空间立体几何中有关垂直问题的证明 学案

时间:2019-05-13 11:04:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《空间立体几何中有关垂直问题的证明 学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《空间立体几何中有关垂直问题的证明 学案》。

第一篇:空间立体几何中有关垂直问题的证明 学案

空间立体几何中有关垂直问题的证明 学案

学习目标: 1学会运用所学知识解决垂直的证明问题;

2培养学生空间想象能力、逻辑推理能力;

3培养学生用向量的代数推理能力解决立几何中探索性问题的意

识。

重点: 能够运用所学知识证明垂直问题

难点: 垂直关系的相互转化

一、教学过程

探究1 请你总结证明线线垂直的方法?线面垂直的方法?面面垂直的方法?

探究2请你用表示线线垂直、线面垂直及面面垂直的关系

二、方法指导

1、如图,在正方体ABCDA1B1C1D1中,AB2,M是CC1的中点,O是底面ABCD的中心,点P在A1B1上,设直线BM与OP所成的角大小为(1)若P是A1B1的中点,求

的大小(2)若P是A1B1上的任意点,求的大小

2、如图,在四棱锥

和CD侧棱底面,中,底面是是直角梯形,垂直于,.的中点,且(Ⅰ)求证:平面;(Ⅱ)在侧面内找一点,使平面;

练习:在正方体ABCDA1B1

C1D1中,M为CC1的中点,AC交BD于点O,A1O平面MBD求证:

探究:在上述正方体中,当M在CC1上运动时,若要求A1O1面MBD,O1在面ABCD内,则点O1在AC上吗?点M的位置和点O1的位置是否有联系?如果有AO1和CM的长度有什么关系?

第二篇:立体几何垂直证明范文

立体几何专题----垂直证明

学习内容:线面垂直面面垂直

立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法:(1)通过“平移”。(2)利用等腰三角形底边上的中线的性质。(3)利用勾股定理。(4)利用三角形全等或三角行相似。(5)利用直径所对的圆周角是直角,等等。

试题探究

一、通过“平移”,根据若a//b,且b平面,则a平面

1.在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=

12DC,E为PD中点.求证:AE⊥平面PDC.、2.如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E为棱AB的中点. 求证:平面PCE⊥平面PCD;

3.如图所示, 四棱锥PABCD底面是直角梯形

BAAD,CDAD,CD2AB,PA底面ABCD,E为PC的中点, PA=AD。

证明: BE平面PDC;

二、利用等腰三角形底边上的中线的性质

4、在三棱锥PABC中,ACBC2,ACB90,APBPAB,PCAC.

(Ⅰ)求证:PCAB;

P

(Ⅱ)求二面角BAPC的大小;A

B

C5、如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90 º 证明:AB⊥PC

三、利用勾股定理

PACD,PA1,PD

6、如图,四棱锥PABCD的底面是边长为1的正方形,求证:PA平面ABCD;

_A _D

_B_C7、如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD

(1)求证:AO平面BCD;

(2)求异面直线AB与CD所成角的大小;B

E

四、利用三角形全等或三角行相似

8、正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O⊥平面MAC.9、如图,已知正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;

五、利用直径所对的圆周角是直角

10、如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.P

A11、如图,在圆锥PO中,已知PO,⊙O的直径AB2,C是狐AB的中点,D为AC的中点.证明:平面POD

平面PAC;

第三篇:立体几何证明问题

证明问题

例1.如图,E、F分别是长方体边形

.-的棱A、C的中点,求证:四边形是平行四

例2.如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证:AE⊥SB.例3.如图,长方体∠求证:

=90°.⊥

PQ

-中,P、Q、R分别为棱、、BC上的点,PQ//AB,连结,例4.已知有公共边AB的两个全等的矩形ABCD和ABEF不同在一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ,如图所示.求证:PQ//平面

CBE.例5.如图直角三角形ABC平面外一点S,且SA=SB=SC,且点D为斜边AC的中点.(1)求证:SD⊥平面ABC.(2)若AB=AC,求证BD⊥平面

SAC.例6.如图,在正方体

-中,M、N、E、F分别是棱、、、的中点.求证:平面AMN//平面

EFDB.例7.如图(1)、(2),矩形ABCD中,已知AB=2AD,E为AB的中点,将ΔAED沿DE折起,使AB=AC.求证:平面ADE⊥平面

BCDE.

