二高级中学 中学二级教师

摘要:本文重要通过几个例题,对高考中常见的线面平行问题做一些简单的探讨,主要讨论如何运用判定定理来证明线面平行问题。

关键词: 高考 线面平行 立体几何

正文

直线和平面平行是立体几何初步中的一类重要题

型,如何判断并证明线面平行,也是历年高考中的常见

题型。本文拟从几个经典的线面平行例题出发,结合往

年高考题对线面平行做进一步的探讨。

【例1】如图,E,F,G,H分别是空间四边

形ABCD的边AB,BC,CD,DA的中点,求证:

(1)四点E,F,G,H共面;(2)BD//平面EFGH,AC//平面EFGH。

分析:(1)要证明E,F,G,H四点共面,可以根据公理3的第3个推论,证明这四点所在的两条直线EH和FG平行,或者直线EF和HG平行;

(2)易得,BD//FG,AC//EF,从而根据线面平行的判定定理证明。解:(1)E,F分别为AB,BC的中点,EF//AC

同理HG//AC,从而EF//HG

所以,直线EF和直线HG可以确定一个平面,E直线EF,直线EF,E。同理,F,G,H

故E,F,G,H四点共面。

(2)由(1)知,EF//AC,又EF面EFGH,AC面EFGH,AC//面EFGH。同理,BD

//面EFGH

点拨:本题是苏教版数学必修2第36页习题第3题,第(2)问主要考查线面平行的判定定理,比较简单。

【探究一】将上例改为:E,F,G,分别是空间四边形ABCD的边AB,BC,CD,的中点,试在边DA上找一点H,使得四点E,F,G,H共面,并讨论当BD和AC满足什么关系时,四边形EFGH为菱形、正方形?

分析:本题可以利用线面平行的性质定理,将HG看成是平面EFGH与平面ACD的交线,从而EF//HG,从而易知四边形EFGH为平行四边形,再根据边的关系进一步探讨平行四边形ABCD的形状。

解:E,F分别为边AB,BC的中点,EF//AC

又EF面ACD,AC平面ACD

EF//面ACD

E,F,G,H四点共面,即平面EFGH平面ACDHG

从而,EF//HG,故HG//AC,所以,H为边DA的中点。11AC,GH//AC,所以EFGH,故四边形EFGH为平行四2

211边形。当EFFG,即ACBD,也即ACBD时,四边形EFGH为菱形;22

当ACBD时,有EFFG,从而,当ACBD且ACBD时,四边形EFGH易得,EF//为正方形。

【探究二】如果将例1中的E,F,G,H是各边中点弱化,改为:在空间四面体ABCD

G,H分别是边AB,BC,CD,DA上的点,中,且满足E,F,AEAHCFCG,EBHDFBGD

结论还成立吗?

分析:要证明四点共线以及线面平行,只要找到线线平行就可

以了。例1中,遇到中点经常联系到中位线得到平行,其实,得到

平行的方法还有很多,思维不能定势,在做立体几何题目的时候要

注意思维的灵活性,抓住线面平行判定的常用方法,找准线线平行

就可以了。

牛刀小试:[2011·北京卷改]如图,在四面体PABC中,PCAB,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE//平面BCP;

(2)求证:四边形DEFG为矩形;

解:(1)证明:D,E分别为AP,AC的中点,DE//PC

又DE平面BCP,PC平面BCP

DE//平面BCP

(2)点D,E,F,G分别是棱AP,AC,BC,PB的中点.

DE//PC//FG,DG//AB//EF

四边形DEFG为平行四边形.

又PCAB,DEDG,从而平行四边形DEFG为矩形.

