高一立体几何平行垂直证明基础练习

2021-07-17 01:20:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高一立体几何平行垂直证明基础练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一立体几何平行垂直证明基础练习》。

高一垂直证明基础练习专项

1、点线面位置关系判定问题

解题方法与技巧:在判定点线面的位置关系时,通常有两个切入点(1)集合:点、线点、面的位置关系从集合的从属关系来判定;线、面都是点集,所以在考虑线面关系时从集合与集合的包含关系或者集合与集合的交、并、补关系来判定;(2)几何:把集合与几何关系结合来判定线线,线面,面面关系

例1、设是三个不重合的平面,l是直线,给出下列命题

①若,则;

②若l上两点到的距离相等,则;

③若

④若

其中正确的命题是

()

A.①②

B.②③

C.②④

D.③④

解析:

①由面面垂直关系已知不成立,可能垂直也可能相交平行。错误;②由点到面距离易知直线还可能和平面相交;③因为所以在平面β内一定有一直线垂直α所以正确④根据平行关系易知正确

答案选D

练习1、设,是两条不同的直线,是一个平面,则下列命题正确的是()

(A)若,则

(B)若,则

(C)若,则

(D)若,则

练习2、给定下列四个命题:

()

①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是

A.①和②

B.②和③

C.③和④

D.②和④

练习3.(2009浙江卷文)设是两个不同的平面,是一条直线,以下命题正确的是()

A.若,则

B.若,则

C.若,则

D.若,则

练习4.顺次连接空间四边形各边中点所成的四边形必定是()

A、平行四边形

B、菱形

C、正方形

D、梯形

练习题答案:练习1:B;练习2:

D;练习3:

C;练习4:

A;

2、空间中线面的平行垂直证明

例1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

解析:

证明PC平行于面EBD,只需在面EBD内找一条直线和已知直线平行即可

E为中点,首先考虑构造等腰三角形中位线,取AC中点O连接EO即可

证明:取AC的中点O,连接EO,例2:三棱柱—中,为的中点,为的中点,为的中点,证明:平面∥平面

解析:面面平行的证明定理,证明两平面内两组相交直线平行,即把面面

平行问题转化为线线平行问题,按解决线线平行的思路即可解决问题

证明:连接BC1,EF

分别为BC、B1C1、BB1、CC1的中点,例3:如图:四棱锥—中,⊥平面,底面是矩形,为的中点,⊥,证明:⊥

解析:线线垂直的证明分同平面直线垂直证明和异平面垂直证明,在处理异平面垂直证

明问题时,优先考虑证明一直线垂直于另一直线所在平面,转化为线面垂直证明问题

即证明PD垂直于面BEF即可

证明:点

例4:如图:四棱锥—中,⊥平面,底面是矩形,证明:平面⊥平面

练习1:如图:四棱锥—中,底面是平行四边形,为侧棱的中点,证明:∥平面

练习2:如图:三棱柱—中,为的中点,证明:∥平面

练习3:如图:三棱柱—中,为的中点,证明:∥平面

练习4:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习5:如图:三棱柱—中,、分别为、的中点,证明:∥平面

练习6:如图:四棱锥—中,底面是平行四边形,、分别为、的中点,证明:∥平面

练习7:如图:三棱柱—中,为的中点,为的中点,证明:∥平面

练习8:如图:四棱锥—中,⊥平面,底面是梯形,∥,,为的中点,证明:⊥

练习9:如图:直三棱柱—中,,、分别为、的中点,为的中点,证明:⊥

练习10:如图:四棱锥—中,⊥平面,⊥,,⊥,⊥,为的中点,证明:⊥

练习11:如图:四棱锥—中,底面是矩形,平面⊥平面,证明:平面⊥平面

练习12:如图:五面体中,是正方形,⊥平面,∥,证明:平面⊥平面

练习13:如图:四棱锥—中,⊥平面,是菱形,为的中点,证明:平面⊥平面

练习14:如图:四棱锥—中,平面⊥平面,,证明:平面⊥平面

下载高一立体几何平行垂直证明基础练习word格式文档
下载高一立体几何平行垂直证明基础练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    立体几何垂直证明范文

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等......

    立体几何垂直和平行的证明练习题(共5则)

    1.下列命题正确的是………………………………………………A.三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两条相交直线确定一个平面2.若直线a不平......

    立体几何中平行与垂直的证明(5篇模版)

    立体几何中平行与垂直的证明姓名2.掌握正确的判定和证明平行与垂直的方法.D1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;例1.已知正方体ABCD—A1B1C1D1, O是底A......

    证明平行与垂直

    §9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    立体几何中的向量方法----证明平行与垂直练习题

    §8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直一、选择题1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则.A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确2.直线l1,l2相......

    8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

    §8.7 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    平行与垂直的证明

    立体几何中平行与垂直的证明1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.ADBC1DBC2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1, 点E在......

    立体几何的平行与证明问题

    立体几何1.知识网络一、 经典例题剖析考点一 点线面的位置关系1、设l是直线,a,β是两个不同的平面 A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥βC.若a⊥β,l⊥a,则l⊥β D.若a......