第四篇:立体几何中平行与垂直的证明

立体几何中平行与垂直的证明

姓名

2.掌握正确的判定和证明平行与垂直的方法.D

1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;

例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.

求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:

AD

C1

BC【变式一】如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;

【反思与小结】1.证明线线垂直的方法:

1. 谈谈对“点E在棱AB上移动”转化的动态思考 2. 比较正方体、正四棱柱、长方体

【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩

形,且AF

D

1A

E

B

C

C

AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。

反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识? 【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC

(Ⅰ)求证:

10,D是BC边的中点.ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;

【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识? 【变式三】如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;

(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.

【反思与小结】

1.观察两个图之间的变化联系,写出感受。

2.和【变式一】进行比较,谈谈你把握动态问题的新体会

【变式四】如图,四边形ABCD

为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥BE;

(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同? _P【变式五】如图5所示,在三棱锥PABC中,PA平面ABC,ABBCCA3,M为AB的中点,四点P、A、M、C都在球O的球面上。

(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;

【反思与小结】1.探讨球与正方体、长方体等与球体之间的关系。

2.结合前面几组图形的分割变化规律,说明正方体、正四棱

柱、长方体、直三棱柱、四棱锥、三棱锥的变化联系。

3.总结立几中证明“平行与垂直”的思路和方法

课后练习

1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;

(II)求证:B1C1⊥平面ABB1A

(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面BDE,并说明理由。

2.如图,已知AB平面ACD,DE平面ACD,三角形ACD

为等边三角形,ADDE2AB,F为CD的中点

(1)求证:AF//平面BCE;

(2)求证:平面BCE平面CDE;

P1. 如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.(1)求证:CDAE;

A

D(2)求证:PD面ABE.

2. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=_A_M_B_C1AD.2B

(I)求证:平面PAC⊥平面PCD;

(II)在棱PD上是否存在一点E,使CE∥平面PAB?若

存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB

2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.

(1)证明:CD平面SAE;

(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论. D【课后记】1.设计思路(1)两课时; C(2)认识棱柱与棱锥之间的内在联系;

(3)掌握探寻几何证明的思路和方法;

(4)强调书写的规范性

2.实际效果:

(1)用时两节半课;

(2)平行掌握的比较好,但垂直问题需要继续加强。尤其是面面垂直问题转化为线面垂直后便不知所措。

第五篇:高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练

深圳龙岗区东升学校—— 罗虎胜

立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法:(1)通过“平移”。

(2)利用等腰三角形底边上的中线的性质。(3)利用勾股定理。

(4)利用三角形全等或三角行相似。(5)利用直径所对的圆周角是直角,等等。

(1)通过“平移”,根据若a//b,且b平面,则a平面

1.在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=

DC,2E为PD中点.求证:AE⊥平面PDC.分析:取PC的中点F,易证AE//BF,易证

BF⊥平面PDC

2.如图,四棱锥P-ABCDABCD,∠PDA=45°,点E为棱AB的中点. 求证:平面PCE⊥平面PCD;

分析:取PC的中点G,易证EG//AF,又易证AF于是EG⊥平面PCD,则平面PCE⊥平面PCD

(第2题图)

3、如图所示,在四棱锥PAB中,AB平面,PAB//CD,PDAD,E是PB的中点,F是CD上的点,且

DF

AB,PH为PAD中AD边上的高。

2(1)证明:PH平面ABCD;

(2)若PH1,ADFC1,求三棱锥EBCF的体积;(3)证明:EF平面PAB.分析:要证EF平面PAB,只要把FE平移到DG,也即是取AP的中点G,易证EF//GD, 易证DG⊥平面PAB

4.如图所示, 四棱锥PABCD底面是直角梯形

BAAD,CDAD,CD2AB,PA底面ABCD,E为PC的中点, PA=AD。证明: BE平面PDC;