点评:证明线面平行的方法一般有三种:定义法、线面平行的判定定理、面面平行的性质。而在高考中,常见的是运用判定定理来证明,这就需要在平面内找一条直线与已知直线平行。上面这几个题目找平行线都不难,下面我们再分析一下,一般情况下如何找平行线。

【例2】如图,正方体ABCDA1B1C1D1中,M,N分别是B1C,BD的中点,求证:MN//平面AA1B1B。

分析:只要在平面AA1B1B中找到一条直线与MN平行即可。一种方法,因为M,N分别是B1C,BD的中点,容易联想到中位线,连结AB1和AC,易得MN//AB1;其次,可以将点C看成投影中心,MN在平面AA1,故MN//AB1B1B的投影正好是AB1。除了用判定定理之外,本题还可以取BC的中点G,通过证明平面MNG//平面AA1B1B得到MN//平面AA1B1B。

解:连结AB1和AC,因为M,N分别是B1C,BD的中点,故MN//AB1,又MN平面AA1B1B,AB1平面AA1B1B,所以,MN//平面AA1B1B。

【探究一】将原题改为:正方体ABCDA1B1C1D1中,点N在BD上,点M在B1C上,且CMDN,求证:MN//平面AA1B1B。

分析:将中点弱化为线段上的点,并没有改变由线线平行得到线面平行的本质,只是在找平行线时遇到了困难。用中心投影的方法,本题非常简单,但是不用这个方法,怎么找出交线呢?显然,CN必和AB相交,设交点为E,CMA1B1B1,从而,B1E可看做是

MN//平面AA过MN的平面CMN与平面AA1B1B成立,根据线面平1B1B的交线,若结论

行的性质定理,必有MN//B1E,也就是说,只要我们能够证明MN//B1E,就可以证明最终的结论了。而要证明MN//B1E,根据已知条件,结合正方体的特点,证明并不难。

证明:如图,延长CN交直线AB于点E,连结B1E。CMDN,

而CMDN,MB1NBDNCNCMCN,从而,即有MN//B1E,又MN平面AA1B1B,NBNEMB1NE

B1E平面AA1B1B,所以,MN//平面AA1B1B。

点评:本题是将线面平行的问题放在正方体这个背景中,但是,实际解决问题时,我们完全可以仅仅将这个问题放在四棱锥B1ABCD中,适当改变

相应的条件。

【探究二】如图,在四棱锥PABCD中,底面ABCD

菱形,BAD60,Q为AD的中点,点M在线段PC上,PMtPC,试确定实数t的值,使得PA//平面MQB。

分析:如图,MN是过PA的平面PAC与平面MQB的交线,若PA//平面MQB,PMANANAQ1PCACANNCAQBC3。则有PA//MN,从而

解:连结AC交BQ于点N,则过PA的平面PAC与平面MQB的交线为MN,若

PMAN,PA//平面MQB,由线面平行的性质定理,知PA//MN。从而,tPCAC

ANAQ1ANAN11,所以,即又在菱形ABCD中,有NCBC2ACANNC12

31t。3t

点评:解决这类探究性的命题,其基本方法就是将结论当作已知条件。立体几何中这类题型往往不是很难,只要能够抓住条件,如本题,充分运用线面平行的判定、性质定理,化难为易。

牛刀小试:如图,平面内两个正方形ABCD与ABEF,点M,N分别在对角线AC,FB上,且AM:MCFN:NB,沿AB折成直二面角。(1)证明:折叠后MN//平面CBE;

(2)若AM:MC2:3,在线段AB上是否存在一点G,使平面MGN//平面CBE?若存在,试确定点G的位置。

分析:这是一类创新的题型——折叠问题,要能够把握折叠前后的不变量,问题就可以

迎刃而解。解决第二问时,只要根据面面平行的判定定理,由第一问的结论,再在面ABCD内过M点作AB的垂线,垂足即为点G。对于第一问,既可以通过面面平行来证,也可以在平面CBE内找一条直线与MN平行即可,还是可以利用线面平行的性质定理,延长AN交BE于点H,则直线CH为过MN的平面AMN与平面CBE的交线,则只要证明MN//CH即可,与例2的“探究二”类似。

解:(1)延长AN交BE于点H,则由AF//BE知,所以ANFNFNAM,而,NHNBNBMCAMAN,从而MN//CH。又因为MN平面CBE,CN平面CBE,所以,MCNH

MN//平面CBE;

(2)若平面MGN//平面CBE,由平面ABC平面MNGMG,AGAM2。平面ABC平面CBECB知MG//BC,从而,GBMC3

【小结】本文通过两个例题,对高考中常见的线面平行这一类重要证明题型做了简单的分析,并根据例题进一步展开,探讨一般情况下如何找线线平行,进而根据判定定理来证明线面平行,当然,线面平行大体上有三种证法,由于篇幅限制,本文主要对判定定理进行了

拓展,希望对同学们在复习这部分内容时有所帮助。

参考文献:

[1]鲍启静.线面平行之常见题型[N].中学生数理化.2008(2)

[2]崔君强.好记好用得“光照法”证明线面平行[N].中学生数学.2011-6月上(419)

[3]张心诚.不同背景下的同一类线面平行问题[N].中学生数理化.2008(10)

第二篇:立体几何线面平行问题

线线问题及线面平行问题

一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..

2.公理4 :推理模式:a//b,b//ca//c.

3.等角定理:4.等角定理的推论:若两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法

6.异面直线定理:连结平面内一点与平面外一点的直线,b

a

1AA

推理模式:A,B,l,BlAB与l

7.异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a//a,b//b,a,b所成的角的大小与点O的选择无关,把a,b所成的锐角(或直角)叫异面直线a,b所成的角(或夹角).为了简便,点O(0,

28.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b 垂直,记作ab.

9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;

(210.两条异面直线的公垂线、距离:和两条异面直线都垂直相交....

异面直线的的定义要注意“相交

11.异面直线间的距离:两条异面直线的公垂线在这两条异面直线间的线段垂线段)的长度,叫做两条异面直线间的距离.

12.直线和平面的位置关系(1)直线在平面内(无数个公共a点);(2)直线和平面相交(有且只有一个公共点);(3)直

线和平面平行(没有公共点)——用两分法进行两次分

类.它们的图形分别可表示为如下,符号分别可表示为a,aA,a//. a13.线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:l,m,l//ml//.

14.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这

相交,那么这条直线和交线平行.推理模式:l//,l,ml//m.

lm个平面

二、基本题型

1.判断题(对的打“√”,错的打“×”)

(1)垂直于两条异面直线的直线有且只有一条()

(2)两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB⊥CD()(3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º()(4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直()

2.右图是正方体平面展开图,在这个正方体中

C

①BM与ED平行;②CN与BE是异面直线;③CN与BM成60º角; ④DM与BN垂直.以上四个命题中,正确命题的序号是()(A)①②③(B)②④(C)③④(DF

3.已知空间四边形ABCD.(1)求证:对角线AC与BD是异面直线;(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;(3)若AB=

BC=CD=DA,作出异面直线AC与BD的公垂线段.4.完成下列证明,已知直线a、b、c不共面,它们相交于点P,Aa,Da,Bb,Ec求证:BD和AE证明:假设__ 共面于,则点A、E、B、D都在平面__Aa,Da,∴__γ.Pa,∴P__.Pb,Bb,Pc,Ec∴__,__,这与____矛 ∴BD、E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,(1)求证四边形EFGH是

2)若AC⊥BD时,求证:EFGH为矩形;(3)若BD=2,AC=6,求EG

HF

;(4)

若AC、BD成30º角,AC=6,BD=4,求四边形EFGH的面积;(5)若AB=BC=CD=DA=AC=BD=2,求AC与BD间的距离.6 间四边形ABCD中,ADBC2,E,F分别是AB,CD的中点,EFAD,BC7.在正方体ABCD-A1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.8.在长方体ABCDABCD中,已知AB=a,BC=b,AA=c(a>b),求异面直线DB与AC

9.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别

是AB、PC1)求证:MN//平面PAD;(2)若MNBC4,PA 求异面

直线PA与MN10.如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AMFN求证:MN//平面CBE

参考答案:

1.(1)×(2)×(3)√(4)×2.C

3.证明:(1)∵ABCD是空间四边形,∴A点不在平面BCD上,而C平面BCD, ∴AC过平面BCD外一点A与平面BCD内一点C, 又∵BD平面BCD,且CBD.∴AC与BD是异面直线.(2)解如图,∵E,F分别为AB,BC的中点,∴EF//AC,且EF=同理HG//AC,且HG=