分析:取PD的中点F,易证AF//BE, 易证AF⊥平面PDC

(2)利用等腰三角形底边上的中线的性质

5、在三棱锥PABC中,ACBC2,ACB90,PCAC.APBPAB,(Ⅰ)求证:PCAB;

(Ⅱ)求二面角BAPC的大小;

P

A

C

B6、如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90 º 证明:AB⊥PC

因为PAB是等边三角形,PACPBC90, 所以RtPBCRtPAC,可得ACBC。如图,取AB中点D,连结PD,CD, 则PDAB,CDAB, 所以AB平面PDC, 所以ABPC。

(3)利用勾股定理

7、如图,四棱锥PABCD的底面是边长为

1的正方形,PACD,PA1,PD求证:PA平面ABCD;

_ B

_ A

_D

_C8、如图1,在直角梯形ABCD中,AB//CD,ABAD,且ABAD

CD1.

2现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面

ADEF与平面ABCD垂直,M为ED的中点,如图2.(1)求证:AM∥平面BEC;

(2)求证:BC平面BDE;

E

M

E

C

F

MC

B

A9、如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD(1)求证:AO平面BCD;

(2)求异面直线AB与CD所成角的大小;

(1)证明:连结OCBODO,ABAD,AOBD.B

E

BODO,BCCD,

COBD.在AOC中,由已知可得AO1,CO 而AC2,AO2CO2AC2,AOC90o,即AOOC.BDOCO, AO平面BCD,BCCD,侧面SAB为等边三角形,10、如图,四棱锥SABCD中,ABBC

ABBC2,CDSD1.

(Ⅰ)证明:SD平面SAB;

(Ⅱ)求AB与平面SBC所成角的大小.

解法一:

(I)取AB中点E,连结DE,则四边形

BCDE为

矩形,DE=CB=2,连结SE,则SEAB,SE又SD=1,故EDSESD,所以DSE为直角。

由ABDE,ABSE,DESEE,得AB平面SDE,所以ABSD。SD与两条相交直线AB、SE都垂直。

所以SD平面SAB。

(4)利用三角形全等或三角行相似

11.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O⊥平面MAC.分析:法一:取AB的中点E,连A1E,OE,易证△ABM≌A1AE, 于是AM⊥A1E,又∵OE⊥平面ABB1A1∴OE⊥AM, ∴AM⊥平面OEA1D1∴AM⊥D1O

法二:连OM,易证△D1DO∽OBM,于是D1O⊥OM

12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;

分析: 取BC的中点E,连AE,B1E,易证△DCB≌△EBB1,从而BD⊥EB113、.如图,已知正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;

(5)利用直径所对的圆周角是直角

AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.)求证:平面PAC⊥平面PBC;

(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互

相垂直的各对平面.P

A15、如图,在圆锥PO中,已知POO的直径AB2,C是狐AB的中点,D为

AC的中点.证明:平面POD平面PAC;

16、如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD.以BD的中点O为球心、BD为直径的球面交PD于点M.

求证:平面ABM⊥平面PCD; .

证:依题设,M在以BD为直径的球面上,则BM⊥PD.因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.B

下载空间立体几何中有关垂直问题的证明 学案word格式文档
下载空间立体几何中有关垂直问题的证明 学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考复习专题---立体几何垂直关系证明

    5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD (I)求证:AO平面BCD;BE4. ( 2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)......

    立体几何证明中常用知识点范文合集

    立体几何证明中常用知识点一、判定两线平行的方法1、平行四边形 2、中位线定理 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(......

    立体几何中不等式问题的证明方法

    例谈立体几何中不等式问题的证明方法立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍......

    高一立体几何平行垂直证明基础练习

    高一垂直证明基础练习专项1、点线面位置关系判定问题解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都......

    立体几何中的向量方法----证明平行与垂直练习题

    §8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直一、选择题1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则.A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确2.直线l1,l2相......

    8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

    §8.7 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    空间几何——平行与垂直证明

    三、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行......

    立体几何证明

    立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(......