212

AC.AC.∴EF平行且相等HG,∴EFGH是平行四边形.又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.o

∵AC⊥BD,∴∠EFG=90.∴EFGH是矩形.(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.4.答案:假设BD、AE共面于,则点A、E、B、D都在平面  ∵Aa,Da,∴ a .∵Pa,P .∵Pb,Bb,Pc,Ec.∴ b ,c ,这与a、b、c∴BD、AE5.证明(1):连结AC,BD,∵E,F是ABC的边AB,BC上的中点,∴EF//AC,同理,HG//AC,∴EF//HG,同理,EH//FG,所以,四边形EFGH证明(2):由(1)四边形EFGH∵EF//AC,EH//BD,∴由AC⊥BD得,EFEH,∴EFGH为矩形.解(3):由(1)四边形EFGH∵BD=2,AC=6,∴EF

2AC3,EH

BD

1∴由平行四边形的对角线的性质 EGHF2(EF

EH)20.B

D解(4):由(1)四边形EFGH∵BD=4,AC=6,∴EF

又∵EF//AC,EH//BD,AC、BD成30º角,∴EF、EH成30º角,AC3,EH

BD

2∴四边形EFGH的面积 SEFEHsin30

3.解(5):分别取AC与BD的中点M、N,连接MN、MB、MD、NA、NC,∵AB=BC=CD=DA=AC=BD=2,∴MB=MD=NA=NC=3 ∴MNAC,MNBD,∴MN是AC与BD的公垂线段 且MN

MB

NB

2∴AC与BD间的距离为2.6.解:取BD中点G,连结EG,FG,EF,∵E,F分别是AB,CD的中点,∴EG//AD,FG//BC,且EG

2AD1,FG

BC1,∴异面直线AD,BC所成的角即为EG,FG所成的角,EGFGEF

2EGFG

在EGF中,cosEGF

,G

F

D

∴EGF120,异面直线AD,BC所成的角为60.

7.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90o.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD1成角90.8.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形, ∴∠A1BD=60o,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.o

在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD成角90o.9.略证(1)取PD的中点H,连接AH,NH//DC,NH

12DC

o

o

C

NH//AM,NHAMAMNH为平行四边形 MN//AH,MNPAD,AHPADMN//PAD

解(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等

于PA的一半,所以ONM就是异面直线PA与MN所成的角,由

MNBC

4,PAOM=2,ON=

所以ONM300,即异面直线PA与MN成30010.略证:作MT//AB,NH//AB分别交BC、BE于T、H点

AMFNCMT≌BNHMTNH

从而有MNHT为平行四边形MN//THMN//CBE

E

第三篇:线面平行教案

§2.2.1 直线与平面平行的判定

【教学目标】

(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题;(2)进一步培养学生观察、发现的能力和空间想象能力;(3)让学生了解空间与平面互相转换的数学思想。【教学重难点】

重点、难点:直线与平面平行的判定定理及应用。【教学过程】

(一)创设情景、揭示课题

引导学生观察身边的实物,如教材第54页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。

(二)研探新知

1、观察

①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?

问题本质:门扇两边平行;书的封面的对边平行 从情境抽象出图形语言a

b

探究问题:

平面外的直线a平行平面内的直线b ③直线a,b共面吗? ④直线a与平面相交吗?

课本P55探究学生思考后,小组共同探讨,得出以下结论 直线与平面平行的判定定理:

简记为: 符号表示:

2、典例

例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。

变式训练 :如图,在空间四面体ABCD中,E,F,M,N分别为各棱的中点,变式一(学生口头表达)①四边形EFMN是什么四边形?

②若ACBD,四边形EFMN是什么四边形?

B

③若ACBD,四边形EFMN是什么四边形? C

变式二

①直线AC与平面EFMN的位置关系是什么?请证明?

②在这图中,你能找出哪些线面平行关系?

2、如图,已知P为平行四边形ABCD所在平面外一点,M

求证:PD//平面MAC.

变式训练:如图,在正方体ABCDA1B1C1D1中,试作出过AC且与直线D1B平行的截面,并说明理由.

(三)效果检测

1.直线a//直线b,b平面,则a与的位置关系是:()

A a//B a//或aC aDa//或a或a与相交 2.a是平面外的一条直线,可得出a//的条件是:()A a与内的一条直线不相交B a与内的两条直线不相交

C a与内的无数条直线不相交D a与内的任意一条直线都不相交。

3、过空间一点作与两条异面直线都平行的平面,这样的平面()A不存在B有且只有一个或不存在C有且只有一个D有无数个

4、下列三个命题正确的个数为()

(1)如果一条直线不在平面内,则这条直线与该面平行

(2)过直线外一点,可以作无数个面与该面平行

(3)如果一条直线与平面平行,则它与平面内的任意直线平行 A0B1C2D3 5.下面四个命题中:

①平面外的直线就是平面的平行线。②平行于同一平面的两条直线平行 ③过平面外一点可做无数条直线和这个平面平行。④三角形ABC中,AB//平面,延长CA,CB, 分别交于E,F两点,则AB//EF.正确命题的序号是:

6.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

7.如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA12,E,E1,F分别是AD,AA1,AB的中点,证明:EE1//平面FCC

1【作业布置】

1、教材第62页习题2.2 A组第3题;

2、预习:如何判定两个平面平行?

第四篇:证明线面平行

证明线面平行

一,面外一条线与面内一条线平行,或两面有交线强调面外与面内

二,面外一直线上不同两点到面的距离相等,强调面外

三,证明线面无交点

四,反证法(线与面相交,再推翻)

五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面

线面平行

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。

【平面与直线平行的性质】

定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。

注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

第五篇:线面平行证明

线面平行证明“三板斧”

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面

内找到与已知直线的平行线。

例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

练习:

如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD

第二斧:以平面外的直线作平行四边形

D

例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC

1练习:

如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:

A1E//平面B1CF

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG

练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:

AC1//平面AB1D

B

C

总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。

1.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.P

E

C

A

B

3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;

AA

D

C

B1

C1

4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是

①②③④

6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.A

7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是

A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b

C.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()

A.不存在B.有1条C.有2条D.有无数条

10.如图所示:设P

上的点,AMDN且MBNP

11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.

(1)求证:PQ//平面DCC1D1(2)求PQ的长.

(3)求证:EF//平面BB1D1D.

下载关于线面平行问题的探讨word格式文档
下载关于线面平行问题的探讨.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面平行证明题

    线面平行证明题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是.A. 异面B. 相交C.平行D. 不能确定2.若直线a、b均平行于平面α,则a与b的关系......

    线面平行练习题

    线面平行练习题11. 三棱柱ABC—A1B1C1中,若D为BB1上一点, M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的中点.求证:PB......

    关于线线、线面及面面平行的问题

    关于线线、线面及面面平行的问题典型例题:例1. (2012年四川省文5分)下列命题正确的是A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另......

    线面平行判定教案

    2.2.1 直线与平面平行的判定教学目标1.知识与技能 通过直观感知.操作确认,理解直线与平面平行的判定定理并能进行简单应用进一步培养学生观察.发现问题的能力和空间想......

    线面平行的性质

    最有力的回答是行动,最有效的方法是参与神木四中2015届高一数学组直线与平面平行的性质第周第课时编写人:史会婷审核人:薛向荣使用人:编写时间:2012-12-9高一班组姓名组评学习目......

    线面、面面平行习题

    线面、面面平行习题课三、例题精讲题型1、线面平行判定定理,线面平行性质定理线线平行 线面平行例1、(线线平行 →线面平行→线线平行)解:已知直线a∥平面,直线a∥平面,平面平面=b......

    线面平行证法探讨五篇

    线面平行证法探讨惠来一中方文湃今年我校高一级第一学期质检考试试题第17题第一小题的题目如下: 题目:如图,四边形ABCD是正方形,MA⊥平面ABCD,MA∥PB。求证:DM∥面PBC这是一道证明......

    线面平行证明“三板斧”

    线面平行证明“三板斧”线面平行是高考的重点,也是平行关系中的核心。在证明线面平行的过程中,如何快速的找到证明的思路,此文的目的就在于此。将证明的过程程序化,可以帮助学生......